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ABSTRACT

attractive, exact and efficient approach to network analysis for cascaded structures is

for sensitivity and tolerance analyses, in particular, for a multiple of simultaneous

parameter values.

Introduction

This paper presents a new and comprehensive

treatment of computer-oriented cascaded network
analysis. The approach permits efficient exact
analysis, exact evaluation of first-order response
sensitivities, exact evaluation of the effects of

simultaneous large changes in any elements (as well as

growing elements), exploitation of network structure:

branches, symmetry, reciprocity, etc. All

calculations are applied directly to the given

network: no adjoint network is defined. All

calculations involve at most the premultiplication of

two by two matrices by row vectors or

postmultiplications by column vectors. Response

functions, sensitivities or large-change effects are
represented analytically in terms of the parameters to
be investigated.

Theoretical Foundation

Consider the two-port element depicted in Fig.

l(a). The basic iteration, also summarized by Table

1, is ~ = A y, where A is the transmission or chain

matrix,- y c6nt-sins the ‘output voltage and current and
~ the Corresponding input quantities. Forward

~.a#is (Fig. l(b), Table 1) consists of initializing
row vector as either [1 01, [0 1] or a suitable

lifiear combination and successively premultiplying
each constant chain matrix by the resulting row vector
until an element of interest, a reference plane or a
termination is reached. Reverse analysis, similar to
conventional analysis of cascaded networks, proceeds

by initializing a ~ column vector as u above but uses

postmultiplication.

In summary, assuming a cascade of n two-ports

? = YO❑4’!2... 4i ... !ni’ (1)

and, applying forward and reverse analysis up to A=,
this reduces to an expression of the form

d=;l ‘–1 –“T “ “
y.c~~~lyl, (2)

where

Yn
n

=Cy (3)

and c and d relate selected output and input variables
of interest explicitly with ~ . The typical formula

will, therefore, contain factors of the forms shown in

Table 2. The (*) denotes either & ‘~, a~/a$, (where
$ is a variable parameter contained in ~) or A! and

the (t) denotes Q, 6Q, Q’ or AQ for function

This work was supported by the National Research
Council of Canada under Grant A7239 and by a Post-

doctorate Fellowship to H.L. Abdel-Malek.

presented. It is
large changes in

(a) Reference directions

\forword+CT v+reverse I

t-J-J.~...~

1

(b) Forward and reverse analyses initiated from
arbitrary reference planes to an element

1 I.,
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(c) Typical analysis of a cascaded network with

source and load impedances assumed constant

I
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(d) Subnetwork i cascaded with subnetworks k (at

source end) and j (at load end)

(e) Forward iteration for (d), transferring an

equivalent source accounting for design
variables from subnetwork k from one
reference plane to the other

funstion of ... .
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(f) Reverse iteration for (d) transferring an
equivalent source accounting for design
variables from subnetwork j from one
reference plane to the other

Figure 1 Notation and illustration of problems

evaluation, first-order sensitivity, partial
derivative or large-change sensitivity, respectively.

A full reverse analysis taking [~~ v;] . [~1 e2]
yields
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Table 1

Principal Concepts Involved in the Analyses

Concept Definition Implication

Basic

iteration

Forward
operation

Reverse

operation

Voltage

selector
Current
selector

Equivalent

source

Equivalent
load

;=Ay
. .

-T T
UA=U
---

TA[l o]
:1

‘4[0 1]
:2

[1

‘s-=s=s~.

1s

-[ 1

‘L
y.

‘LVL-lL

y ..> ;
. .

y=cv.=>~.c;
. . . .

:1
..> :1 or v

-.1

:2 .=> u or v
.2 .-2

y = VLel+(YLVL-IL)~2

Table 2

Notation and Implied Initial Conditions

Initia 1 Conditions
Factor Identification Forward Reverse

q (*) ~1 (t),, voltage voltage

voltage current

current voltage

~ (*) :2 (*)22 current current

● t See text for explanation: * is associated with A
and t with Q

[j :;] ❑ Ai+l Ai+2 . . . An [~1 :2]
.“.

and a corresponding full forward analysis taking

[j; :;]T = [Lj glT = [:1 :21

yields

Full analyses are, however, generally not required.

Reference planee to initialize the analyses are
chosen so that no more than SZB.Q element is considered
between any pair of reference planes, as shown by Fig.
1. In Fig. l(c) the element ~ is the only element
whose eff ct is to be considered.

f
In Fig. l(d) the

element ~ is considered in the ith subnetwork of the

cascade. A forward iteration of the structure of Fig.
l(d) is illustrated in Fig. l(e), where equivalent

(Thevenin) sources are iteratively determined.
Reverse iteration is shown in Fig. l(f), where
equivalent (Norton) sources are determined. The
objectives are to explicitly highlight only specific
elements of interest.

General expressions for Fig. 1 include

From (4), letting 11 - 0 and Y; . 0, we have Ii . 0
and the Thevenin vol~~e

Letting V: = O and Y; ❑ O, we have I; ❑ -I; and the

output impedance
T. . . .

v:
(~+Z;& AIV Q12+zQ;2Z:=T=’----2=I . . . (7)

lL (~1+z$2)T&1 Q; 1+2Q; 1

These expressions for V; and ZJ permit equivalent

%Thevenin sources to be moved in a orward iteration.

Fr~m (4) and (5), letting I: . 0 and Z; = O we
have IL . 0 and the input admittance

.
i—ii

1s A (yl+Y;y ) Qi +YiQ;2
Y;=y=

~2 -

_T.
.

iii” (8)

‘s Al ( :1+Y;y2 )
:1 -

‘11+YLQ12

Letting V; . 0 and Z; = O, we have V: . 0 and the
Norton current

T.

f = -1; = -+$1-12) A1V2 ❑ -I;(Y~Q;2-Q;2) . (9)..- .

These expressions for Ik
k

permit equivalent

Norton sources to be moveb ~~ ;&verse iteration.

The input current I: for I; . 0 is obtained via
(8) as

(lo)

Useful special cases of these formulas for IS and

VL in Fig. l(c) are, from (10) and (6), respectively,

-T

&.&l%
1S ‘ ‘S~Av = ‘S Q,, ‘ (11)

-1---1

v .L-=3i_
L_T

:1!!1
Qll “

(12)

Table 3 gives useful formulas obtained for variations

in a particular element A. lie note, for example,

that, since ~ is arbitrary- and at ~ost only one full

analysis yields all Q 6Q
Qll

and AQI1, the
?~l~?$ a~a’ AV for all possible

~r~e~rZ’?ny~heEL’in ~he cascadeL can be evaluated

exactly for one network analysis. This special case
is
re~ea;:;:;sall,3nt ‘0

the results of previous

.

For a symmetrical network det ~ . 1 and
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Table 3
Functions of Input Current IS and Output Voltage

VL for Changes in ~ Only

Variable Input output

A % ‘s=—
1S = ‘S Q,, ‘L

Qll

V~cSQ -I (5Q
1

v’
6A 61S ❑ 6VL. .-J

’11 ‘s
6QI 1

aA ‘ -I Q’
2

%= VSQ21 s 11
avL

‘L ‘
G a~ ‘Qll

Qll
Ir=-vs

‘SAQ21-lSAQ11
v:

AA Al .
s

AVL ❑ -

Q1l+AQ1l ‘L+VS’AQII

and it

can be

may be ahown that, for such networks,

[y: $ = [E-i+’ 7&+’lT

used to reduce computational effort.

Numerical ExamDle

The cascaded seven-section bandpass filter
3,4

shown in Fig. 2, was analyzed using the suggested

Figure 2 Seven-section filter containing unit
elements end atubs. All sections are
quarter-wave at 2.175 GHz

approach. All sections are quarter-wave at 2.175 GHz.

The optimal characteristic impedances are

~o
1 = Z; = 0.606463 z; = z: = 0.303051

2; = Z; = 0.722061 Z! = 0.235593

The output voltage at a normalize

0.7 VL ❑ 0.49740790 - j3.9011594xltig =q~~~/’f~~
twice using (6): once associating ~1 with 23 and once

with Z
4“

Furthermore, one analysis yielded

VL(Z:+0.03) = 0.49838950 - j 0.034901610

VL(Z]-0.03) . 0.49062912 + j 0.034959186

The open-circuit voltage at the load end was
calculated- using (6) as

v OC = 0.98624507

and the Thevenin impedance

z TH = 0.98119253

which further verified V
L“

—

+ j 0.092266904

using (7) is

+ j 0.20103391

~ analysis yielded for C2 = 0.021, S5 . 0.024

VL(Z;-E2,Z;- se ) = 0.49719716 + j 2.2191360x10-3

VL(Z~+E2,Z;-C5) = 0.49583538 - j 2.3636314x10-2

VL(Z~-E2,Z~+S5) = 0.49732462 + j 1 .7909912x10-2

VL(Z;+C2,Z;+S5) = 0.49751427 - j 8.3726470x10-3

A multidimensional quadratic approximation5 was
carried out for V .

k
The variables for the approxi-

mation were the c aracteristic impedances as well as
the normalized frequency. The center base point had
the characteristic impedances as given beforehand a
normalized frequency of 0.7. 45 base points with
characteristic impedances perturbed by AO.03 and

normalized frequency by ~0.01 were needed. The
symmetry of the structure was taken into consideration
in choosing the base points. The following
characteristic impedances were chosen:

21 = 27 = 0.606595 22 = 26 = 0.303547

Z3.Z
5

= 0.722287
‘4

= 0.235183

The group delay using the derivative of VL w.r.t.
u obtained from the quadratic6 a.pproximation lS 0.893

ns while the exact group delay 1s 0.895 ns.

Conclusion

An important claim we make in this paper is that

(4) - (10) generate, following differencing or
differentiating (as appropriate), any desired exact

formulas for multiple network analyses, sensitivity

and tolerance analysis with simultaneous large
changes. All calculations are carried forward
simultaneously and redundant calculations are
obviated.
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