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1) a time-sharing system with a remote terminal where the

input and output is by means of a keyboard and a one-

character-at-a-time printer, and 2) a batch processor with

off-line high speed input and output devices.

Usually, the computational costs and engineering time

will be greater with the time-sharing system. However, the

advantage of evaluating almost immediately one’s tentative

design can be tremendous. Most modern (batch process)

computer centers today can only offer to provide the results

a half day or later after the job has been submitted. Even so,

the advantage of fuller and well formatted output can be

worthwhile. Also, the dedicated computer can generally

handle a much larger and more sophisticated program as

well as provide plots and other types of output not possible

on the typewriter terminal.

On programming itself, a few remarks maybe worthwhile.

It is better to use alphabetic mnemonic codes rather than

an extensive table of numbers to describe the circuit ele-

ments (or operations). This has been the usual choice of

those who have written and used circuit analysis programs.
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I. INTRODUCTION

l!?

ULLY AUTOMATED design and optimization is

surely one of the ultimate goals of computer-aided

design. The amount of human intervention required to

produce an acceptable design, even though this is often un-

avoidable, should, therefore, be regarded as a measure of our

ignorance of the problem, our inability to specify our objec-

tives in a meaningful way to the computer, or our failure to

anticipate and make provisions for dealing with the possible

hazards which could be encountered in the solution of the

problem.

An on-line Facility which permits the user to propose a cir-

cuit configuration, analyze it, and display the results may

well be an invaluable educational and research tool provid-

ing the user with insight into certain aspects of his design

problem. But even with the fastest analysis program it would
be misleading to suggest that this method can be efficiently

applied to the design and optimization of networks involv-

ing more than a few variables and anything other than the

simplest of parameter and response constraints. For a fairly

complex network optimization problem the number of effec-

tive response evaluations can easily run into the thousands

even with the most efficient currently available automatic
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optimization methods before a local optimum is reached—

and then only for that predetermined configuration.

Fully automated network design and optimization is still

some way off. In the meantime, very effective use of the com-

puter can be made by allowing the computer to optimize a

network of predetermined allowable configuration auto-

matically. If the results are unsatisfactory in some way, one

could change the objective function, impose or relax con-

straints, try another strategy, alter the configuration, etc.,

whichever course of action is appropriate, and try again.

Obviously, this can be executed either by batch processing

or from an on-line terminal. There is no reason why the on-

line designer should not avail himself of an efficient optimi-

zation program as well as an analysis program.

With the objective, therefore, of encouraging more effective

use of computers, this paper surveys recent automatic opti-

mization methods which either have found or should find

useful application in computer-aided network design. Em-

phasis is given to formulations and methods which can be

implemented in practical situations when the classical syn-

thesis approach (analytic or numerical) is inappropriate.

Objectives for network optimization including minimax and

least @h are formulated and discussed.

Detailed consideration is given to methods of dealing with

parameter constraints by means of transformations or penal-

ties. This is rather important for microwave networks where

the practical ranges of parameter values can be quite narrow,

e.g., characteristic impedance values for transmission lines

extend from about 15 to 150 ohms. The configuration, the

overall size, the suppression of unwanted modes of propaga-

tion, considerations for parasitic discontinuity effects, the

stabilization of an active device can all result in constraints

on the parameters. Response constraints, which are less

easy to deal with than parameter constraints, are also con-

sidered in some detail. In particular, the formulation of

problems in terms of inequality constraints and their solu-

tion by sequential unconstrained minimization is discussed.

Several one-dimensional and multidimensional minimiza-

tion strategies are summarized in a tutorial manner. Included

are Fibonacci and Golden Section search, interpolation

methods, pattern search and some variations including

Rosenbrock’s method, Powell’s method, simplex methods,

and the Newton-Raphson, Fletcher-Powell and least squares

methods. Slightly more emphasis has been accorded to

direct search methods than to gradient methods because
they appear to date to have been more frequently employed

in microwave network optimization. It is probably not

widely appreciated that most direct search methods are

superior, in general, to the classical steepest descent method

and compare rather favorably with other gradient methods

as far as efficiency and reliability are concerned. It is gen-

erally only near the minimum that differences in efficiency

begin to manifest themselves between quadratically con-

vergent and nonquadratically convergent methods—but

quadratic convergence is not the prerogative of gradient

methods as classified in this paper.

Section II introduces fundamental concepts and defini-

tions. Section 111 formulates objectives for network optimi-

zation. Section IV deals with constraints. Section V describes

one-dimensional optimization strategies, followed by Section

VI which describes multidimensional direct search strategies

and Section VII which describes multidimensional gradient

strategies. Section VIII reviews some recent papers which

report the application of various methods to network opti-

mization. Finally, the references are divided into broad

classifications: references of general interest [1 ]–[22], refer-

ences recommended for direct search methods [23]– [55] and

gradient methods [56] -[83], references dealing with appli-

cations to network design [84]–[1 19], and some miscel-

laneous references [120] -[126].

Inevitably, the material presented in this paper tends to

reflect some of the author’s current interests. Conspicuous

omissions include Chebyshev polynomial and rational func-

tion approximation techniques using the Remez method

or its generalizations [17], [115], [125], and a discussion

of optimization by hybrid computer in which the system

is simulated on an analog computer while the optimiza-

tion strategy is controlled by the digital computer [120],

[122], The author apologizes in advance to all those re-

searchers to whose contributions he may not have done full

justice. He hopes, however, that the references adequately

represent the state of the art of automatic optimization

methods for computer-aided design. The use of such auto-

matic computer-aided methods in microwave network design

is not so well established as the use of computers in the

numerical solution of electromagnetic field problems [126].

For this reason, there are not yet many microwave references

from which to choose to illustrate the optimization tech-

niques.

11. FUNDAMENTAL CONCEPTSAND DEFINITIONS

The problem is to minimize V where

u = u(+) (1)

and where

r,=:
1“i.

U is called the objective function and the vector + represents
a set of independent parameters. Minimizing a function is

the same as maximizing the negative of the function, so there

is no loss of generality.

In general, there will be constraints that must be satisfied

either during optimization or by the optimum solution.

Each parameter might be constrained explicitly by an upper

and lower bound as follows:

’41, <41 s out ;=l,z...,k > (3)

where OZand @ware lower and upper bounds, respectively.

Furthermore, the problem could be constrained by a set of

h implicit functions

Cj(+) > 0 j=l,2, . . .. l?. (4)
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Any vector + which satisfies the constraints is termed

feasible. It lies in a feasible region R (closed if equalities are

admissible as in (3) or (4), open otherwise) as expressed by

KR. It is assumed that U(+) can be obtained for any I$~R

either by calculation or by measurement.

Fig. 1 shows a 2-dimensional contour sketch which illus-

trates some features encountered in optimization problems.

A h.vpercontour, described by the relation

Lr(+) = t~con.t., (5)

is the multidimensional generalization of a contour. The

feasible region in Fig. 1 is determined by fixed upper and

lower bounds on +. The feasible region is seen to contain

one global minimum, one local minimum and one saddle

point. A minimum may be located by a point ~ on the

response hypersurface generated by U(+) such that

U = U(CJ)< u(+) (6)

for any + in the immediate feasible neighborhood of $.

(Since methods which guarantee convergence to a global

minimum are not available, the discussion must restrict

itself to consideration of local minima.) A saddle point is

distinguished by the fact that it can appear to be a maximum

or a minimum depending upon the direction being investi-

gated. A more formal definition of a minimum follows.

The first three terms of the multidimensional Taylor

series are given by

where

Ad!
A+= . I

1’1A+l,

represents the parameter increments,

[--1
du(7+111![

(8)

(9)

is the gradient vector containing the first partial derivatives,

and
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d’u d’il d2u
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Fig. 1. Two-dimensional contour sketch illustrating some features
encountered in optimization problems.

is the matrix of second partial derivatives, the Hessian

matrix. Assuming the first and second derivatives exist, a

point is a minimum if the gradient vector is zero and the

Hessian matrix is positive definite at that point.

A unimodal function may be defined in the present con-

text as one which has a unique optimum in the feasible

region. The presence of discontinuities in the function or its

derivatives need not affect its unimodality. Fig. 1 has two

minima so it is called bimodal. A strictly convex function is

one which can never be underestimated by a linear interpo-

lation between any two points on its surface. Similarly, a

strictly concave function is one whose negative is strictly

convex. Examples of unimodal, convex and concave func-

tions of one variable are illustrated in Fig. 2. (The word

“strictly” is omitted if equality of the function and a linear

interpolation can occur.)

If the first and second derivatives of a function exist then

strict convexity, for example, implies that the Hessian

matrix is positive definite and vice versa. Consider the nar-

row curued ualley shown in Fig. 3(a). It is possible to under-

estimate U by a linear interpolation along a contour, for

example, which indicates that the function is nonconvex.

Contours of this type do present some difficulties to optimi-

zation strategies. Ideally, one would like contours to be in

the form of concentric hyperspheres, and one should attempt

to scale the parameters to this end, where possible.

Fig. 3 shows contours of other two-dimensional optimiza-

tion problems which present difficulties in practice. In Fig.

3(b), the minimum lies on a path of discontinuous deriva-

tives; the constraint boundaries in Fig. 3(c) clefine a non-

convex feasible region (a feasible region is convex if the

straight line joining any two points lies entirely within the

region); in Fig. 3(d) the minimum lies at a discontinuity in

the function. Theorems which invoke the classical properties

of optima or such concepts as convexity may not be so

readily applicable to the problems illustrated in Fig. 3(b)–

(d), and yet the minima involved are quite unambiguously

defined.
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A number of the general references [1], [17], [19], [20]

give good introductions to the fundamental concepts and

definitions used in the literature generally. Unfortunately,

because of the diverse background of the authors concerned,

there exists a profusion of different nomenclature. (The

present author has probably added to this confusion.)

III. OBJECTIVESFOR NETWORK OPTIMIZATION

In this section some objective function formulations for

network optimization will be presented and discussed. The

emphasis is on formulations which can allow explicit and

implicit constraints, e.g., on the network parameters and

responses, to be taken into account. This is felt to be par-

ticularly important in microwave network optimization

where the range of permissible parameter values is often

fairly narrow, the choice of physical configurations may be

limited and parasitic effects can be acute. Thus, formula-

tions which remain close to physical reality and aim towards

physical and practical realizability are preferred, at least by

this author.

Direct Minimax Formulation

An ideal objective for network optimization is to minimize

U where

U = U(O, +) = max [wu(~) (F(+, +) – J%(*)),
[+1!*J

(11)
– Wl(+) (F(o, t) – M*))]

where

F(o, #) is the response function

+ represents the network parameters

*is an independent variable, e.g., frequency or time

SJ+) is a desired upper response specification

Sl(y?) is a desired lower response specification

w.(~) is a weighting factor for S.(4)

w z(~) is a weighting factor for S&)

$U is the upper bound on *

+, is the lower bound on ~.

This formulation is illustrated by Fig. 4. Fig. 4(a) shows a

response function satisfying arbitrary specifications; Fig.

4(b) shows a response function failing to satisfy a bandpass

falter specification; Fig. 4(c) shows a response function just

satisfying a possible amplifier specification. F( +, x) will

often be expressible as a continuous function of + and +.

But St(+), SJ~), w&), and wJY) are likely to be dis-

continuous.

The following restrictions are imposed:

AS.(*) 2 s,(+) (12)

w.(+) >0 (13)

Wl(+) >0. (14)

Under these conditions wJ~)(F(& 4) —S.(#)) and

— w z(IJ)(F(o, +) — St(@)) are both positive when the specifi-
cations are not met; they are zero when the specifications

are just met; and they are negative when the specifications

are exceeded. The objective is, therefore, to minimize the

maximum (weighted) amount by which the network response

fails to meet the specifications, or to maximize the minimum

amount by which the network response exceeds the specifi-

cations. Note the special case when

S.(*) ==S’,(*) = s(t) (15)

and

w. (*) = w 1(*) = w (+) (16)
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Fig. 4. (a) A response function satisfying arbitrary specifications.
(b) A responsefunction failing to satisfy a bandpassfilter specifica-
tion. (c) A response function just satisfying an amplifier specifica-
tion.

which reduces (11) to

This form may be recognized as the more conventional

Chebyshev type of objective.

The direct minimax formulation, the optimum of which

represents the best possible attempt at satisfying the design

specifications within the constraints of the particular prob-

lem, appears to have received little attention in the literature

on network optimization. This is chiefly due to the fact that

discontinuous derivatives are generated in the response

hypersurface when the maximum deviation jumps abruptly

from one point on the + axis to another, and that multi-

dimensional optimization methods which deal effectively

with such problems are rather scarce [89], [100].

In spite of these difficulties, some success with objectives

in the form of (17) has been reported [23], [88]. But it is felt

that considerable research into methods for dealing with

objectives in the form of(11) remains t o be done.

Formulation in Terms of Inequality Constraints

A less direct formulation than the previous one, but one

which seems to have provided considerable success, is the
formulation in terms of inequality constraints on the net-

work response described by Waren et al. [18]. Their formula-

tion will be slightly adjusted to fit in with the present nota-

tion,

The problem is to minimize U subject to

u > WU,(F,(+) – L%,) iEIu (18)

U > – wzi(F,(+) – Stt) iE’11 (19)

and other constraints, e.g., as in (3) where U is now an

additional independent variable and where the subscript i

refers to quantities (already defined) evaluated at discrete

values of+ which form the set {~, ] in the interval [$Z, ~~].

The index sets L and It, which are not necessarily disjoint,

contain those values of i which refer to the upper and lower

specifications, respectively. Thus, in the case of Fig. 4(a), the

index sets L and 11could be identical. For Fig. 4(b), the set

L would refer to the passband and the set Z’Z to the stop-

bands. In Fig. 4(c), there might be an intersection between

Iu and lz.

At a minimum, at least one of the constraints (18) or (19)

must be an equality, otherwise U could be further reduced

without any violation of the constraints. If 1~<0 then the

minimum amount by which the network response exceeds

the specifications has been maximized. If U> O then the

maximum amount by which the network response fails to

meet the specifications has been minimized. It is clear that

both this and the previous formulations have ultimately

similar objectives. Indeed, if the sets lU and 11are infinite then

the optimum solutions given by both formulations may be

identical. Not surprisingly such a problem may be described

as one which has an infinite number of constraints. How-

ever, with finite 1,, and It the present formulation can be

used in an optimization process which avoids the generation

of discontinuous derivatives within the feasible region, as

will be seen in Section IV.

A special case again arises when

L!lui = A!lli = St ~20)

which reduces (18) and (19) to

U a w,(F, (0) – S,) . _ . (23)
ttil.

U > – wJF, (+) – S.) (24)

This formulation, which is an approximation to (17), has

been successfully used by Ishizaki and Watanabe [102],

[103] (see Section VIII).

Weighting Factors

A discussion of the weighting factors is appropriate at this

stage. Essentially, their task is to emphasize or reemphasize

va~ious parts of the response to suit the designer’s require-

ments. For example, if one of the factors is unity and the

other very much greater than unity, then if the specifications

are not satisfied, a great deal of effort will lbe devoted to

forcing the response associated with the large weighting

factor to meeting the specifications at the expense of the rest
of the response. Once the specifications are satisfied, then

effort is quickly switched to the rest of the response while the

response associated with the large weighting factor is vir-

tually left alone. In this way, once ecrtain parts of the net-

work response reach acceptable levels they are effectively

maintained at those levels while further effort is spent on

improving other parts.
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Least pth Approximation

A frequently employed class of objective functions may

be written in the generalized form

U=u(+, t) =5 IWU’4+)
‘i=1

= > Id+) 1“

where

w p
(25)

(26)

and where the subscript i refers to quantities evaluated at the
sample point ~,, Thus, the objective is essentially to min-

imize the sum of the magnitudes raised to some power p of

the weighted deviations eJ@) of the network response from

a desired response over a set of sample points {~.}. p may

be any positive integer.

The sample points are commonly spaced uniformly along

the Y axis in the interval [+1, +U]. If the objective is effec-

tively to minimize the area under a curve then sufficient

sample points must be used to ensure that (25) is a good

approximation to the area. However, it should be remem-

bered that function evaluations are often by far the most

time consuming parts of an optimization process. So the

number of sample points should be carefully chosen for the

particular problem under consideration. These arguments

apply, of course, to any formulation which involves sam-

pling.

With p= 1, (25) represents the area under the deviation

magnitude curve if sufficient sample points are used. With

p= 2 we have a least squares type of formulation. Obviously,

the higher value of p the more emphasis will be given to

those deviations which are largest. So if the requirement is

to concentrate more on minimizing the maximum deviation

a sufficiently large value of p must be chosen [17], [79],

[100]. The basis of such a formulation is the fact that

when \ e(+, ~) I is defined in the interval [+z, +U]. In terms

of a sampled response deviation the corresponding state-

ment is

[ 1
1/P

max [ I e~(~) I ] = lim ~ I e,(~) 1’ . (28)
i P*W i

In practice, values of p from 4 to 10 may provide an ade-

quate approximation for engineering purposes to the ideal

objective. A good choice of the weighting factors W; will

also assist in emphasizing or deemphasizing parts of the

response deviation. It may also be found advantageous to

switch objective functions, number of sample points, or

weighting factors after any complete optimization if the

optimum is unsatisfactory. For example, one may optimize

with the weighting factors set to unity and with p = 2. If the

maximum deviation is larger than desired, one could select

appropriate scale factors and/or a higher value of p and try

again from the previous “optimum.”

Combined Objectives

The objective function can consist of several objectives.

Indeed, the form of(11) and (25) suggest such a possibility.

For example, we could have a linear combination

U= CYIUI+- CY2U2+... (29)

where Ul, U2, . . . could take the form of (25). For an

amplifier a compromise might have to be reached between

gain and noise figure [93]; another example is the problem

of approximating the input resistance and reactance of a

model to experimental data [100]. The factors al, CW,. . .

would then be given values commensurate with the impor-

tance of U~, U2, . . ., respectively. If, however, these objec-

tives can be represented instead as inequality constraints,

alternative approaches are possible (Section IV).

IV. CONSTRAINTS

Discussions on how to handle constraints in optimization

invariably follow discussions on unconstrained optimiza-

tion methods in most publications. This is unfortunate

because the nature of the constraints and the way they enter

into the problem can be deciding factors in the selection of

an optimization strategy. And it is rare to find a network

design problem which is unconstrained.

This section deals in particular with methods of reducing

a constrained problem into an essentially unconstrained one.

This can be accomplished by transforming the parameters

and leaving the objective function unaltered, or by modify-

ing the objective function by introducing some kind of

penalty.

Transformations for Parameter Constraints

Probably the most frequently occurring constraint on the

parameter values are upper and lower bounds as indicated

by (3). These can be handled by defining +/ such that [3]

If the periodicity caused by this transformation is undesir-

able and the constraints are in the form

which defines an open feasible region, one could try [86]

where — @ <&’< @ but where only solutions within the

range

0< cot–l .#li’ < n- (33)

are allowed. This transformation has a penalizing effect upon

the parameters in the vicinity of the upper and lower bounds.
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So if the optimum values are expected to lie away from the

bounds this transformation may also introduce a favorable

parameter scaling [86].

When the constraints are in the form

~; ~ +1; (34)

one can use

@i = ‘#ti + 4Ji’2. (35)

For

4,>0 (36)

one can use

@i = @’. (37)

Other transformations of variables can be found [3].

Well chosen transformations may not only reduce an essen-

tially constrained optimization problem to an unconstrained

one but might also improve parameter scaling.

Consider the constraint

ltj s 4J’4, s ‘ui, (38)

which restricts the ratio of two parameters to be within a

permissible range [ii;, u;i]. This type of constraint can occur

when parasitic effects need to be taken into account [17],

[88]. Suppose we consider the example

1< @2/q)l < u (39)

4,>0 (40)

+,>0 (41)

where 1>0 and u> O. It may be verified that the transforma-

tions

@l = e“ cos (OZ+ (0. – 02) sin’ ZJ (~~)

and

42 = e“ sin (h + (8L – h) sin’ 22) (43)

where

0< Oz= tan–l 1< Ou = tall–l u < m/2 (W)

ensure that for any Z1 and 22 the constraints (39) to (41) are

always satisfied,

Inequality Constraints in General

Unfortunately, one cannot always conveniently transform

the parameters to incorporate constraints. With implicit

constraints of the form of(4) transformations may be out of

the question. ~-dependent constraints in network optimiza-

tion may, without loss of generality, be written as

~,(+, *) 2 0 j=l,2, . . ..h (45)

in the interval [+1, ~~] or, at particular points x;

{

~=l,z...,n

d% *J 2 0
>

(46)
j=l,2, . . ..h.

A microwave problem having constraints of this form has

been described by Bandler [87]. It concerns a stabilizing net-

work of a tunnel-diode amplifier where the objective was to

minimize the square of the input reactance oft he network at

selected frequencies while maintaining certain specifications

on the input resistance and reactance at different frequencies

(see Fig. 15).

If one is lucky, of course, one might be able to rely on the

constraints not being violated. If, for examlple, a certain

parameter must be positive but it is clear from the network

configuration that as the parameter tends to zero the re-

sponse deteriorates anyway then it may not be necessary to

constrain the parameter. However, one can not always rely

on good fortune so various methods for dealing with in-

equality constraints in general need to be discussed.

Let all the inequality constraints in a particular problem

including the ~-dependent ones be contained in the vector of

m functions

[:1
01(+)

92(+)
4!(0) = . (47)

Lgm(+)J

where the feasible region is defined byl

g(+) 20. (48)

For example, constraints in the form of (3) may be written

(49)

Finding a Feasible Point

Finding a feasible point to serve as the initiad point in the

constrained optimization process may not be easy. It may

be found by trial and error [87] or by unconstrained optimi-

zation as follows.

Minimize

A minimum of zero indicates that a feasible point has been

found.

Penalties for Nonfeasible Points

Assuming that the initial solution is feasible, the simplest

way of disallowing a constraint violation is by rejecting any

set of parameter values which produces a nonfeasible solu-

tion. This may be achieved in direct search methods during

optimization either by freezing the violating parameter(s)

temporarily or by imposing a sufficiently large penalty on the

objective function when any violation occurs. Thus, we may
add the term

I It is hoped that the reader will not be too upset by A(O)> O which
is used for g,(@)>O, i = i, 2, . . . m.
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to the objective function. As long as the constraints are

satisfied the objective function is not penalized, However,

nonfeasible points can be obtained with this formulation,

An alternative which can prevent this is simply to set the

objective function to its most unattractive value when

gi(~) <O. In practice such a value maybe easy to determine
on physical grounds.

There are disadvantages inherent in this simple approach

to dealing with constraints. Depending on the type of penalty

used, the objective function may be discontinuous or have

steep valleys at the boundaries of the feasible region, and its

first or second derivatives may be discontinuous.

Any method which does not modify the objective func-

tion in the feasible region and simply causes nonfeasible

points to be rejected can run into the following diiliculty.

Consider the point A on the constraint boundary in Fig. 5.

Clearly any exploration along a coordinate direction from

A will result either in a nonfeasible point or in an increase in

the objective function. Similarly, any excursion along the

path of steepest descent (see Section VII) results in a non-

feasible point. This problem does not occur at E?, however.

Note that direct search methods (Section VI) in particular

those good at following narrow curved valleys, might be

able to make reasonable progress once a feasible direction is

found. A rotation of coordinates might also alleviate the

problem to some extent.

The Created Response Surface Techniquez

This approach originally suggested by Carroll [60] and

developed further by Fiacco and McCormick [63], [64]

involves the transformation of the constrained objective

into a penalized unconstrained objective of the form

where r> O.

Define the interior of the region R of feasible points asl

where

Starting with a point + and a value of r, initially rl, such

that +ERO and rl> O minimize the unconstrained function

P(o, rl). The form of (52) leads one to expect that a minimum
will lie in R“, since as any g$( @)~O, P+ KI. The location of

the minimum will depend on the value of rl and is denoted

+(rl).

This procedure is repeated for a strictly monotonic

decreasing sequence of r values, i.e.,

Tl>rz >... rj > 0, (55)

each minimization being started at the previous minimum.

For example, the minimization of P(+, rJ would be started

aReferences pertinent to this subsection have been included under
gradient methods because of their association with gradient methods
of minimization.

false minimum
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Fig. 5. Pitfalls in constrained minimization when
nonfeasible points are simply rejected.

at &(rJ. Every time r is reduced, the effect of the penalty is

reduced, so one would expect in the limit as j+ ce and

r,+O that ~(rj)-+ & and, consequently, that U+ O, the con-

strained minimum.

During minimization, should a nonfeasible point be en-

countered in some current search direction it can simply be

rejected since a minimum can always be found in R“ by

interpolation. If an interior feasible point is not initially

available, an attempt to find one can be made either as indi-

cated previously, or by repeated application of the present

method [63]. In the latter case, the objective function in (52)

is replaced by the negative of any violating constraint func-

tion and the satisfied constraints are included as the penalty

term. When the constraint is satisfied, the minimization

process is stopped and the procedure is repeated for another

violating constraint.

Conditions which guarantee convergence have been

proved by Fiacco and McCormick. They invoke the require-

ments that U(+) be convex and the gi( +) be concave (see

Section II) so that P(+, r) is convex. However, it is not

unlikely that this method will work successfully on prob-

lems for which convergence cannot be readily proved.

To apply the created response surface technique to the

formulation in terms of inequality constraints used by

Waren et al. [18] and introduced in Section III, (52) maybe

rewritten as

1
.P(O, U, T)= U+T5 + (56)

;=1 .%(+, u)

This brings out explicitly the fact that U is both the objec-
tive to be minimized and an independent parameter. The

constraints g(+) are from (18) and (19)

and, for example, (49). Waren et al. [18] describe a method

for allowing for parameter constraints to be initially violated

so that a “reasonably good” initial design can be found.

However, the method does not seem to guarantee that these

constraints will be ultimately satisfied.

As might be expected, a bad initial value of r will slow

down convergence onto each response surface minimum (as

indeed a bad initial ~ will). Too large a value of rl will cause
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Fig. 6. An interpretation of the Kuhn–Tucker relations,
U1>O, U2>0, Ua=o.

the first few minima of P to be relatively independent of U,

whereas too small a value will render the penalty term in-

effective, except near the constraint boundaries where the

surface rises very steeply. Once the process is started, how-

ever, a constant reduction factor of 10 can be used for suc-

cessive r values. Another disadvantage of this sequential

unconstrained minimization technique (SUMT) is that second-

order minimization methods are generally required for

reasonably fast convergence to the constrained minimum.

Discussions and extensions of these techniques abound in

the literature [63], [64], [69], [72], [77], [83]. A book on

applications of SUMT is also available [4].

Su@cient Conditions for a Constrained Minimum

Assuming g(~) to be concave and differentiable and U(+)

to be convex and differentiable, a constrained minimum at

~= J will satisfy

vu(+) = : ZLivgi(J) (59)
i= 1

u~g($) = o (60)

where u is a column vector of nonnegative constants and

Vg, is the gradient vector of the ith constraint function.

These are the Kuhn–Tucker relations [123]. They state that

v U( ~) is a nonnegative linear combination of the gradients

Vg,( ~) of those constraints which are active at ~. An inter-

pretation of these ideas is sketched in Fig. 6. Note that these

relations are not, for example, applicable to the case of Fig.

3(c), which is a serious drawback.

Other Methods for Handling Constraints

Other methods for handling constraints include, for

example, Rosen’s gradient projection method [73], [74],

Zoutendijk’s method of feasible directions [22], and the

method of Glass and Cooper [33]. These methods employ

changes in strategy when constraint violations occur. They

do not require a transformation of parameters or a penalty
function. Thus, they can deal with difficulties such as the

one illustrated by Fig. 5 and find a feasible direction yield-

ing an improvement in the objective function. Further details

may be found in some of the general references [10], [16],

[19], [20]. Alternative methods for dealing with constraints

are also indicated, where appropriate, in the following sec-

tions.

V, ONE-DIMENSIONAL OPTIMIZATION STRATEGIES

Many multidimensional optimization strategies employ

one-dimensional techniques for searching along some fea-

sible direction to find the minimum in that direction. A brief

discussion of efficient one-dimensional strategies is, there-

fore, appropriate at this stage.

The methods can be divided into two classes: 1) the min-

imax direct elimination methods—minimax, because they

minimize the maximum interval which could contain the

minimum, and 2) the approximation methods. The latter

are generally effective on smooth functions, but the former

can be applied to arbitrary unimodal functions.

Fibonacci Search

The most effective direct elimination method is the

Fibonacci search method [25], [28], [40], [47], [49], [52].

It is so-called because of its association with the Fibonacci

sequence of numbers defined by

FO=FI=l

Fi = Fz-l + F%-2
(61)

~ =2,3,...,

the first six terms, for example, being 1, 1, 2, 3, 5, 8. Assume

that we have obtained an initial interval [+/, ~UI] over which

the objective function is unimodal. At the~th iteration of the

Fibonacci search using n function evaluations (n> 2) we have

((ja)

where

is the interval of uncertainty at the start of the jth iteration.

An example for n= 4 is illustrated in Fig. 7. Observe that

each iteration except the first actually requires only one

function evaluation due to symmetry. This fact is summa-

rized by the following relationship.

If U.+- U~$’then

and if Uai< Ubj then

Note that the very last function evaluation should, accord-

ing to this algorithm, be made where the previous one was

made. It can, therefore, be omitted if only the minimum

value is desired. But to reduce the interval of uncertainty the

last function evaluation should be made as close as possible

to the previous one, either to the right or to the left.

The interval of uncertainty after j iterations is

reducing the interval 1~ by a factor
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After n– 1 iterations,

1~ F.+l_j

— = F.-j “Ij+l
(67)

assuming infinite resolution, the total

reduction ratio is

11 Fm Fn-l F2
~= . . ..E= F..

F.–l F%–2
(68)

For an accuracy of u the values of n must be such that

(69)
u

In the example of Fig. 7 the initial interval has been reduced

by a factor of 5 after 4 function evaluations. Eleven evalua-

tions would have reduced the interval by a factor of 144.

Search by Golden Section

Almost as effective as Fibonacci search, but with the

advantage that n need not be fixed in advance, is the one-

dimensional search method using the Golden Section [47],

[49], [52].

It is readily shown for Fibonacci search that

Ij = Ii+l + Ii+2 (70)

as may be verified by the example of Fig. 7. The same rela-

tionship between the intervals of uncertainty is true for the

present method, with an added restriction that

J, 1,+1

~=—
Ij+2 = T

(71)

which leads to

72=7+1 (72)

the solution of interest being r= ~(1 +~~= 1.6180 . . . .

The division of a line according to (70) and(71) is called the

Golden Section of a line.

The reduction ratio after

I,

~

n function evaluations is

= 7“–1. (73)

It can be shown that for Fibonacci search as n+ m

(74)

The ratio of effectiveness of the Fibonacci search as com-

pared with the Golden Section is, therefore,

F. T’

7“-1 = a- = 1“1708”

Furthermore as n+ m

F.
—- = i-.
F.-l

(75)

(76)

Comparing (67) and (71) for j= 1 we see that the Fibonacci

search and the Golden Section search start at practically the

‘4 d d ‘4 ‘ 1st itsration

: ~+~a $ +:
2nd iterattcm

3 33 3rd itsmticn,“

Fig. 7. A Fibonacci searchschemeinvolving three
iterations on a unimodal function of one variable.

same point, the latter method ultimately providing an inter-

val of uncertainty only some 17 percent greater than the

former.

Golden Section search is frequently preferred because the

number of function evaluations need not be fixed in advance,

Interpolation Methods

Several methods for finding a minimum have been pro-

posed which repetitively fit a low order polynomial through

a number of points until the minimum is obtained to the

desired accuracy [28], [41 ], [47]. The essence of a typ-

ical method involving quadratic interpolation may be ex-

plained as follows. -

At the jth iteration we have a unimodal function over

[#ij, d.j] with an interior point +mj. Let a= +$, b= +~j, and

c= &i. Then the minimum of the quadratic through a, b, and

c is at

1 (b2 – cz) U. + (C2 – az) U6 + (a’ – bz) U’
d=~

(b–c)U. +(c–a)U, +(a–b)UC
. (77)

Then &i+l, dmj+l, and &fil are obtained as follows:

The procedure may be repeated for greater accuracy, con-
vergence being guaranteed.

This method and certain others like it, are said to have

second-order convergence. For this reason they can be more

efficient on smooth, well-behaved functions than the Fibo-

nacci search.

Finding Uninrodal Intervals

The methods described so far rely on knowing in advance

the unimodal interval which contains the desired minimum,

otherwise convergence onto it can not be guaranteed. Two

situations can arise in practice which require a more cautious

strategy.
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One is that a given function is expected to be unimodal

but the bounds on the unimodal interval are not known in

advance. In this case, a quadratic extrapolation method

similar to the interpolation method already discussed can be

employed repetitively until the minimum is bounded [41],

[47]. Alternatively, a sequence of explorations may be

performed until such bounds can be established. The second

situation is when a given function is expected to be multi-

modal. In this case, it is advisable to proceed even more

cautiously. The function should be evaluated at a sufficient

number of uniformly spaced points to determine the uni-

modal intervals. Once unimodal intervals are established

they can be shrunk further by a more efficient method. An

example of a multimodal search strategy is the ripple search

method [23].

VI. MULTIDIMENSIONAL DIRECT SEARCH STRATEGIES

Methods which do not rely explicitly on evaluation or

estimation of partial derivatives of the objective function at

any point are usually called direct search methods. Broadly

speaking, they rely on the sequential examination of trial

solutions in which each solution is compared with the best

obtained up to that time, with a strategy generally based on

past experience for deciding where the next trial solution

should be located.

Falling into the category of direct search are: random

search; one-at-a-time search [25], [50], [53]; simplex meth-

ods [26], [27], [38], [45], [47]; pattern search and its vari-

ations [23], [24], [29], [30], [33]-[35], [44], [46], [48], [50],

[51], [53], [54]; and some quadratically convergent methods

[27], [31], [41], [55]. Multidimensional extensions of Fibo-

nacci search have also been reported [36], [37]. Elimination

methods are not as successful, however, as some of the

climbing methods to be discussed.

One-at-a-Time Search

In this method first one parameter is allowed to vary, gen-

erally until no further improvement is obtained, and then the

next one, and so on. Fig. 8 illustrates the behavior of this

method. It is clear that progress will be slow on narrow val-

leys which are not oriented in the direction of any coordinate

axis,

Pattern Search

The pattern search strategy of Hooke and Jeeves [34],

[50], [53], however, is able to follow along fairly narrow

valleys because it attempts to align a search direction along

the valley. Fig. 9 shows an example of the pattern search

strategy.

The starting point @ is the first base point W. In the ex-
ample the first exploratory move from @ begins by incre-

menting 41 and resulting in ~z. Since U2< U~, +2 is retained

and exploration is continued by incrementing 42. U3< U2 so

@ is retained in place of +2. The first set of exploratory

moves being complete, @ becomes the second base point b2.

A pattern move is now made to 44= 2bz– bl, i.e., in the direc-

tion b2– bl, in the hope that the previous success will be

Fig. 8.

+- ‘+,

Minimization by a one-at-a-time method.

+-+,

Fig. 9. Following a valley by pattern search.

repeated. U4 is not immediately compared with U3. Instead,

a set of exploratory moves is first made to try to improve on

the pattern direction. The best point found in the present

example is +5 and, since U5< U3, itbecomes, b3, the third

base point. The search continues with a pattern move to
@=2b~-bz.

When a pattern move and subsequent exploratory moves

fail (as around @3), the strategy is to return to the previous

base point. If the exploratory moves about the base point

fail (as at +8) the pattern is destroyed, the parameter incre-

ments are reduced and the whole procedure restarted at that

point. The search is terminated when the parameter incre-

ments fall below prescribed levels.

Constraints can be taken into account by addition of

penalties as described by Weisman and Wood [48], or by

the method of Glass and Cooper [33] who describe an alter-

nate strategy for dealing with constraints. Algorithms of

pattern search are available in the literature [24], [35].

A variation of pattern search called spider,, which seems

to have enjoyed some success in microwave network optimi-

zation [53], has been described by Emery and O’Hagan

[30]. The essential difference is that the exploratory moves

are made in randomly chosen orthogonal directions. For

this reason, there is less likelihood of the search terminating

at a false minimum either in a sharp valley or at a constraint

boundary as in Fig. 5. Spider can, therefore, be recom-
mended as a useful general purpose direct search method.

Another variation of pattern search called razor search

[23] has recently been proposed by Bandler and Macdonald

to deal with “razor sharp” valleys, i.e., valleys along which

a path of discontinuous derivatives lies. Such situations

arise in direct minimax response formulations (Section 111).

An example [23], [89] is shown in Fig. 10. When the
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~1

Fig. 10. Following a path of discontinuous derivatives along a nar-
row valley by razor search. The function is the maximum reflection
coefficient over a 100 percent bandwidth of a 2-section 10:1 quarter-
wave transmission-line transformer versus characteristic impedances
Z, and Z,.

basic pattern search strategy fails it is assumed that a sharp

valley whose contours lie entirely within a quadrant of the

coordinate axes has been encountered (or for that matter a

constraint boundary as in Fig. 5) so a random move is

made. When pattern search fails again it is assumed that the

same valley (or boundary) is responsible and an attempt to

establish a new pattern in the direction of the minimum is

tried. The method has been successfully applied to micro-

wave network optimization [23], [88].

Rotating Coordinates

Rosenbrock’s strategy [44] is to carry on exploring in

directions parallel to the current coordinate axes until one

success followed by one failure has occurred in each direc-

tion. Whenever a move is successful (objective function does

not become greater than the current best value) the associ-

ated increment is multiplied by a factor a; whenever a move

fails the increment is multiplied by –~. When the jth

exploratory stage is complete, the coordinates are rotated
as described below. First,

vh = dktlki
(79)

V; = diui~ + Vi+ I ~=]c—l . . .
J ,1

where ul~, u.2i, o . 0 u~j are the orthogonal directions dur-

ing the jth stage (initially the coordinate directions) and

dl, d%, . . . d~ are the distances moved in the respective direc-

tions since the previous rotation of the axes. The new set of

orthogonal unit vectors u 1~+1, uJ+l, . . . u#+l, the first of

which always lies in the direction of total progress made dur-

ing the jth stage, are obtained from (79) using the Gram–

Schmidt procedure:

i—1

‘“+1=11:1[

(80)

i= 2,3,... ,k

The process is then repeated. The search maybe terminated

after a predetermined number of function evaluations or

when the total progress made during each of several succes-

sive exploratory stages becomes smaller than a predeter-

mined value.

Fig. 11 shows a contour plot of Rosenbrock’s test func-

tion which is frequently used for testing new strategies.

Experimentally, Rosenbrock found that a= 3, p= – ~ gives

a good efficiency. Constraints can be taken into account by

Rosenbrock’s boundary zone approach [44], [47].

Swarm [46] has described an improvement of Rosen-

brock’s method which employs linear minimizations once

along each direction in turn, after which the coordinates are

rotated [27], [31], [47].

More efficient methods of rotating the coordinate direc-

tions for Rosenbrock’s and Swarm’s methods have been

recently proposed [39], [43].

Powell’s Method

An efficient method devised by Powell [41] is based on the

properties of conjugate directions defined by a quadratic

function, namely

U(I$) = qTA~ + b“+ + C (81)

where A is a kX k constant matrix, h is a constant vector, and

c is a constant. The directions u i and Ui are conjugate with

respect to A if

UiTAUj = O i+j. (82)

A two-dimensional example is shown in Fig. 12(a). The con-

sequences of having mutually conjugate directions is that

the minimum of a quadratic function can be located by

searching for a minimum along each of the directions once.

Thefih iteration involves a search for a minimum along k

linearly independent directions ul~, I.@, “ “ “ Ukj. At the first

iteration these are the coordinate directions. Denoting the

starting point of the iteration O“, and the point arrived at

after k minimizations @b, a new direction

u=+k_+o (83)

is defined along which another search for a minimum is car-

ried out. ul~ is then discarded and the linearly independent

directions for the (j+ l)th iteration are defined as

[U,j+’, U,i+l, ~ ~ ~ , Ukj+’] = [U,~, U,i, ~ . . . U,’, u] (84)

and the process is repeated.

If a quadratic is being minimized then after k iterations all

the directions are mutually conjugate insuring quadratic
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Fig. 12. Illustration of(a) conjugate directions u, and UZ, and (b) one
iteration of Powell’s method (the minimum is found in this prob-
lem after two iterations).

convergence. One iteration of Powell’s method is repre-

sented in Fig. 12(b). In its final form, the method is some-

what more involved than indicated here (see Powell [41 ] for

details, and for the quadratically convergent linear minimi-

zation technique). In order to prevent the directions from

becoming linearly dependent allowance is made for discard-

ing directions other than ulf. Comparisons with other

methods are available [27], [31 ]. Zangwill [55] has simplified

Powell’s modified method and presented a new one based on

Powell’s.

Simplex Methods

Simplex methods of nonlinear optimization [26], [27],

[38], [45], [47] involve the following operations. A set

of k+ 1 points are set up in the k-dimensional $ space to

form a simplex. The objective function is evaluated at each

vertex and an attempt to form a new simplex by replacing

+- ‘1

Fig. 13. Following a valley by the simplex
method of Nelder and Mead.

the vector with the greatest value of the objective function

by another point is made.

An efficient simplex method has been presented by Nelder

and Mead [38]. The basic move is to reflect the vertex with

the greatest value with respect to the centroid of the simplex

formed by the remaining vertices. Depending on the out-

come, the procedure is repeated or expansion, contraction, or

shrinking tactics are employed. Although remarkably effi-

cient for up to four parameters, progress may be slow on

problems having more than four parameters [27].

A two-dimensional example of a simplex strategy is given

in Fig. 13. Examples of expansion (+4 to +5) and contraction

(4’ to @7and 0’0 to +“) are shown. Shrinking of the simplex
about the vertex having the lowest value follows an un-

successful attempt at contraction.

A simplex method developed for constrained optimiza-

tion has been presented by Box [26], [27], [47].

VII. MULTIDIMENSIONAL GRADIENT STRATEGIES

In this section methods are described which utilize partial

derivative information to determine the direction of search.

The appropriate partial derivatives (which are assumed to

exist) may be obtained either by evaluating analytic expres-

sions or by estimation.

The first derivatives can, for example, be estimated from

the differences in the objective function produced by small

perturbations in the parameter values, say 0.01-1 percent

[78]. If the perturbations are too large’the estimation will be

inaccurate; if they are too small they can still be inaccurate

through numerical difficulties. The presence of a narrow

curved valley can further confound the issue. Thus, numer-

ical estimation of derivatives must be made somewhat appre-

hensively.

Steepest Descent

Referring to the multidimensional Taylor series expansion

of (7) and neglecting the third term it is clear that a first
order change AU in the objective function is given by

All = VUTA+. (85)

It is readily shown that maximum change occurs in the direc-

tion of the gradient vector VU. The steepest descent direc-

tion is, therefore, given by
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(86)

where the unit vector s is the negative of the normalized

gradient vector.

At the jth iteration of a simple steepest descent strategy

we would have

+?+1 = # + ~~s~ (87)

where cd is a positive scale factor. It is usual to proceed in the

i+ direction until no further improvement is obtained, eval-

uate sfil, and continue in this manner.

Fig. 14 illustrates the behavior of this method, Highly

dependent on scaling, the method seems to have little advan-

tage over the one at a time method described in Section VI

to which it bears a strong resemblance [57], [81], [82].

Parallel Tangents (Partan)

An acceleration technique which makes use of the results

of every second iteration to define new search directions can

be used rather effectively to speed up the process as should

be evident from Fig. 14. A quadratically convergent method,

of parallel tangents (or partan) [75], exploits this basic idea,

which can be extended to multidimensional optimization.

Excellent discussions of the partan strategy are presented by

Wilde [81 ] and Wilde and Beightler [82].

Generalized Newton–Raphson

Consider the Taylor series expansion of(7) about @in the

vicinity of the minimizing point ~ for a differentiable func-

tion such that

Differentiating (7), and using the fact that VU($) = O, we

have (neglecting higher order terms)

o = VU + HA+ (89)

at @ Hence

A41 = – H-lvU (90)

where H–l is the inverse of the Hessian matrix. On a quad-

ratic function (90) provides the parameter increments for

the minimum to be reached in exactly one step. When U is

not quadratic (90) provides the basis of the iterative scheme

~~~~ = ~~ – H-~vU~ (91)

called the generalized Newton-Raphson method [72], [77].

Although quadratically convergent, the method has sev-

eral disadvantages. H must be positive definite, implying

that the function must be convex (see Section II), or diver-

gence could occur. To counteract this tendency (91) can be

modified to

+~+1 = @ – ~~~-lvuj (92)

where a~ is chosen to minimize U2+1in the direction indi-

cated by – H–lV U~. But even this may be ineffective [72].

Thus, unlike steepest descent, the Newton-Raphson method

4- 47

Fig. 14. Minimization by a steepest descent method (see Fig. 8).

may fail to converge from a poor starting point. Further-

more, the computation of H and its inverse are time con-

suming operations.

Fletcher–Powell

Generally acknowledged to be one of the most powerful

minimization methods currently available when first deriv-

atives are analytically defined, the Fletcher–Powell method

[66] combines some of the more desirable features of steep-

est descent and the Newton–Raphson method. It is a devel-

opment of Davidon’s variable metric method [61]. A brief

discussion of the method follows,

Redefine H as any positive definite matrix. Then at the

jth iteration

where

& = _ HjVLli. (94)

Here, H~ is the jth approximation to the inverse of the

Hessian matrix. The initial approximation to H is usually

the unit matrix. Notice that, in this case, the first iteration is

in the direction of steepest descent [cf. (87)]. The a; are

chosen to minimize U*l. H is continually updated during

minimization (hence the name variable metric) such that [72]

Thus, only first derivatives are required to update H.
In practice the following procedure is adopted. Let

H3+I = H~ + Ai + B.i (98)

where

and

(99)

[100)

The process is repeated from &l, replacing j by j+ 1.

Fletcher and Powell prove by induction that if Hi is pos-
itive definite then H~+l is also positive definite, since Ho is
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taken as positive definite. Fletcher and Powell further prove

that on a quadratic function, Hk is the inverse of the Hessian

matrix and V Uk = O. However, because of, say, accumulated

round-off errors, one extra iteration corresponding to a

Newton-Raphson iteration may be required. It is possible

for divergence to occur if the a~ are not accurately chosea to

minimize the function along s~. A check for this can be made

and H reset to the unit matrix, if necessary,

Algorithms of the Fletcher-Powell method are available

[59], [65], [80]. Several comparisons of its performance

with other gradient methods have also been published [58],

[59], [71], [78]. The reader might also be interested in

related methods and extensions which have been proposed

[62], [67], [68], [76], in particular, Stewart’s modifica-

tion [76] to accept difference approximations of the deriv-

atives, and Davidon’s recent variance algorithm [62].

Least Squares

When the objective function can be represented as a sum

of squares of a set of functions, special techniques are avail-

able [56], [59], [78], [82]. In this case (25) becomes

U = ~ [et(+)]’
$=1

with n 2 k. Define the vector

[1

cl(+)

e2(@)
e(~) = . “

en(b)

Then (101) can be written as

and

where

J=

11 = eTe

VU = 2JTe

1’
18;.
z

is an n x k Jacobian matrix.

Taylor series expansion

del
—..

8+2

. . . .

(101)

(102)

(103)

(104)

(105)

Using the first two terms of a

e(+ + A+) = e(~) + JA+. (106)

Assuming J does not change from ~ to $+A $ we may

write [from (104)]

vU(+ + A+) = 2JT[e + JA$]. (107)

The least squares method then is to solve

JTe + JTJA+ = O (108)

for the k components of A+ causing the gradient at @+A@

to vanish, Note that JTJ is a square matrix of rank k so that

A+ = – [J~J]-lJTe. (109)

But from (104) 2JTe = V U. Now compare (109) with (90).

Hence, the term 2JTJ corresponds to the Hessian matrix.

The least squares method (sometimes called the Gauss

method) is, therefore, analogous to the Newton–Raphson

method. U is minimized when [JTJ]–l is positive definite

which is generally true under the assumptions of the prob-

lem.

To avoid divergence, however, the jth iteration is often

taken as

~j+l = ~j + ~~A& (1 10)

where d, as for the previous methods, maybe chosen so as to

minimize Ui+l. With a;< 1 we have one possible form of

damped least squares.

Other variations to the least squares method to improve

convergence are available [78], [82]. Powell [42] has

presented a procedure for least squares which does not

require derivatives, these being approximated by differences.

Least pth

Temes and Zai [79] have recently generalized the least

squares method to a least pth method, where p is any positive

even integer. They report improved convergence but also

discuss damping techniques similar to those used in least

squares. The advantages of using a large value of p as far as

reducing the maximum response deviation is concerned are

discussed in Section III, so the method should be of consid-

erable interest to network designers. The derivation is anal-

ogous to the least squares method which falls out as a special

case.

VIII. APPLICATION TO NETWORK OPTIMIZATION

A list is appended of selected references [84]-[1 19] on the

application of various methods to the optimal design of net-

works which should be of interest to microwave engineers.

Most of these are briefly discussed and commented upon in

this section.

Least pth Objectives

Weighted least squares objectives with the sample points

nonuniformly distributed along the frequency axes have been

used to design LC ladder filter; in the presence of loss [95],

[1 10]. Desoer and Mitra [95] used a steepest descent

method, while Murata [110] used a simple direct search

method. A comparison of the rather unfavorable results

obtained by these formulations with alternative formulations

is presented by Temes and Calahan [116].

Sheibe and Huber [112] used a least squares objective

function with the created response surface technique (Sec-
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tion IV) to optimize a transistor amplifier subject to various

parameter constraints including realistic Q values. Their aim

was to fit the gain curve to a desired trapezoidal shape. It

turned out that the Q value of one of the tuned circuits was

forced to its maximum value, and the response at higher fre-

quencies was rather poor.

An investigation into the design and optimization of LC

ladder networks to match arbitrary load immittances to a

constant source resistance has been reported by Hatley

[100]. After experimentation with several objective functions

of the form of (25) on a 6 element resistively terminated LC

transformer, Z~ I p,(~)l 4 was chosen, where p is the reflec-

tion coefficient, even though max I PI was 0.08870 after opti-

mization as compared with the known optimum value of

0.07582. A new minimization technique called the method of

quadratic eigenspaces is presented and compared with the

Fletcher–Powell method. Examples are presented involving

antenna matching, the antennas being characterized by mea-

sured data rather than models.

The application of the least pth method developed by

Temes and Zai [117] (Section VII) was applied to the opti-

mization of a four-variable RC active equalizer with p = 10.

The maximum deviation from the desired specification for

p= 2 was found to be 33 percent higher. Temes and Zai

demonstrated the nonuniqueness of the optimum—they

obtained different solutions with different starting points.

Indeed, two of the four elements were found to be essentially

redundant. The necessity of some experimentation, in gen-

eral, before accepting an apparently optimal solution (by

any numerical optimization procedure) is shown by this

example. It is interesting to speculate that since the least @h

solution will generally not be the minimax solution, although

they could be fairly close, it may be possible to obtain a

smaller maximum deviation than given by the least pth solu-

tion while still searching for it. The optimization program

could check for this possibility.

Inequality Constraints

Two distinct methods of optimizing networks when the

objectives are formulated in terms of inequality constraints

(Section 111) and when minimax solutions are required have

been reported.

One of these [102], [103] reduces the nonlinear pro-

gramming problem to a series of linear programming prob-

lems. The constraints are in the form of (23) and (24). The
response function f’,(+) or the deviation e,(O) is linearized

at a particular stage in the optimization process and the

linear programming problem thus created can be solved by

the simplex method of linear programming [9], [20] to
reduce U for that stage. Unfortunately, however, because of

the linear approximations made, it is possible that the orig-

inal constraints are violated and that U is not actually min-

imized. Sufficient under-relaxing (or damping) may be

required to guarantee that U~+l< Uj and that in the limit the

process converges to the desired minimax response. A de-

tailed discussion of this method is presented by Temes and

Calahan [116]. The paper by Ishizaki and Watanabe [103]

presents examples including the design of attenuation

equalizers and group delay equalizers. It is felt that their

method should have wide application. The reader may also

be interested in another recent contribution for nonlinear

minimax approximation [124].

The other method which is reviewed by Waren et al. [119],

uses the sequential unconstrained minimization technique,

the advantages and disadvantages of which are discussed in

Section IV. They recommend quadratically convergent

minimization methods such as the Fletcher–Powell method

(Section VII) or Powell’s method (Section VI) for rapid

convergence to each response surface minimum. Several suc-

cessful applications have been reported [85], [106], [107],

[118], [1 19]. For example, cascade crystal-realizable lattice

filters have been optimized from approximate initial designs,

including realistic losses and bounds on the element values

[107], [118], [119]. Also of interest to microwave engineers

might be the optimization of linear arrays, where allowing

additional degrees of freedom can result in improved designs

[106], and the more recent extension to planar arrays [119].

Microwave Networks

Several reports of the application of computer-aided

optimization methods of varying sophistication to micro-

wave network problems can be found in the literature [84],

[86]-[90], [93], [97], [99], [101], [104], [108], [114]. Anum-

ber of these [88], [90], [104], [108] are found elsewhere in

this issue.

One example which demonstrates the effectiveness of com-

puter-aided optimization techniques [87] involved the

optimization of the transmission-line network shown in Fig.

15 which was to be used for stabilizing and biasing a tunnel-

diode amplifier. The requirements of stability and low noise

broad-band amplification in conjunction with the rest of the

circuitry (rectangular waveguide components including cir-

culator, matching network and tuning element) imposed

nonsymmetrical response restrictions on the input resistance

and reactance of the network as shown in Fig. 15, Upper and

lower bounds on the final parameter values were also im-

posed. The objective was to minimize the sum of squares of

the input reactance at selected frequencies. A simple direct

search method was used, which rejected nonfeasible solu-

tions, an initial feasible solution being found by trial and

error. An alternative, and perhaps more elegant, approach

would have been the implementation of the sequential un-

constrained minimization technique.

Another area in which the computer can be effectively

used is the design and optimization of broad-band integrated
microwave transistor amplifiers [93], [97], [99]. A block

diagram of a two-stage amplifier is shown in Fig. 16. The

transistors are usually characterized experimentally at se-

lected frequencies in the band of interest and under the

conditions (e.g., operating power level) in which they are to

be used. The representation can, for example, be in the form

of input and output admittance [97], xtBCD matrix [93], or

scattering matrix [99]. It may also be an advantage to fit the

measured data versus frequency to a suitable function in a

least-squares sense [93], [97].

The input, output and interstage matching networks usu-

ally consist of noncommensurate transmission lines and

stubs. The line lengths and characteristic impedances are

allowed to vary within upper and lower bounds during the

optimization of the amplifier. The spider search method
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Fig. 15. Noncommensurate stabilizing network for a tunnel-diode
amplifier with constraints on input resistance and reactance at
certain frequencies.
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Fig. 16. Block diagram of a two-stage microwave transistor amplifier.
The transistors are characterized experimentally. The matching net-
works usually consist of noncommensurate transmission lines and
stubs.

(Section VI) has been applied to the design of such matching

networks [97], The objective functions commonly take the

form of (25) with p = 1 or 2. It is felt, however, that better

designs might be achieved by using larger values of p or a

minimax objective like (17) to reduce, for example, the

maximum deviation of the gain versus frequency from the

desired gain. The method of Temes and Zai [117] would be

quite appropriate in the former case, while the razor search

method [90] could be used in the latter. Since it is difficult to

realize component values in integrated circuitry very ac-

curately, the optimal solution should also satisfy appropriate

sensitivity y constraints.

Multisection inhomogeneous rectangular waveguide im-

pedance transformers (Fig. 17) have been optimized in a

minimax equal-ripple sense [88] by the razor search strategy

[90] (see Section VI). Suitable parameter constraints–the

parameters were the physical dimensions—were imposed to

ensure dominant mode propagation and reasonably small

junction discontinuity effects which could be taken into

account during optimization. Improvements in performance

coupled with reduction in size over previous design methods

are reported [88].

Automated Design

Approaches to automated network design and optimiza-

tion which can permit new elements to be “grown” have

Fig. 17. An inhomogeneous rectangular waveguide impedance trans-
former. All guides are, in general, noncommensurate.

been suggested by Rohrer [111] and Directcm and Rohrer

[96]. The latter paper, which seems to be a significant contri-

bution, discusses design in the frequency domain of circuits

comprising certain types of lumped linear time-invariant

elements. A technique is presented whereby the gradient

vector of a least squares type of objective function is shown

to require only two analyses over the frequency range of

interest regardless of the number of variable parameters.

And because this gradient depends only on currents and

voltages, gradients with respect to nonexistent elements can

be calculated. If such a gradient indicates an increase in an

element value an appropriate element is growu in the appro-

priate location. The authors consider an example of broad-

banding a transistor amplifier in which they allow for the

possibility of growing a number of capacitors. Apparently

one has to specify in advance the locations where elements

can grow.

IX. CONCLUSIONS

It is hoped that this paper will not only encourage the use

of efficient optimization methods, but will also stimulate the

engineer into developing new ones more suited to his design

problems. After all, as exemplified by this paper, few opti-

mization strategies have been reported so fam which were

originally developed with electrical networks in mind. It is

also hoped that the present almost instinctive preoccupation

with least squares formulations may give way to more atten-

tion being paid to minimax objectives and efficient methods

of realizing them. Least squares objectives may be flexible

and easy to optimize. It is probably their flexibility, however,

which is their undoing since any designer who is essentially

trying to fit a network response between certain upper and

lower levels and is using a least squares objective function

may have to employ more human interventicm than neces-

sary to achieve an acceptable design. On the other hand, the
designer who is employing a minimax objective directly and

does not recognize the possible dangers, e.g., of discontinu-

ous derivatives, can easily obtain an equal-ripple response

which is still far from the optimum. On-line designers opti-

mizing a network manually with the objective of minimizing

the maximum deviation of the network reslponse from a

desired response are equally prone to these dangers. An

equal-ripple solution need not necessarily be the minimax

solution.
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Optimization of Microwave Networks

by Razor Search

JOHN W. BANDLER, MEMBER, IEEE, AND PATRICK A. MACDONALD

Absfracf—A new optimization method called razor search is pre-

sented. The method, which is based on pattern search, was specifically

developed for the automatic optimization by computer of networks for

which the objective is to minimize the maximum deviation of some

response from a desired ideal response specification. Mhdmax response

objectives, which can lead to eqnal-ripple optima, will in general give rise

to discontinuous partial derivatives of the objective firnction with respect

to the network parameters. Otherwise efficient optimization methods may

slow down or even fail to reach an optimnm in snch circumstances, par-

ticularly when the response hypersurface has a narrow curved valley

along which the path of discontinuous derivatives lies. Another direct

search method called ripple search is also presented. This method was

developed to locate the extrema of multimodal fnuctions of one variable in

an efficient manner, and is used to determine the maximum deviation of

the response from the desired response. Sufficiently detailed flow dia-

grams are available so that the methods can be readily programmed. The

razor search strategy (with ripple search) has been successfully applied

to the optimization of inhomogeneous wavegoide transformers. It is

illustrated in this paper by examples of cascaded cosnmensnrate and

noncounnensorate transmission lines acting as impedance transformers

for which the optima are known.

I. INTRODUCTION

M INIMAX response objectives, which can lead to
equal-ripple optimum responses, are probably the

most desirable objectives in microwave network
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optimization. This is because the designer is usually given

an ideal response specification and has to synthesize a net-

work which meets the ideal specification to within a specified

maximum allowable deviation. For such problems a formu-

lation which aims at reducing the maximum deviation of the

response is the only one for which the optimum represents

the best possible attempt at satisfying the design specifica-

tions within the constraints of the particular problem.

Methods for approaching minimax response optima and

which can be used on networks whose parameters are con-

strained have been proposed [1 ]–[4]. The method described

by Waren et al. [1], [2] reduces the constrained problem

to a sequence of penalized unconstrained optimization

problems, each one being started within the feasible region.

The method of Ishizaki et al. [3], [4] reduces the orig-

inal nonlinear problem to a series of linear programming

problems. Assuming the methods converge, the minimax

optimum can be arbitrarily closely approached.

If one raises the response deviation to a sufficiently high

even power p and uses that in the objective function, the

maximum deviation can be reduced [4], [5]. The objec-

tive function becomes minimax as p+ w. Temes and Zai
have recently described such a least pth approximation
method and its implementation [5].

In this paper a new optimization method called razor

search is presented. The method, which is based on the pat-

tern search technique of Hooke and Jeeves [6], was de-

veloped for the direct automatic optimization by computer

of networks using as the objective function the maximum

deviation of the response from the desired ideal response

specification. Such a formulation will, in general, give rise to

discontinuous partial derivatives of the objective function

with respect to the network parameters [4], [7]–[ 11]. Under

these circumstances otherwise efficient optimization meth-

ods~ertainly on-line manual methods—may slow down or


