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ABSTRACT

This paper generalizes certain analytical
formulas for yield and yield sensitivities so that
design centering and yield optimization can be

, effectively carried out employing given statistical

parameter distributions. The tolerance region of
possible outcomes is discretized into a set of
orthotopic cells. A suitable weight is assigned to
each cell in conjunction with an assumed uniform
distribution on the cell. Explicit formulas for
yield and its sensitivities are derived. To avoid
unnecessary evaluations of circuit responses,
multidimensional quadratic interpolation is
performed. Sparsity 1is exploited in the
determination of these quadratic models leading to
reduced computation as well as increased accuracy.

INTRODUCTION

The aim of this paper (see also Part II) is to
present some theoretical concepts leading to the
most general approach currently available for
automatic optimization of production yield which
avoids the use of the Monte Carlo method. Thus,
the design centering and/or optimal tolerance
assignment which is to be performed takes
explicitly into account statistical distributions
and possible parameter correlations.

The approach is based on the work of Bandler,
Liu and Tromp [1] and represents a generalization
of the work of Bandler and Abdel-Malek [2,3]. The
presentation is directed to a nonlinear programming
method of solution, and can be associated with
original ideas suggested by a number of other
researchers [4,5]. Part II of this paper applies
this material to the optimization of yield for a
current switch emitter follower.

FUNDAMENTAL CONCEPTS AND DEFINITIONS

A design caq) be described by a nominal
parameter vector ¢ of the k designable parameters

This work was supported by the National
Research Council of Canada under Grant A7239.

and a corresponding tolerance vector €. The

tolerance vector € may be used to define the
extremes of the tolerance region or the standard
deviation, etc. It is assumed that the parameters
can be varied continuously.

An outcome {Qo, €, 1} of a design {20, €} im-
plies a point in the parameter space given by

2:20-&@2, (1)

where E is a diagonal matrix with elements set to
e.,i=1,2, .., k, and ¥ is a random vector
distributed according to the Joint probability
distribution function (PDF). The PDF might extend
as far as (-=, ®), however, for all practical cases

it is possible to consider a tolerance region Re
such that

Rf F(¢) d¢1 de, ... de, =1, (2)
€

where F(¢) is the PDF.

For the sake of simplicity as well  as the
implications of independent design parameters,
there is no loss of generality to consider R to be
an orthotope defined by
Ro2lele=y

~

+Eu, ne Ru} R 3)

where

A
R =

. fpl -1 <1,1=1,2, ..., kI . ()

This orthotope is centered at Qo and has edges of
length 2¢,, i = 1, 2, ..., k. = The extreme points
of R are called vertices and the set of vertices
is défined by [1]

R, = (816, = 0ve,u, wel=1,1}, i=1,2,...,k}. (5)
The number of these vertices is 2k and for
r 0

¢ = ¢ +E gr, u§ ¢ {-1,1} (6)
we have r
k H.+1
r=1+ z (52t (M
i=1

The constraint region (or feasible region)



itself is given by

gls(wzo t=1,2, ...,m}, (8
where m_ is the number of constraints g,. The
production or manufacturing yield is simply

2 w/m ; (9)

where M is the total number of outcomes and N is
the number of outcomes ¢ which satisfy the
specifications, i.e., for which ¢ ¢ Rc.

EXPLOITING SPARSITY IN QUADRATIC INTERPOLATION
I lati by Quad ic Pol ial

An approximate representation of a constraint
g(¢) by using its values at a finite set of points
is possible [6]. These p01nts are called nodes or
base points, and denoted by ¢ , 0= 1, 2, ooy N

In order to minimize the computational effort
to obtain a quadratic polynomial approximation, the
number of base points required will be chosen to be
equal to the number of unknown coefficients, i.e.,
interpolation will be adopted. Hence, the number
of base points is

= (k+1)(k+2)/2 . (10)

Let Ri be the interpolation region defined by

e
|

{016,206, -6 |,1i=1,2, ..., k},(11)

l 1 1 1

where Q is the center of the interpolation region
and 8,, i = 1, 2, ..., k, are parameters defining
the size of the interpoclation region, The quad-
ratic polynomial approximation can be expressed as

P(9) = g+ a (-0 + % (-9 H(g-9)  (12)
or
2 2 2
P(¢) = b1(¢1) + b2(¢2) ek bk(¢k) + by 00,
* D by b e Dy g g Oy
+ bN-k b, + bN«k+1 b+t bN~1 b+ bN,(13)

where H is the Hessian matrix of the quadratic
approximation and is given by
H=v 7 P(o) (1)

~
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The relations between the coeff101ents in (12) and
(13) are given by

2 (15)

by =h; /2 ,1=1,2, ..., k, (16)

i
b, =h,., #=3-1i+ I (k-p+1), 1< 3, €17)
p=1

k -
Nek-14i = 21 in‘] hij ¢j ,i=1,2, ..., k, (18)
k . 1 k k —_ -
b.=a. - & ¢ + z Z h $. ¢, 3 (19)
N 0 i=1 2 i=1 j=1 ij i °J
where N is given by (10).
arsit e o e Po

If we have freedom in choosing the base points,
we can save computational effort, particularly if
the number of variables k is large. The system of
linear equations

PO™ = g(¢™, n=1, 2, ..., N, (20)

has to be solved for the polynomial coefficients.
In general, the resulting matrix is full, however,

it is possible to make it _sparse by using the
following choice of base points. Let

o' 62 ... ¢M =p1, -1, B0 T+ [0 ... 01,021
¢ ¢ cee @ = RN k £ ~k X e ¥y

where D is a k x k diagonal matrix with diagonal
elements §, 1, 1is a k-dimensional identity matrix,
0, is a zero “Vector of dimension k, B isakx L
matrix having the structure

S| Oz O3 .
Yo 9E-3 k-2
B=| Trq ___:Li_j ,  (22)
To
Ek-3 o]
2

where u., is a column vector of dimension j and
having d%mponents u 1j such that
0<luij|_<_1,i=1,2,...,j, (23)

T, is a diagonal matrix of dimension j with
dfagonal elements T, 1j satisfying

o< | T,

1jl.$1yi=1,21 ceey J s (24)

and
L = k(k-1)/2 . (25)

According to this choice of base points it is clear
that

a, = g@™) . (26)

The system of simultaneous linear equations is now
a sparse system and its solution is

- [g(¢i) . g(¢N-k-1+i

[s(¢ )

) - 2e0™182,  (@n)

gV M hes, ie1,2,.00,k,  (28)



h,. h,.
j\2
hyy = by = [eeh) - e(eh) - () S o FH

j’ 2
_ 3 A 3 i
g ey 5 aj]/z,i L (29)
where
i
= J-1i+ 2 (k=-p+1), J>1 (30)
p=1
and
i i L
8T Uy et 85 gy = Tj—i,k—i 6j, i<j. (31)
Subsequently, the number of multiplications/

divisions required to obtain the approximation is

reduced to 5k2 ~ 2k instead of (N3 + 3N2 - N)/3 for
Gauss elimination, where N is defined in (10).

Fig. 1 shows the choice of base points in two
dimensions and three dimensions [2].

If we are not completely free in choosing the
base points, for example, if the function evalua-
tion is expensive and some evaluations, n say, for
parameter values inside the interpolation region
are known, the linear equations can be ordered such
that these n equations come last. In solving the
resulting system of simultaneous equations, we
proceed with finding the polynomial coefficients
using (27), (28) and (29) until we come to the full
part of the matrix;, i.e., the last n equations.
The unknown coefficients beyond this point should
be found by solving n simultaneous linear
equations, for example, by Gauss elimination.

EVALUATION OF YIELD AND ITS SENSITIVITIES
The Linear Cut [2

In order to obtain the linear cuts required for
yield evaluation [2], consider %inearizing the
quadratic constraints at a point ¢ which may, for
example, be the nominal point ¢  or a vertex ¢ .
Hence, the linear cut based upon the th constraint
is given by

8,069 + (4~ M 7,4 2 0. (32)
Define a reference vertex ?r by
AR S (33)
where " (¢a)
ug:-sign (-§¥;-) s 3= 1,2, e, k. (34)

The distance from the reference vertex to the point
of intersection with the &th cut along the
orthotope edge in the jth direction is

1 r a r alt a jﬁ&ifil (35)
a; = u, [g,(¢7) + (¢ = ¢) Vg(fb)]/[ ”]'
j AR AP 272 MaE A 30;

Accordingly, we have

L a a
3, r [ 38 (8) r al g, ()
"”é‘: My e * (¢ =90 H, /"—;;“‘
3¢ i J

i

T 3g, (%) 2

r a r a a L~

_uj {5L(2 )+ (¢ - 97) Vg, (¢ )] Hji/[ ——;;;'i ,
(36)

is the Hessian matrix which is a constant matrix
for a quadratic function 32(9)’ H. is the ith
column of H and H,, is an element of H In

(0F - ¢ is

deriving (36) it isYassumed that
independent of ¢i’ i=1,2, ..., k.

The General Distributi

As described earlier, we can assume that all
outcomes will lie within the tolerance orthotope
R_. This orthotope is now partitioned into a set
of orthocells R(i,, 12, veey ik) as shown in Fig.
2, where i, = 1, E, eeey-~n,, N, is the number of
intervals En the jth directilon Qnd j=1,2, ...,
k. A weighting factor W(i,, i,, ..., 1) is

assigned to each orthocell and is given by

W(1) = w(i)/V(R(1)) , (37)
where
is= (i1, 12, ey ik) ’ (38)
w(i) = F(9) av , (39)
R{1)
V(R(i)) = I dv = ]Jsr ej i (40)
R(}) J=1 '3
dv = dé, do, ... do, , (41)
E1,i , sz,i s eeey ek,i are the dimensions of the

1 2 k .
orthocell and F(¢) is the Jjoint probability
distribution function (PDF).

The weighting factors W(i) can also be obtained
by sampling the parameters or from a histogram if
the PDF is not available.

In principle, the problem of finding the yield
is now reduced to finding the contribution to the
yield given by all of these orthocells. A formula
for the i ible with
respect to the 2th constraint is constructed and is
given by [3]

conoaweta |,

i, =1 i =1 ik=1

=% O.J_

Vz_[l_ 2
J=1

] 1 2 k k
1

(42)

where, for indexing with respect to Qr, ize.,
numbering starts at this vertex (see Fig. 2), a’, is
the distance from the reference vertex to the pdint
of intersection of the 2th linear cut with the
orthotope edge in the jth direction,
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J
2
87(1) = max[ 0, 1= I 'l; I e, _1] ,  (43)
j=1 a, p=1 J,P
J
€50 = 0, J=1,2, «coy k, (44)
k k-1 k
AW(i) = W(E) -z w(i-g.) + I I W(i-e.,-e )=...
~ =1 37521 pejer TP
k .
+ (=17 Wi - & = 8 = een = gk) R (u5)
ey = (0, 0, «cey 0, 1, 0, «ouy 0) (46)
J
and where

w(i) = 0 if ij = 0 or ij = n+1 for any j. (47)

Assuming no overlapping of nonfeasible regions
defined by different cuts inside the orthotope Re ,
i.e,

R, N R,=20 (48)
gy 37
where
R, = {¢ | g,(9) <0} ngR,_, (49)
the yield can be expressed as
nooy
Y=1- L V , (50)
=1

where m is the number of linear cuts.

Independent Parameters

In the case of independent parameters, (42) can
be written as [3]

cn,+1 n2+1
v A 2 . .
v - { LT aj] B ) T B .
J=1 11=1 i =1
nk+1 . .
oo (1) (87(1) ) (51)
1=

where 1 and 51(}) are as defined in (38) and (43),
respectively, and where

ij(ij) = Wj(ij) - wj(ij-1) , 32 1,2,.0.,k,  (52)

Wi(0) = Wynp1) = 0, Gz 1,2,..0,k,  (53)

Wj(ij) = wj(lj)/ej,i. , iy= 1,2,...,nj, (54)

wiliy) = / S o£e) by, 1= 1,2,000my, (55)
Rj(lj)

f£.(6.) is the PDF of the jth parameter and R.(i.)
ig the ith interval for that parameter. Simiiarfy
the yield will be given by (50).

:[i J!S -!. i!.

Formulas for yield sensitivities can be derived
assuming that HPe weighting factors W(i) are
independent of ¢ as long as the ratios between
€3,1i5 2 ij =1, 2, ..., n,, are fixed for each
paratleteryj = 1, 2, ...} k. This is true, for
example, if the sizes of the orthocells are fixed.

Let
K, = €. . /€, 6
J,ij 3,143 ! (56)
hence,
3
IoKk,, =2 ,3=1,2, «coy k. =7
i.=1 J’lj
J
The yield sensitivities are now given by
m 2
ep A (58)
3¢i =1 3¢i
m 2
R (59)
de de. ?
i =1
where
3 n,+1 n_+1 n +1
L k da 1 2 k
AL 3T T eflBealx = oz ...z aN(d)
0 k! . 0 s . ~
3¢, j=13¢; p=1 i, =11i,= i-=
i i : 2 k
p#J
b ket 2
(87(1)) s (60)
~ 2 0
i
r 3 n,+1
L u k da 1
%%— = [E% r —J a”) B+A|lk I
i j=1 3¢, p=1 1=
p#jJ
n2+1 n +1 . - 361(2)
Too...or aW(i) (87(1) ae. 2(61)
12=1 1k=1
L
= ’ll('!' O.j N (62)
J=1
n1+1 n2+1 nk+1 . .
B= .2 _ .I _....%L AW(i) (87(1)) (63)
i =1 i.=1 i=1 ~ ~
1 2 k
and where .
0 if §(i) =0,
2
367 (41)
a¢° = (64)
i L ij
k da,
P ———%—5-—-3 Poe, L if 1) > o,
3 - ) and ~
=1 (aj) 3¢i p=1
% 2
871 LW k]
rvenaiEIn's - I I x . (65)
3 L -
€ 1 a¢(i’ 3=1 oy p=1 J,p-1

The formulas for 3“%/3¢2 and for ug are given by
(36) and (34), respeJtively.



The case of independent parameters is obtained
by substituting

AW(L) =—Hﬁ-Aw.(i.) (66)
- j=1 0

in (60), (61) and (63).

Example

In order to illustrate the calculation of the
weighted hypervolume, consider the two-dimensional
example shown_in Table I. The reference vertex f
is given by ¥ = -1, ] = 1 while ® = 12 and %"=
3. The weighted volume is given by

4 3
f% x 12 x 3) roo2
11=1 12=1

v

n

1813/3600 .

The same example can be considered as if the
parameters are independent as shown in Table II and
Table III. The same weighted volume will obviously
be obtained.

Assuming that the sizes of the orthocells are
fixed, the sensitivities of the weighted
hypervol%pe with respect to the nominal paramete5
vector can be evaluated. The location of 7
itself is not important. It is the relative
location of the constraint with respect to the
orthotope that matters. The constraint can be
considered as

b ¢
1/12 2/3

According to (36) we have

v
©

d3a 43¢0 _ . 3o ;390 _ 3o 4800 _ _
1/ ;== 1/ 5 = 4, 2/ 7z 174

3o ;390 _
and 2/ 5 = 1.

8%,y ,260
Using (64), the values of (L)/ ¢i are given in
Table IV and Table V. Substituting in (60) we get

B w3720, -2 ou3/ie0 .
3¢0 340
1

These sensitivities were verified numerically.

CONCLUSIONS

The yield estimation technique presented
provides an inexpensive yield determination without
the need for the multitude of circuit simulations
required in the Monte Carlo method. The method
approximates the integration of the PDF over the
feasible region. 1In addition, the availability of
yield sensitivities permits the use of efficient
gradient optimization techniques (see Part II).
The exploitation of sparsity in choosing the base
points reduces the computational effort required
for interpolation significantly. A full
description of this work is available [T7].

AW(i,, 1) (5(11, 12))2
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TABLE I
EXAMPLE OF GENERAL HYPERVOLUME CALCULATION
Orthocell i1 0 1 2 3 u
dimensions €, . O 3.0 3.0 2.0 -
1,11

. .

12 2,1,

0 0 w,W 0 0 0 0 0
W 0 18/100 12/100 3/10 0

1 2.0 W 0 3/100 1/50 3/40 0
AW - 3/100 -1/100 11/200 -3/40
$ - 1 3/4 1/2 1/3
w 0 12/100 8/100 2/10 0

2 3.0 W 0 1/75 2/225 1/30 0
AW - =1/60 1/180 -11/360 1/24
§ - 1/3 1/12 0 0
w,W 0 0 0 0 0

3 - AW - =1/75 1/225 -11/450 1/30

8 - 0 0 0 0




LENGTHS AND WEIGHTS OF FIRST PARAMETER INTERVALS

TABLE II

i1 61111 w(i1) W(i1) AW(i1)

0 0.0 0 0 -

1 3.0 3/10 1710 1/10

2 3.0 2/10 1/15 -1/30

3 2.0 5/10 1/4 11/60

h - 0 0 -1/4
TABLE III

LENGTHS AND WEIGHTS OF SECOND PARAMETER INTERVALS

. . ‘s .
i, 62112 w(l2) W\lz) AW(12)
0 0.0 0 0 -
1 2.0 6/10 3/10 3/10
2 3.0 4/10 2/15 -1/6
3 - 0 0 -2/15
TABLE IV 0

VALUES OF 38 (11,12)/a¢1
AN 1 2 3 4
12\\1
1 0 - 1/48 =1/24 -1/18
2 -1/18 -11/144 0 0
3 0 0 0 0

TABLE V 0
X i)

VALUES OF 3¢ (*1,12,/3¢2

i \31 1 2 3 4
2

1 0 1/12 1/6 2/9
2 2/9 11/36 0 0
3 0 0 o] 0

(a)

()

Fig. 1

D /
wion| | wa,n w(3,1) €20

Fig. 2

wa,2
w(0,2) /) w(2,2) €2,2

¢
| ¢
28, ¢ ¢6¢ ¢’
.
128y —

Arrangement of the base points w.r.t. the
centers of interpolation regions (a) two
dimensions and (b) three dimensions. For

the sparse formulation ¢7, ¢8 and ¢9 are,
respectively, placed in”the planes” cont-

atning { 3, ¢ 023, { T, ¢, ¢°} and (3,
0.

W(1,00  W(2,0) w(3,0)

a,
¢ S

W(ifl///

Ay /

€0 &, €4,2 €3 €34

2

Two-dimensional illustration of the partit-
ioning of the tolerance region into cells
indicating the dimensions and weighting of
those cells relevant to the calculation of
the weighted nonfeasible hypervolume.



