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Optimal Centering, Tolerancing, and Yield 
Determination via Updated Approximations 

and Cuts 
JOHN W. BANDLER, FELLOW, IEEE, AND HANY L. ABDEL-MALEK, STUDENT MEMBER, IEEE 

Absrmer-This paper presents a new approach to optimal design center- 
ing, the optimal assignment of paramete-r tolerances and the determination 
and optimization of production yield. Based upon muftidimensionaf linear 
cuts of the tolerance orthotope and uniform distributions of outcomes 
between tolerance extremes in the orthotope, exact formulas for yield and 
yield sensitivities, witb respect to design parameters, are derived. ‘Ibe 
formulas employ tbe intersections of the cuts with the orthotope edges, the 

cuts themselves being function.9 of the original design constraints. Our 
computatfonal approa& involves the approximation of all the constraints 
by low-order multidimensional polyuomiak. ‘f&se approximations are 
continually updated during optimization. fnberent advantages of the ap 
proximatious which we have exploited are that explicit sensitivities Of the 

design performance .&e not required, available simulation progranrs can be 
used, inexpensive function and gradient evaluations cau be made, hex- 
pensive calculations at vertices of the tolerance orthotope are facilitated 
during optimization and, subsequently, inexpensive Monte Carlo verifica- 
tion is possible. Sile circuit examples illustrate worst case design and 
design with yields of less then 100 percent. Ihe examples also provide 
verification of the formulas and algorithms. 

I. INTRODUCTION 

0 PTIMAL tolerance assignment is the process of 
associating the largest tolerances with design parame- 

ters to minimize cost. Design centering is the process of 
defining a set of nominal parameter values to maximize 
the tolerances or to maximize the yield for known but 
unavoidable statistical fluctuations. This paper integrates 
the concepts of design centering, the optimal assignment 
of, parameter tolerances and the determination and opti- 
mization of production yield into an overall optimal de- 
sign process. 

Our computational approach should be viewed in the 
context of the following important work in this area: the 
nonlinear programming approach of Bandler et al. [l], [2] 
and by Pine1 and Roberts [3], the branch and bound 
method of Karafin [4], the Monte Carlo approach of Elias 
[5], and the Director and Hachtel technique involving 
approximations of the feasible region [6]. It makes use of 
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approximations of all the constraints by low-order multi- 
dimensional polynomials. These approximations are con- 
tinually updated in critical regions identified during opti- 
mization and integrated with the nonlinear program which 
inscribes an orthotope in the constraint region by mini- 
mizing a suitable scalar objective function. This orthotope 
will actually be the optimum tolerance region for a worst 
case design problem with independent variables. 

The readily differentiable approximations permit 
efficient gradient methods of minimization to be em- 
ployed as well as inexpensive calculations at vertices of 
the tolerance orthotope, which tend to locate the critical 
regions. The yield problem commences when the ortho- 
tope is allowed to expand beyond the boundary of the 
constraint region. Attention is then directed to the critical 
regions which contribute to the yield calculation. 

Section II describes the nature of the tolerance problem 
and discusses the implications of the assumption of one- 
dimensional convexity [7], [8]. Section III formally in- 
troduces the multidimensional ‘polynomial. Our approach 
to choosing suitable interpolation base points. is given. 
The section includes an efficient algorithm for evaluating 
the approximations and their derivatives at different vert- 
ices in different well-chosen interpolation regions. Section 
IV presents algorithms for worst case design: Phase 1 
deals with a single interpolation region, and Phase 2 
involves two or more interpolation regions. These inter- 
polation regions are updated according to desired ac- 
curacy for the approximate constraints in critical regions. 

Based upon multidimensional linear cuts of the toler- 
ance orthotope and uniform distributions of outcomes 
between tolerance extremes in the orthotope, Section V 
presents exact formulas for yield and yield sensitivities 
with respect to design parameters. The formulas employ 
the intersections of the cuts with the orthotope edges, the 
cuts themselves being functions of the original design 
constraints. Ways of treating linear and quadratic con- 
straints (actual or approximate) are discussed so that 
results obtained by implementing the material of the pre- 
vious sections can be followed up. 

Section VI details an algorithm embodying all the ideas 
and results of Sections II to V. It deals with optimization 
involving yield less than 100 percent. Appropriate ap- 
proximations to the boundary based on a single function 
of least pth type [9] within each critical region are utilized. 
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Some illustrative examples are also included. A two-set- 
tion quarter-wave transmission-line transformer is used to 
explain how a worst case design is obtained and, further, 
is used1 for yield determination and optimization. A worst 
case d’esign and a well-centered design for yield less than 
100 percent for a three-section low-pass LC filter are 
included. Practical examples of nonideal two-section and 
three-section waveguide transformers are described. 

II. NONLINEAR PROG~MMINGFORMULATIONOF 
THETOLERANCEPROBLEM 

Introductov Concepts 

An engineering design can be described by a vector of 
nominal parameters +’ and an associated vector of 
manufacturing tolerances l , where 

+Y ‘I 
+20 

Q”’ : 

c2 

20, t:p . 20 (1) 

and where k is the number of designable parameters. 
Accordingly, any design outcome is represented by a 
point which lies inside a tolerance region R, as shown in 
Fig. 1. For simplicity as well as the implications of a 
uniforrn distribution of outcomes between tolerance ex- 
tremes $$’ ? ei, we define 

where 

R/ {~~-l<~;Lil,i=1,2,~~~,k} (3) 

and where E is a k x k matrix with diagonal elements set 
to ei and p is a random vector distributed according to the 
joint probability distribution function of the outcomes. 
Any value for p identifies a point in 4. The tolerance 
region R, as defined in (2) is an orthotope in the k-dimen- 
sional space (see Coxeter [lo]). Consequently, the toler- 
ance region will often be referred to as the tolerance 
orthotope. The vertices of this orthotope are the points for 
which all parameters are at extreme values (positive or 
negative extremes), i.e., pi E { - 1, 1 }, i = 1,2,. . . , k. See 
Fig. 1. The number of these vertices is 2k and they are, for 
convenience, uniquely indexed by +r, r E Z,, where 

1” p { 1,2; * * ,2k}. . (4) 

Thus the set of vertices is given by 

R,={~r~rEZ,}. (5) 

This numbering scheme will allow us to identify a vertex 
by the number r only. 

Let Rc be the constraint region, illustrated in Fig. 1, 
defined by m, functions g,(G) and given by 

R, k {+lgi(+)>O, for all iEI=} (6) 

Fig. 1. Illustration of the constraint region R, and the tolerance region 
4. ,Also, the nominal point Q, an outcome 4 + 4: and vertices are 
mdlcated. 

where 

Z, g { 1,2; -. ,m,}. (7) 

Worst Case Design 
For a worst case design [l], [:2], sometimes called a 

design with lOO-percent yield, it is required that all design 
outcomes satisfy the specifications., i.e., 

R,cR,. (8) 
If the constraint region R, is one-dimensionally convex 

[7], it is sufficient that all vertices of R, belong to R, to 
guarantee that (8) is satisfied, i.e., it is sufficient to have 

&CRC (9) 

where, formally 

Bandler and Liu [8] and Brayton et al. [ 1 l] have consid- 
ered the implications of one-dimensional convexity for 
certain classes of circuits. 

The foregoing discussion leads to the following nonlin- 
ear programming problem for worst case design involving,, 
in general, both centering of +’ and optimal assignment of 
c. 

WCD 

mitoF c(+“, E) 
subject to 

g,(u) > 0, for all i E Zc, and all r E Z, 

(11) 
where C is a suitable cost function and the constraints 
(11) are an explicit formulation of the constraint (9). The 
total number of constraints involved in WCD is m, x 2k. 
The one-dimensional convexity assumption allowed us to 
have this finite number of constraints rather than the 
infinite number of constraints implied by (8:1. 

Methods for solving nonlinear programs are well devel- 
oped in the literature. We simply note here that efficient 
evaluation of the constraints, rapid determination of ac- 
tive constraints as well as the use of gradient techniques in 
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desiqn with yield< 100% 

1 '41 

Fig. 2. Example of a worst case design and a design with yielfl < 100 
percent. For the worst case design the set of active vertices.1~ saV= 
( 1,3,4). These vertices indicate critical regions where constramt viola- 
tions are most likely to occur for a design with yield < 100 percent. 

the search for the optimum values of 4 and e are com- 
putationally highly desirable. 

The active vertices at the worst case optimum, i.e., at 
the solution of WCD, are those which lie on the boundary 
of R,. The set of active vertices is given by 

s,, A {rlg;(gq=O, rEl,, iq}. 
See Fig. 2 for an illustration of a worst case design, 

Yield Less Than 100 Percent 

When the yield is allowed to drop below 100 percent we 
have R, Z R,. An appropriate nonlinear program in this 
case is 

Y, c 

YNp subject, for example, to (13) 

where Y, is a yield specification. A design with yield 
< 100 percent is depicted in Fig. 2. 

Again, this nonlinear program is to be solved for opti- 
mum values of +’ and l . It is not necessary that all 
components of +’ and e be allowed to vary. Some of them 
might be fixed. The constraint on yield might be removed 
if the yield is represented in the cost. This case might 
arise, for example, if the distribution of outcomes is fixed 
and Go is allowed to vary in order to meet maximum yield. 
Although design constraints do not seem to appear ex- 
plicitly in YNP they are all implicitly accounted for in the 
consideration of yield. 

Approximations to R, 

Unlike optimization problems in which a single point is 
of interest, tolerances and uncertainties create a region of 
interest. The solution is usually characterized by several 
critical points or regions so that more information about 
the constraint region is required. Under the foregoing 
assumptions it seems reasonable to assume that for a high 
but less than loo-percent yield the active vertices de- 
termined by a worst case design will indicate regions 
where constraint .violations are most likely (see Fig. 2). 

vertices as locations for centering reliable approximations 
to the boundary, which is the subject of the following 
section. 

III. INTERPOLATIONBYQUADRATICPOLYNOMIALS. 

Worst case design, yield analysis, and optimization in- 
volve a mass of calculations. Inadequate information on 
cost functions, component distributions, model uncertain- 
ties, etc., already hinders precise design solutions. Conse- 
quently, multidimensional approximations to design con- 
straints appear to be a computational necessity without, it 
is felt, any significant sacrifice in design accuracy. 

An approximate representation of a function g(+), typi- 
cally a constraint, using its values at a finite set of points 
+ is possible. These points are called nodes or base points. 
Interpolation is adopted since it is not only a simple 
approach to approximation but also because it requires 
relatively few actual function evaluations. In general, in- 
terpolation can be done by means of a linear combination 
of the set of all possible monomials [12], [13]. A monomial 
in + of the order m is given by 

where the integers y,>O, i=1,2;-*,k. 
Since the accuracy of the approximation depends upon 

the size of the interpolation region, the critical parts of R, 
may not be covered by a single interpolation region. Thus 

the use of more than one interpolation region will be 
discussed. 

The Quadratic Polynomial 

A quadratic polynomial in k variables can be written as 

P(+) = 4h)2 + a2(+J2 + . - * + ak(+,j2 
+ak+1+1+2+ak+2+1+3 

‘+.. 
. +aN-k-l+k-l+k 

+aN-k+l+aN-k+l%+e” +aN-I+k+aN (15) 

where 
N=(k+ l)(k+2)/2 (16) 

is the number of monomials and at the same time the 
number of the unknown coefficients a1,a2;+ * ,a,. In 
order to find these coefficients, the values of P(G) at N 
base points &, are required. By setting 

p(d) = &b)P i=1,2;-.,N (17) 
a set of N simultaneous linear equations is constructed. A 
solution for this system exists if the base points are 
degree-2 independent [14]. A set of N points is said to be 
degree-m independent if there exist no constants pi, ex- 
cept p,=O,j= 1,2;. . ,N, such that 

Accordingly, our interest must be directed. to the..active,. _ .where Cp. is the. monomial. givenin (14). I 
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Selection of Base Points 

Suppose that the function g(+) is to be approximated at 
a particular region in the parameter space. We identify 
this interpolation region R through a “center” of inter- 
polation ;i; and a step size 6. We define, accordingly 

Rk {~(I~ii-~~l<si,i=1,2,...,k} (19) 
and require that the base points should satisfy 

&EE, i’= 1,2;. . ,N. (20) 
This requirement is satisfied if the set of base points is 
given b,y 

[ 4 $4 * * * #]=D[o 1, -1, B] 

+[4 ij -.. &] (21) 

where A3 is. a k x k diagonal matrix with elements Si, 0 is 
the zero vector of dimension k, & is a k X k unit matrix, B 
is a k x (k(k - 1)/2) matrix defined by 

B=[d CL; *** CL:] (22) 

in which 
L= k(k- 1)/2 (23) 

where ~4 are randomly .selected such that 

PER,,, j=1,2;**,L. (24) 

See, for example, Fig. 3. 
This choice of base points preserves one-dimensional 

convexity/concavity of the approximated function, since 
there are three base points along each axis (see Appendix). 

Polynomial Evaluation at Vertices 

In solving the nonlinear program WCD, the values of 
the constraints and their derivatives at the vertices are 
required. Here, we develop an efficient technique for 
evaluating approximations to the constraints along with 
their derivatives for subsequent use in conjunction with 
gradient optimization methods. 

The technique exploits siinple properties of a quadratic 
approximation. The following two equations are used to 
obtain the polynomial value and its gradients at any 
vertex @ using values at another vertex r##. 

P(~~)-=:P(~~)+(~‘-~~)=VP(~~~+~(~~-~~)~H(~-~) 

(25) 

where 

and 

vP(+r)=vP(+S)+H(+r-+f) 

a/a+, 
a/a+2 

VP . 

a/a+k 

H p VVTP 

(26) 

(27) 

(28) 

Fig. 3. Arfangement ?f the base: 
mterpolation regons m (a) two 

mts with respect to the centers of 
nnenslons (base point & is selected 

randomly) and (b) three dimensions (base points & &, and @Lo art 
selected randomly). 

’ 

is the Hessian matrix for the quadrAtic approximation. 
Suppdse +’ and $B’ are adjacent vertices, i.e., 

# = es + 2cjei (29) 
where e, is the unit vector in the ith direction. In this case 
(25) and (26) reduce to 

P(#i= P(+S)+2qViP(qz)+2Cf1zii (30) 
vP(gq=vP(+S)+2CiHi (31) 

where Vi is the ith row of V, ZYii is the ith diagonal 
element of H, and Hi is the ith colmnn of H. 

Different approximtitions may be considered in differ- 
ent interpolation regions. To this end some relevant nota- 
tion is introduced, as follows. 

Let 

Is f {ii&, Zq:) (32) 

I,& {ilq>C$:) (33) 

and the number of elements of Ja and 1, be k, and k,, 
respectively. In an effort to describe the minimal number 
of interpolation regions Ni, which collectively contain all 
the vertices we consider each element of Z, in such a way 
that 

Ni, = 2ke (34) 

and (see, e.g., Fig. 4) that the centers of interpolation $’ 
are associated with +’ E R, through 

$=~“+P(qDr-~o) (35) 
where the projection matrix P is the diagonal1 matrix 

PI 
P2 

pP (36) - 

Pk 
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hyperface 
center 

Fig. 4. Three situations created by certain step sizes 6= 6, = 6, and 
tolerances. The available interpolation regions and their centers are 
indicated as follows: (a) Z,.=0, ZJ={1,2,3,4}. (b)Z,=(2), Z,1={1,2), 
z,2={3,4}.(c)z,=(1,2),z,1=(1},z,2=(2),z5={3),z,4={4). 

and where 

(37) 

A suitable numbering scheme for identifying vertices is 
[71 

pi-{-Al} (38) 

so that adjacent vertices (i.e., vertices different in the ith 
parameter) satisfy 

Jr-sl=2’-‘. (39) 
An analogous numbering scheme for interpolation regions 
is given by 

I= l+ $ pi( y)*cl, ~;E{-l,l} (40) 
i=l 

where 

i,= i pi. (41) 
j=1 

Intuitively, i, is a renumbered index derived from i and 
the projection components pi to include only the elements 
of Z, in such a way that a doubling of the number of 
interpolation regions occurs for every such element. For 
example, ifp,=l, i=1,2;**,k, we have 

pi-{-Ll} (42) 

since i, = i follows from (41). 
Since a given rth vertex belongs to a particular inter- 

polation region 1 given by (40) we can, without ambiguity, 
let 

P’ L P’(#) (43) 
where P’(G) is the polynomial constructed for the Ith 

(a) 

0) 

Fig. 5. Illustration of the efficient technique for evaluation of the 
approximations and their derivatives. (a) k, =3, Ni,= 1, Z,’ = Z, 
and, initially, Z= l}.(b) k,=2, N,,=2, Z,,‘=(1,2,5,6}, Z5={3,4,7,8) 
and, initially, Z= 1,3). t 

interpolation region. With this notation we rewrite (30) 
and (31) as 

P’= P”+2cV.Ps+2dH! I I , l, (44 

VP’=VP”+29H; (45) 

where the superscript 1 identifies the relevant components 
of H .(defined earlier) and where r and s are related by 

r=s+2i-‘, i E Is (46) 
implying that c#L and C/B’ are adjacent (see (29) and belong 
to the same interpolation region, viz., ’ 

r,sEZ,‘P { iliEZ,,#ER’} (47) 
where Z, is given by (4) and R’ is the Zth interpolation 
region. 

A Igorithm- for Polynomial Etialuation (APE) 

This algorithm is illustrated in Fig. 5. The figure indi- 
cates two situations in three dimensions. Polynomial and 
gradient evaluations are made during each iteration at 
corresponding vertices in certain interpolation regions, 
starting with one vertex per region. New vertices are 
systematically considered in successive iterations, their 
number being doubled until the candidates have been 
exhausted. 

This algorithm assumes that quadratic polynomial val- 
ues P along with corresponding VP associated with a 
subset Z, of the Ni, available interpolation regions are to 
be computed... The required subset will generally be de- 
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TABLE I 
COMPUTA~ONALEFPORTFOREVALUA~GNOPTHEQUADRA~CPOLYNOMIALANDITSDERJVA~'ES 

Description Number of additions Number of multiplications 

At one vertex only f k(3k + 5) ;k(k + 1) 

At all the vertices using 
original formula 

Zk-'k(3k + 5) 3 x Zk-' k(k + 1) 

At all the vertices using k 

the efficient scheme 
2 "[+k(3k+5s)+(k+2)(2 k6 k 

-l)]+k6 2 '[;k(k+l)+k6(k+l)+2 k6 -I] 

At all the vertices using 
the efficient scheme 

kg = k 
$k(3k+7)+(k+2)(Zk-1) 

termined during worst case design in accordance with possible vertices, i.e., all Nin available interpolation re- 
candidates for active vertices for the constraint under gions, compared to that required for one vertex only is 
consideration. shown in Table I. 

Step 1: Evaluate P” and VP” for all s E I, where 

Z= i/i= minj, IEZ, . 
1 j E I,’ 1 

Comment: This is an initialization of the set of vertices, 
one vertex per interpolation region being considered, as 
required to start the computation of the polynomials and 
their gradients. Each.vertex selected is the closest possible 

’ to the origin. 
Step 2: J+-Z,. 
Comment: J is a working set of indices, initialized here 

to corrlespond to all those designable parameters which 
can vary within each interpolation region. 

Step 3: If J= 0 stop. 
Comment: This step tests whether there are any (re- 

maining) candidates in J. If J is empty polynomials at all 
the vertices within the considered interpolation regions 
have been evaluated. 

Step 4: itminj,, j. 
Comment: This ordering process selects the index i 

corresponding to the parameter to be varied in the follow- 
ing steps. 

Step 5: Ttci + q. 
Step 6: G/t TH/ for all I E 5. 
Step 7: For all s E Z 

P’tP’+ TV,P”+qG; 

VP’tVPS+G/ 

where r and I are given by (46) and (40), respectively. 
Comment: The values of the polynomials and the corre- 

sponding gradient vectors are calculated at all appropriate 
adjacent vertices. The number of vertices at which evalua- 
tions have been made are thus doubled in this step. 

Step 8:. ZtZU{rlr=s+2’-‘, sEZ}. 
Comment: The set of vertices already considered is 

updated. \ 

Step 9: JcJ\(i).’ 
Comment: The index i, already exploited, is removed 

from the working set J. 
Step 10: Go to Step 3. 
The computational effort required for considering all 

IV. WORST CASE DESIGN ALGORITHMS 

The steps taken by these algorithms are shiown in detail 
for the two-section transmission-line transformer example 
given in Section VII (refer to Fig. 10). 

Phase I: Single Interpolation Region 

Step I: Choose initial values for +O”, e, and 6 > l . 
Step 2: $t+‘. 
Step 3: Choose N base points to satisfy (;!l). 
Step 4: Evaluate the constraint functions at these base 

points. 
Step 5: Solve (17) to obtain the coefficients of the 

interpolating polynomials. 
Step 6: Starting with the current +’ and E solve the 

nonlinear program WCD for opti:mal values +‘* and l *, 
employing the constraint approximations defined by Step 
5. 

Comment: Since,values of design constraints as well as 
their sensitivities at vertices are required in solving WCD, 
the efficient technique for polynomial evalu.ation at vert- 
ices is used, namely, APE. Obviously, Zp = { l} for all 
constraints, since there is only one interpolation region. 

Step 7: +“++o* and ete*. 
Step 8: If I+~-&[< 1.5 Si for all i=1,2;**,k, go to 

Step 10. 
Comment: This tests whether thle new nominal point +’ 

is close enough to 6 to ensure confidence in the accuracy 
of the approximations. 

Step 9: Unti16,>ei for all i=l,2;--,k, Set 6it46i. GO 
to Step 2. 

Comment: Here, we ensure that all the vertices are 
contained in the interpolation region before repeating 
Phase 1. 

Step IO: Stop if 6 is’sufficiently small. 
Step 11: &A/4. 
Step 12: If 6 > e go to Step 2. 
Comment: This check ensures that a single interpola- 

tion region is, still applicable. If it is, Phase 1 is repeated. 
Step 13: Go to Phase 2. 
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Phase 2: Multiple Interpolation Regions 

This phase of the worst case design problem is executed 
if greater accuracy of the solution is required than is 
possible with the single interpolation region employed in 
Phase 1. The efficiency will be improved if suitable 
candidates for active constraints are determined so that 
not only would fewer interpolations be necessary but also 
fewer constraints would enter WCD. Step 1 of the present 
algorithm, therefore, calls for executing Phase 1, and 
collecting information about candidates for active vertices 
I,, and corresponding candidates for active constraints 
I,“,, s E I,,. 

Step 1: Choose a,, as a small positive number and 
execute Phase 1 to get 

I,” P {sjP:<6,,, iEI,, sEI,} 

Z&P {ijPt<S,,, iEI,,sEI,}. 

Comment: The set I,” is termed the set of candidates 
for active vertices. The set I.& identifies the corresponding 
candidates for active constraints associated with the sth 
vertex. 

Step 2: Use (35) to locate centers of interpolation 6’ for 
all r E I,,. 

Comment: Note that a subset of all possible interpola- 
tion regions is hereby identified because I,,cl,. 

Step 3: For each interpolation region R’ identified by 
6’ and S: 

a) Choose N base points to satisfy (21). 
b) Ii,+- u sd~c. 
.c) Evaluate ij for all i E II, at the N base points. 
d) Solve (17) to obtain the coefficients of the corre- 

sponding polynomials for all i E Ii,. 
Comment: The set lif, identifies all the constraints to be 

evaluated in R’. 
Step 4: Starting with the current +’ and E solve the 

nonlinear program WCD for optimal +‘* and l * employ- 
ing the constraint approximations defined by Step 3. 
Algorithm APE is called for each constraint i to be 
evaluated by setting I,(i)t{ZliE Ii,}. 

Comment: Note that the set If replaces I, and Ii, 
replaces I,, thereby reducing the computational effort. 
Furthermore, I,(i) which becomes I’ on entry to APE 
concentrates evaluations in critical interpolation regions. 
(See the comment following Step 2.) 

Step 5: +““t+o* and l te*. 
Step 6: Ia”+{ sj Pi” <a,,, i E Iic, s E I:} 

I,“,+{ilP,S<6,, iEIL,, sEIf}. 
Comment: The set of candidates for active vertices and 

associated candidates for active constraints is updated by 
examining all the constraints used during Step 4. Refer to 
the comment following Step 4. 

Step 7: If, for any s E I,,, 1%’ - qi/ > 24 for any j go to 
,Step 2. 

Step 8: Stop if 6 is sufficiently small. 
Step 9: &4/4. 
Step 10: Go to Step 2. 

V. YIELD ESTIMATION AND YIELD SENSITIVITIES 

For a uniform distribution of outcomes inside the toler- 
ance orthotope, computation of hypervolume plays the 
basic role in yield evaluation. A formula for the nonfeasi- 
ble hypervolume (hypervolume outside the constraint re- 
gion but inside the tolerance orthotope) is hereby derived. 
It is based upon linear cuts of the orthotope. 

The Linear Cut and Evaluation of Hypervolume 

Based upon either linearization or intersections (as 
elaborated on later in this section) of the hypersurface 
g(+)=O with the tolerance orthotope R,, we construct the 
linear cut 

q+c>o (48) 

where q is a column vector of k components and c is a 
scalar. We will derive a general expression for the nonfea- 
sible hypervolume defined by this linear cut and R,, 
denoted by V(R); where 

R = (44 &) CO> n 4. (49) 

Define a reference vertex 

qY=+‘+ E/d (50) 
where 

k= -w (4i), i= 1,2; *. ,k. (51) 

The general formula for the hypervolume can be writ- 
ten as 

v= +& cfj 
( I 

-$ (- 1)“‘(6”)k 
1 

(52) 
s=l 

where 

f.?“=max 
.( 

O,l- 5 ‘Ib’-r-L;I 
j=l aj 1 

(53) 

i=I 

and aj is the distance between the intersections of the 
hyperplane q ‘$I - c = 0 and the reference vertex +r along 
an edge of R, in the jth direction. It is to be noted that 6” 
is positive if and only if the vertex +’ violates the linear 
cut (48). 

Fig. 6 illustrates the evaluation of hypervolumes for two 
cases when k=3. 

Hypervolume Sensitivities 

The hypervolume sensitivities can be expressed as 

k 5 (- l)“‘(S’)“-is (55) 
s=l I 
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Assuming no overlapping of nonfeasible regions de- 
fined by different constraints inside the orthotope Z$, i.e., i 

.Ri n Rj=O (62) 
i #j 

where 

4 p (9-M:WQ) (63) 

the yield can be expressed as 

Y= 1- 2 V(R,)/ V(R,). 
I=1 

Knowing that 

(W 

V(R,)=2k fi 4 (65) 
j,= 1 

the yield sensitivities are given by 

Fig. 6. The nonfeasible volume obtained by a linear cut (a) V= 
(1/3!)a,a&. (b) V=((1/3!)ala,a3[1-(l-(2r,/aJ)‘]. 

and 

(56) 

where 

and 

A (57) 

B= $, (- 1)“‘(6”)k (58) 

(0. if a”=0 

It should be mentioned that the hypervolume and its 
sensitivities are defined when OL~-+CO for any i, since the 
limit exists. But, the sensitivities are discontinuous 
whenever a vertex +’ satisfies the equation 

qTcy-(.=o. (60) 

The Linear Constraints Case 

Let the constraint region be defined by the m linear 
constraints 

where V’ denotes V(R,). The 1:inear con:straints can be 
used as linear cuts directly. Hence, the nonfeasible hyper- 
volume V’ and its sensitivities can be obtained using (52), - 
(55), and (56) for each constraint and where 

( 
=@ i: qi’(r#$+p&J-cf /qjl 

1) 
(68) 

i=l 

(69) ’ 

If $I=0 we have-a:= co, however, a limit exists as indi- 
cated after (59). 

The Quadratic Constraints Case 

Consider a vertex +’ detected to be active with respect 
to a quadratic constraint g,(+) ;s 0 after ,the worst case 
design process (see Section IV). If the tolerances are 
allowed to increase slightly beyond their worst case val- 
ues, intersections between the orthotope edges passing 
through # and the hypersurface g,(+) = 0 will arise. The 
number of these intersections is k:, which is the number of 
edges passing through +“, if 

ag,wmpo, for all j. (70) 
In order to find the intersection point along the jth 

edge, or its extension in the direction - b<q, where 5 is a 
unit vector in the jth direction, we express g,(+) = 0 as 

(~)2+2~&(~;,~;,...,~~-,,~~,,,..,~~) 

+?II(+;,+;,- * * 94$- I+#&.,,. . ~ ~4$)=0 (71) 
where & and q/ are constant functions and qj is the 
only variable. Hence, the point of intersection is 
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A/‘= -4q&s, , /$(+;-A;)>0 (72) 
is a real root of (71). The condition imposed on the root 
insures that it is in the direction -&‘ej with respect to #. 
If both roots lie in this direction, the one closer to $ is 
chosen. 

The equation in r$ of the hyperplane, representing the 
linear cut, which passes through these k points of intersec- 
tion is 

@q’- c’=det =o (73) 

and +’ is a reference vertex for this cut. 
The yield sensitivities are calculated according to the 

gradients of the k intersections. 

av _ 
ah 

0. 

Thus if 5’ is the distance from the vertex # to the point of 
intersection with the Zth constraint along the ‘orthotope 
edge in the jth direction, then 

(76) 

(78) 

Equations (76) (77) and (78) are substituted directly 
into formulas (52), (55) and (56), whichever is relevant. 
Yield and its sensitivities are also obtained from (64), (66) 
and (67). 

Overlapping Constraints 

We discuss in this section an approach which is directed 
at solving some of the problems arising from constraints 
overlapping within the tolerance region. Since the analyti- 
cal formulas for yield and yield sensitivities assume non- 
overlapping linear cuts (see (62)) methods to avoid de- 
scribing the boundary of the constraint region by overlap- 
ping cuts are required. 

A single function of the leastpth type [9] can be used to 
describe the boundary of the feasible region if the 
boundary is defined, as is usual, by more than one con- 

straint. The leastpth function is given by 

where 

{ilgi(+)<Qo, iE&}, ifM<Q 
I (81) 
C) ifM>O 

4 = -p sgn M 

and p is given to be greater than 1. 
The constraint G > 0 exactly describes the boundary of 

the constraint region R,. 
In order to define a linear cut based on G, we can either 

linearize G at an appropriate point or use intersections of 
the hypersurface G=O with the orthotope edges. A possi- 
ble implementation is suggested in the appropriate steps 
of the following algorithms. 

VI. ALGORITHM FOR YIELD LESS THAN 100 
PERCENT 

It is assumed that Phase 1 and Phase 2 of the worst case 
design algorithm have been suitably executed. Informa- 
tion has, therefore, been gathered relating to active vert- 
ices I,,, associated active constraints Z& at the sth vertex 
and also polynomial approximations Pi(+) corresponding 
to the (generally) nonlinear gi(+). The least pth function 
G,( Pi(+), I.&p), s E I,,, can be formulated according to the 
notation introduced by (79) and is associated with the sth 
vertex. 

Note also that optimal values +‘* and l * are known for 
worst case design. See Fig. 7. 

Step 1: For ~~>l set •$-~~eT, i=l,&...,k. 
Comment: This initializes the yield to be less than 1oC 

percent. The ~~ are chosen such that all active constraint: 
are violated, as indicated by Fig. 7(b). 

Step 2: r$“+-~o*. 
Step 3: Solve the nonlinear program YNP for optima 

values +‘* and C* employing algorithm YAN (which 
follows) for evaluating yield and yield sensitivities. 

Algorithm for Dynamic Yield Analysis (YAN) 

‘. This algorithm is called for each evaluation of yield am 
its sensitivities as required during optimization. 

Step I: St{sls~Z~~, G,(P,(+“),I,S,,p)<O}. 
Comment: S is a working set of indices of referent 

vertices (1, 2, and 3 in Fig. 7(a)). We consider only thos 
vertices which currently violate the design constraints fo 
the nonfeasible hypervolume evaluation (1, 2, and 3 ir 
Fig. 7(b)). 

Step 2: V+O, V,+O, and V,+O, i = 1,2,* . * , k. 
Comment: V, V,, and V, are to be updated to store th 

total nonfeasible hypervolume and its sensitivities wit 
respect to (p” and l , respectively. 
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(4 

(4 
E 

Step 3: rtminsEs s. 
Comment: .This ordering process selects the index r 

corresponding to the reference vertex to be considered. 
Step 4: For j= 1,2;. * , k, execute Steps 5 and 6. 
Comment: In this loop we consider the (edges of the 

orthotope passing through’+’ as indicated in Steps 5 and 
6. 

. 

Step 5: Find Aj’, for all I E ZLc, using (72). 
Step 6: If $’ is undefined for any 1 E lic, go to Step 14. 
Comment: The hypersurface G’==O has an. intersection 

with an orthotope edge if P, has an intersection with the 
edge for all I E I.&. We go to Step 14 if such intersections 
are not found for all k edges. 

Step 7: If I.& contains more than one element, go to 
Step 10. 

Comment: In case ZLc contains one element only, I say, 
there is no need to consider G’, since G’ = PI. 

Step 8: Find 9’ and &;/a+~, ij= 1,2; . . , k, where 
I.& = {I}, using (76) (77), and (78). 

Comment: Notice that we will identify the cut by index 
of the reference vertex r rather than using 1. 

Step 9: Go to Step 12. 
Step IO: oj’tmax, E rL aj’, j= 1,2; ’ *, k, where c~j’ is 

obtained by (76). 
Comment: The furthest intersection, from +“, among 

the intersections of PI = 0, I E ZLc, corresponds to the inter- 
section of the hypersurface G’ = 0. 

Step II: Find a+‘/&#~, iJ= 1,2;. . ,k, using (77) and 
(78). 

Step 12: Set q’ and c’ for the rth linear cut according 
to (73). 

Comment: In general, the explic.it formulation of the 
linear cut is not necessary since information about aj’ is 
the only requirement for hypervolume calculation. But 
this cut will be used later in the process as a default if less 
than k intersections are obtained (Fig. 7(d)). 

Step 13: Go to Step 17. 
Step 14: If this is not the first yield evaluation, go to 

Step 16. 
Step 15: q’tV G’(P,‘, I&,p) 

c’4~‘)Tiz’- G,(P;,I;c,,,p). 
Comment: Initially if less than k intersections exist, 

linearization at the vertex t$’ is used to provilde a default 
cut. Cut b in Fig. 7(b) is an example. 

Step 16: Find a; and &;/a+~ us:ing (68) and (69). 
Comment: No updating of the rth cut is performed. 
Step 17: VtV+ V’ 

V&V+ + V& 
v, t v+‘+ v;, 

i= 1,2,-e * ,k 
i= 1,2; * * ,k 

1 Tig. 7. Examples of yield determination. (a) Quadratic constramt ap- 
proximat:ions and a worst case design. I,,,= { 1,2,3), Za,= {4), I$= 
{3,5), I,‘,: = (1,2). Notice that P, and Pz are overlappmg, and Ps IS p 
redundant constraint. (b) Linear cuts ansm 
Cuts a and c are based unon intersections, fgf$ ;f~g&w& w 

where V’ is given by (52), Vii by (55) and V; by (56), 
respectively. 

Step 1.8: StS\{r}. 
Comment: The index r, already 

from the working set S. 
Step 19: If S#0 go to Step 3. 
Comment:’ This step checks if all 

been considered. 

(exploited, is removed 

linearization. (c) A typical situation which may result during optimka- 
tion. in which all cuts are based on intersections. (d) A situation which 
may arise during optimization. The linear cut b ‘is’not updated since 
less than k intersections exist, remaining as in (c). 

reference vertices have 
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TABLE II 
WORST CASE DESIGN OF THE TWO-SECTION 10 : 1 QUARTER-WAVE 

TRANSFORMER 

cost z” Z0 
0 0 CDC 

Function 1 2 
"l/Z1 E2’22 6 N.O.F.E. Time 

(%I (%I (-cl 

2.5637 5.5048 14.618 9.007 0.4 18 7.2 

c1 2.5234 5.4379 14.988 9.081 0.1 24 9.5 

2.1515 4.7350 12.715 12.697 0.4 12 2.5 

C2 2.1494 4.7305 12.687 12.700 0.1 18 3.0 

Starting values Zi = 2.2361, Z; = 4.4721, cl = 0.2 and ~~ = 0.4 

Frequency points used 0.5, 0.6, . . . . 1.5 GHz 

,A-+L 
z" z" 

Objective cost functions Cl 
5 =2 

,c2=g+l 
1 E2 

Reflection coefficient specification IpI < 0.55 

l N.O.F.E. denotes the number of function evalu?tions 

Step 20: Y-1 - v/ V(R,) 

a y/a+,“+ - &/ V&)9 i= 1,2; -. ,k 
a y/aq+[ v/zi - K+]/ v(RJ i= 1,2;. * ,k 

where V(K) is given by (65). 

VII. EXAMPLES 

Two-Section Transmission-Line Transformer 

Consider the two-section 10 : 1 quarter-wave lossless 
transmission-line transformer used by Bandler et al. [l]. 
The specifications and results of the worst case tolerance 
optimization problem of the characteristic impedances Z, 
and Z, over lOO-percent bandwidth are shown in Table II 
for two different objective functions. The constraint re- 
gion and the resulting optimum solutions in. two cases are 
shown in Fig. 8 and Fig. 9. An equal value of 6, and 6, 
was used. The figures show the interpolation regions and 
the resulting approximations for the constraint boundary. 
The results obtained are contrasted with the results ob- 
tained in [l]. Furthermore, the steps taken by the worst 
case design algorithm using the objective function C,, 
shown in Table II, are detailed in Fig. 10. 

Subsequently, the approximations obtained at the two 
active vertices for the worst case problem having the 
objective function C,, shown in Table II and Fig. 8, were 
used for yield optimization. This problem is denoted PO. 
A rough estimate of 6 used for stopping Phase 2 was 
obtained in the following way. For a yield constraint 

Y Z 90 percent 

the nonfeasible hypervolume (it is area in this example) is 
given approximately by 

6.! 

66 

5.! 

=2 

5.t 

4.! 

4.1 

3! 

r----i 
minimax 

I 
‘optimum , initial region 

1 .)i 
r 

L-- -! 

exact functions \ 
I -.- initial opprorlmotlo~ 

--- final approximotica 

zo 2.5 
Zl 

3.0 35 

Fig. 8. Minim& tion of l/q + l/r2 for the two-section transfofmer. 

6.5 

6.0 

- exact functions exact functions 
-.- -.- initial approxlmatton initial approxlmatton 
--- --- find approxlmotton find approxlmotton 

Fig. 9. M inimization of Zp/r, +Z;/e2 for the two-section 
former. 

trans- 

A-(1 -0.9)(2~,)(2e,). 
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1.5 2.0 2.5 3.0 3.5 

Zl 
G-4 

ZZ 

1.5 20 25 3.0 3.5 4.0 

*t 
(3 

6.5. 

6.0. 

55. 

ZZ 
5.0. 

4.5. 

4.0. 

3.51 ’ / 1 
1.0 15 20 25 3.0 3.5 4.0 

4.5. 

4.A- 3.5 

Zl 
(4 

Fig. 10. Details for the problem of Fig. 8. (a) Initial interpolation region x, tolerance region R, and 
the approximations to the boundary of the constraint region. &* is the optimum tolerance region 
using Phase 1 of the,worst case design algorithm. (b) Enlarged interpolation region R and starting 
with the, previous optimum & we arrive at e. (c) Reducing the interpolation region size and 
switching to Phase 2 of the algorithm. ZC = (frequency point 1 .O GHz) and Z& = {frequency points 0.5 
and 1.5 GHz1. Id) Further reduction in interoolation region size resulting in the final optimum 
solution c. ’ ’ ’ 

The ar’ea cut off by each constraint is 

A’+. 

But, assuming equal intersections (Y = (11, = (Y* 
A’+& 

Hence 

a40.1(2c,)(2c2) =0.27 

where a:, and e2 are the worst case absolute tolerances. The 
approximation with 6 = 0.1 was used for solving problems 

Pl 
minimize l/e, + l/e2 
subject to 

Y > 90 percent 
‘P2 minimize (l/e, + I/E2)/Y 

assuming a uniform distribution of outcomes between 
tolerance extremes. 

The optimum solutions for PI and P2 are shown in 
Table III and contrasted with the: worst case solution PO 
in Fig. 11. The program FLNLPZ [ 151 was used for 
solving the resulting nonlinear programming problem. 
Since a convex constraint region appears in’ this problem, 
the values of yield obtained are lower bounlds for the true 
yields. 

Three-Component LC Low-pass Filter 

A normalized three-component low-pass ladder 
network, terminated with equal load and source resis- 
tances of 1 Q is shown in Fig. 12. The circuit was consid- 
ered for worst case design by Bandler, Liu,’ and Chen [ 11. 
Although this filter is symmetric a three-dimensional ap- 
proximation was required in order to perform the yield 
technique described before. 
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TABLE III 
YIELD DETIXMINATION AND OPTIMIZATTON OF THE ?‘wo-SBCTION 10 : 1 QUARTER-WAVE 

TRANSFORMER 

Problem Z0 Z0 0 0 
1 2 E1’Zl Ez/Zz Objective Yield N.O.Y.E.*** ;f 

0) ($1 (%I (set) 
- 

Pl* 2.5273 5.3998 21.09 13.51 3.2465 90.0 45 0.6 

pz** 2.5290 5.1513 31.44 22.13 3.2597 65.5 15 0.3 

l Minimize l/cl + l/s2 subject to yield < 90% 
l * Minimize (11~1 + 1/c2)/Y 

*** N.O.Y.E. denotes the number of yield evaluations 

Starting point for both Pl and P2 is ZF = 2.5234, Zz = 5.4379 (worst case nominal) 

and cl = kz2 = 1.4 

6.5 

Fig. 11. The optimum tolerance regions and nominal values for the 
worst case, 90-percent yield and optimum yield designs. 

Using an equal step size 6 for all components, a worst 
case design was first obtained with final 6 = 0.01. The base 
points used are given by (21) with 

B= -0.5 
[ 

0.5 -0.5 1.0 
0.5 1.0 

0.8 0.8 1.0 I 
consistent with the vector of components 

The specifications and the objective function are given 
in Table IV. The convergence of the quadratic approxima- 

2.5- 

L, LZ 

1 

F#lIIrl 

C 1 

Fig. 12. The circuit for the LC filter. 

phase 1 

\ 

phase 2 

I I 

0.64 016 0.04 ODI 0.0025 

865 

Convergence for the LC filter of the uadratic approximation 
to the insertion loss constraint at 1 .5 rad/s. 

tion coefficients as the step size S is reduced is shown in 
Fig. 13 for the insertion loss constraint at the frequency 
point 2.5 rad/s. The coefficient a, is not shown in the 
figure. Its value is close to zero and hence the normalized 
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TABLE IV 
WCIRST CASE AND CONS TRAINED, YIELD RESULTS OF TIIE LC LOW-PASS FILTER 

= 
Yield 

(%I 

0 
L1 

0 
L2 

N.O.Y.E.* CDC 
Time , 

(%I 0) 0) (=I 

100 1.999 1.998 0.9058 9.88 9.89 7.60 1.9 

96 1.997 1.997 0.9033 11.23 11.23 12.46 38 1.0 

l N.O.Y.E. denotes the number of yield evaluations 

'Frequency points used are 0.45, 0.5, 0.55, 1.0 in the passband and 2.5 in the stopband 

Objective cost function is Ly/~l + L;;/c2 + co/c C 

Insertion loss specification is < 1.5 dB in the passband and > 25 dB in the stopband 

Starting point for the worst case design problem is LF = L; = 2.0, Co = 1.0 and 

cl/L; = E2/Li = EC/C0 = 10% 

Starting point for the 96% yield design problem is the optimal worst case nominal with 

? = K2 = 1.06 and ~~ = 1.45 
- 

0 1.25 
1 

phase I + phase 2 

z 

8 
f 
B 
P 5 
H 1.00 
E 

8 
i 
i 
i 

Fig. 15. The tolerance regions for the worst case design and the 96-per- 
cent yield for the LC filter. The- linear cuts shown are based on the 
intersections of the active quadratic constraints approximations with 
edges of the tolerance region for Y6-percent yield case. Zic = 

1j, = (frequency point 1 .O rah/“,‘j. 
frequency point 2.5 rad/s} Z4 = {frequency point 0.55 rad/s}, and 

CDC Time s 

Fig. 14.. Parameter values for the worst case design of the LC filter as a 
function of execution time. 

value is highly oscillatory. Corresponding parameter val- 
ues are: shown in Fig. 14 as a function of execution time. 
At the worst case optimum, given in Table IV, the active 
frequency point constraints are 0.55, 1.0, and 2.5 rad/s. 

approximating polynomial, suggest a one-,dimensionally 
convex constraint region. Symmetry between L, and L, 
was used to reduce computation in finding the values and 
the gradients of the intersections between the orthotope 
edges and the quadratic constraints. The results are shown 
in Table IV and in Fig. 15. The tolerance for the capacitor 
eC was approximately doubled, with respect to its value 
for the worst case design, by allowing the yield to drop to 
96 percent. (A Monte Carlo analysis at the solution indi- 
cated 96.6-percent yield by both the ‘exact constraints and 
by the approximate ones.) 

Now, consider the problem given by Two-Section Waveguide Transform#er 

minimize Ly/e, + L:/e2+ CO/E, The two-section waveguide transformer, investigated 

subject to for a minimax (equal-ripple) response by Bandler [ 161 was 

Y > 96 percent. 
selected to perform a tolerance assignment. The general 
configuration of such a structure is illustrai.ed in Fig. 16. 

The quadratic approximation with 6 =0.04, which was A design specification of a reflec:tion coefficient of 0.05 
used in. this problem, is shown in Table V after and before _ over 500-MHz bandwidth centered at 6. I75 GHz. was 
averaging symmetric coefficients. The diagonal elements chosen. Table VI shows the dimensions of .the input and 
of the IHessian matrix, as defined by the coefficients of- the. output waveguides-and -the widths-of the-twosections. 
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TABLE V 
COEPFICIENT~ OF THE QUADRATIC A~PRO~IMATXON AROUND Acme VERTICES 

Freq. state 2 
point Ll 

2 
L2 

2 LlL2 LlC LzC L1 L2 C 

before -0.06847 -0.06847 -0.57056 .33010 0.92247 0.93855 -1.67845 -1.69182 -0.46249 3.83750 
0.55 

after -0.06847 -0.06847 -0.57056 .33010 0.93051 0.93051 -1.68513 -1.68513 -0.46249 3.83750 

before -1.12188 -1.16702 -9.98122 .21439 -8.16357 -8.30295 10.21440 10.51832 44.18607 -33.86206 
1.00 

after -1.14445 -1.14445 -9.98122 .21439 -8.23326 -8.23326 10.36637 10.36637 44.18607 -33.86206 

before -1.38601 -1.42228 -9.90167 .39487 -0.92910 -0.94732 10.19142 10.32736 32.94001 -46.93184 
2.50 

after -1.40414 -1.40414 -9.90167 .39487 -0.93821 -0.93821 10.25939 10.25939 32.94001 -46.93184 

Coefficients of the quadratic approximations obtained at active vertices with a step 6 = 0.04. The table shows 

the coefficients obtained by the algorithm and the coefficients used for yield determination after averaging 

symmetric coefficients. 

input guide 

0 0 
e (a,l,f) 

2 (a,b,f) 

Fig. 16. Ilhtrations of an inhomogeneous waveguide transformer. Description 

The program developed by Bandler and Macdonald 
[ 171 is used to obtain the reflection coefficient. No sensi- 
tiyities are provided by this program. An equal gbsolute 
tolerance c is assumed for the heights and the lengths of 
the two sections. The assumption seems reasonable if they 
are machined in the same manner. 

The objective is to maximize the absolute tolerance z. 
The optimum nominal point and associated tolerance, 
given in Table VII, were obtained by the worst case 
design algorithm presented in Section IV. The program 
FLOPT4 [ 181 was used for solving the nonlinear program: 

maximize l 

subject to 
R, CRC. 

Toleranced 
optimum 

Minima 
optimum 

Equal absolute value of tolerance = 0.02013 cm 

Number of complete response evaluations = 45 

CDC time (approximation and optimization) = 33 s 

A tolerance of 0.02013 cm was obtained. The number 
of actual response evaluations to reach the optimum start- 
ing from the minimax optimum (no tolerances) is shown 
in Table VII. The execution time shown includes both 
approximation and optimization times. 

TABLE VI 
FIXED P ARAMETERS AND SPECIFICA~ONS FOR THE TWO-SEC~ON 

WAVEGUIDE TRANSFORMER 

Description Width Height Length 
(4 (cm) (cm) 

Input guide 3.48488 0.508 a 

First section 3.6 variable variable 

Second section 3.8 variable variable 

Output guide 4.0386 2.0193 m 

Frequency points used 5.925, 6.175, 6.425 GHz 

Reflection coefficient specification Ipj ( 0.05 

Minimax solution (no tolerances) IPI = 0.00443 

TABLE VII 
RESULTS CONTRASTING THE TOLERANCED SOLUTION AND THE 

MINIMAX SOLUTION WITH NO TOLERANCES FOR THE 
TWO-SE(JTION WAVEGUIDE TRANSFORMER 

bl b2 "1 "2 

(4 (4 (cm) (4 

0.72812 1.42432 .1.55409 1.51153 

0.71315 1.39661 1.56044 1.51621 
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6.4 6.6 
frequency Gtiz 

Fig. 17. Nominal, minimax and upper envelope of worst case re- 
sponses for the two-section waveguide transformer. 

The minimax, nominal and the upper envelope of worst 
case responses are shown in Fig. 17. The numbering 
scheme of the vertices is that given by (38) with the 
parameter vector 

Vertices which fall within the worst case upper envelope 
are not indicated in Fig. 17. It was observed, however, 
that vertices 2, 6, 10, and 14 are either active or almost 
active with respect to the reflection coefficient constraint 
at band center. Furthermore, vertices 3, 7, 11, and 15 are 
either active or almost active near the band extremes. 
Hence, when b, is at its positive extreme while b, is at its 
negative extreme, the .frequency point at the center of the 
band is more likely to be violat.ed. The edges of the band 
are critical frequency points when b, is at its negative 
extreme while b, is at its positive extreme. 

Retaining the approximations obtained by the worst 
case design procedure subsequently facilitates inexpensive 
Monte Carlo analyses. Hence, different statistical distribu- 
tions of outcomes may be assumed and estimates of 
corresponding yields obtained. Assuming E = 0.03 cm, for 
example, while keeping the worst case nominal obtained, 
uniformly distributed Monte Carlo analyses were con- 
ducted with the approximation and with the actual func- 
tions: for 500 points, yields of 88 and 89 percent, respec- 
tively, are predicted. The approximation produces results 
12 times faster. 

Three-Section Waveguide Transformer 

The three-section transformer with ideal junctions for 
which a minimax optimum was obtained by Bandler [16] 
is considered for tolerance assignment. Specifications and 
dimensions of input and output waveguides are given in 
Table VIII. 

TABLE VIII 
FIXED P ARA~~R~ANDSPECIFICATIONSFORTHBTHREE-SECTION 

WAVBGUIDETRANSFORMER 

Description Width 
(4 

Height Length 
(cm) (cm) 

Input guide 

First section 

Second section 

Third section 

Output guide 

3.48488 0.762 

3.30581 variable 

3.12674 variable 

2.94767 variable 

2.76860 1.60325 

m 

variable 

variable 

variable 

m 

Frequency points used 5.7, 6.1, 6.45, 6.8, 7.2 GHz 

Reflection coefficient specification IpI 5 0.050 (nonideal junctions) 

Minimax solution (no tolerances) IpI = 0.017 (ideal ljunctions) 

TABLE IX 
RBSLJLTSCONTRASTINGTHETOLERANCEDSOLUTIONANDTHE 

MINIMAXSOLUTIONWITHNOTOLERANCESI~ORTHE 
THREE-SECTIONWAVEGUIDETRANSFOH~ER 

Description bl b2 b3 ,111 e2 e3 
(4 (cm) (cm) (cm) (cm) (4 

Toleranced optimum 0.91034 1.36526 1.70189 1.45242 1.53875 1.63253 

Minima optimum 0.90318 1.37093 1.73609 .1.54879 1.58375 1.64590 

Equal absolute value of tolerance = 0.01383 cm 

Number of complete response evaluations = 56 

CDC time (approximation and optimization) = 167 s 

Nonideal junctions were assumed and the widths of the 
three sections were fixed for convenience, so that the step 
changes are equal from one section to the next. An equal 
tolerance in the heights and lengths of the three sections 
was maximized for the reason already given. 

Starting at the minimax optimum with equal steps of 
0.02 for the interpolation region the results shown in 
Table IX were obtained. The program FLOFT4 [ 181 was 
used for solving the nonlinear programming problem for- 
mulated for the worst case design. Fig. 18 sh.ows the upper 
envelope of worst case responses as well as the nominal 
design response. Although the envelope shows one vertex 
which is active at the lower frequency edge of the band, 
several other adjacent vertices, which restricted the in- 
crease in tolerance, are almost iXtiVe. This appears to 
explain the fact that the envelope is substantially lower 
than the specification at other frequencies. 

To verify the accuracy of the approximattion an equal 
tolerance, of 0.02 cm was assumed around lthe worst case 
nominal design and 500 uniformly distributed points were 
generated. The yield for the approximations was 96.4 
percent and for the actual functions 96..0 percent. A 
twelve-fold improvement in execution time was again 
observed. 



BANDLER AND ABDBL-MALEK: OPTIMAL CBNTBRING, TOLBRANCING, AND YIBLD DBTBRMINATION 869 

.06 

specification 

.05 
iI 
1? 
.!! 

ti .04 0 

:: if .03 
2 
l! 

.02 - 

numbers identify vertices 

.Ol 

6.5 

frequency GHz 

Fig. 18. Nominal and upper envelope of worst case responses for the 
three-section waveguide transformer. 

VIII. CONCLUSIONS 

A design centering technique based upon low-order 
multidimensional approximation and nonlinear program- 
ming is presented. The technique bridges the gap between 
available analysis programs, which may or may not be 
efficiently written and probably do not supply derivative 
information, and the advancing art of optimal centering, 
tolerancing and tuning. Efficient gradient methods, which 
are essential in such general design problems, can be 
usefully employed through the use of readily differentia- 
ble formulas and approximations. 

In order to contrast various design centering techniques 
which rely on approximations, we point out that the 
method of Pine1 and Roberts [3] and that of Karafin [4] 
are based upon truncated Taylor series expansions. 
Hence, not oniy sensitivities, are required but also the 
validity of such an approximation for relatively large 
tolerances is uncertain. The simplicial approximation 
technique [6] does not require sensitivities, but the convex- 
ity assumption used is much more restrictive than the 
,one-dimensional convexity assumption used in the present 
technique. Moreover, the approximation developed for the 
constraint region by Director and Hachtel [6] does not 
contain sensitivity information which allows the designer 
to check the effect of slightly relaxing some constraints. 
However, in the present technique, since there exists at 
least one quadratic approximation to each constraint it is 
possible to remove a constraint completely or slightly 
perturb its value (by changing the constant term in the 
quadratic approximation) to study such an effect on the 
design. 

As expected, the design centering technique presented 
here facilitates subsequent inexpensive Monte Carlo anal- 
ysis. For circuits which are expensive to analyze, such as 
switching circuits, this technique may be cheaper even for 
a single yield analysis using the Monte Carlo method in 
conjunction with the approximation. It is difficult to con- 
trast our approach with the simplicial approximation ap- 

preach from the point of view of Monte Carlo analysis. 
The fact that the simplicial approximation approach de- 
velops a relatively large number of linear constraints 
(2k + nk, where k is the number of design parameters and 
n is the number of iterations required) while we develop 
quadratic constraints of the order of the number of actual 
constraints makes it hard to compare. 

In addition, the quadratic approximations developed 
can be used for the new yield estimation and optimization 
technique developed. The yield estimation technique can 
also be used by itself if a reasonable worst case design is 
already known. The linear cuts may be .obtained by lin- 
earizing active constraints at either associated active vert- 
ices or at the nominal point [19]. The technique can be 
extended to general nonlinear constraints. The efficient 
technique for calculation ‘of the function and gradients at 
the different vertices (APE) may then be implemented 
with a suitable large-change sensitivity algorithm. 

Yield estimation for other statistical distributions, diffe- 
rent from the uniform distribution, can be done by re- 
gionalizing the space and associating a uniform distribu- 
tion with each region [19]. 

APPENDIX 
PRESERVATION OF ONE-DIMENSIONAL CONWXITY 

As described in Section II, one-dimensional convexity is 
the property which makes the vertices candidates for the 
worst case. Hence, it is essential to preserve this property 
in the approximating polynomial P(+) if it already exists 
in the exact function g(+). 

The following theorem indicates how to choose the base 
points in order to preserve one-dimensional convexity. 

Theorem 

If there exist three distinct base points +‘, e2, and G3 in 
the ith direction, i.e., 

where 5, j = 2,3, are scalars and e, is the unit vector in the 
ith direction, then the interpolating polynomial P(+) is 
one-dimensionally convex/concave in the ith variable if 
the interpolated function g(+) is so. 

Proof Assume that P(+) is not one-dimensionally con- 
vex/concave, i.e., 

P(hgf+(l-A)~b)sAP(qf)+(l-h)P(~b), O<X<l 

(A4 

where 

+b=$f+cei (fw 

and where c is a scalar. Hence 

P(+“+(l-X)cej)>tXP(+‘)+(l-X)P(+u+cei). (A4) 

Expanding P(@’ + (1 - X)ce,) and P(@ + ce,) as Taylor 
series and knowing that P(+) is a quadratic polynomial, 
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Corolhy 

A quadratic polynomial is one-dimensionally convex/ 
concave if and only if all of the diagonal elements of its 
Hessian matrix are nonnegative/nonpositive. 
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Cascade Synthesis of a Class of 
Multivariable Positive Real Functions 

M. 0. AHMAD, STUDENT MEMBER, IEEE, HARNATHA C. REDDY, MEMBER, IEEE, 

v. RAMACHANDRAN, SENIOR MEMBER, IEEE, AND M. N. S. SWAMY, SENIOR MEMBER, IEEE 

Abstracf-Necessary and sufficient conditions are developed for the 
mdiition of a multivariable positive real function (MPRF) as the 
driving-point function of ao extracted single-variable lossless twcqort with 
a termiaation whose driving-point function is ao MPRF in the rest of the 
variables as tbe load. Conditions are also obtained for tbe case when an 
extraction of a lossless two-port is possible in either of tbe two variables pi 
or pi 

I. INTRODUCTION 

I 

N RECENT YEARS, considerable interest has been 
shown in the study of multivariable positive real func- 

tions (MPRF’s) because of their applications in the theory 
and design of electrical networks. In particular, cascade 
realizations of MPRF’s have immediate applications in 
the design of microwave filters and multidimensional dig- 
ital filters. Shirakawa et al. [l] have given necessary and 
sufficient conditions on an MPRF whereby extraction of 
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a lowpass ladder with all of its transmission zeros at 
infinity is possible. More recently, some work [2], [3] has 
been reported on cascade extraction of a reciprocal sec- 
tion with Darlington-type realization. 

In this paper, some new results on the cascade realiza- 
tion of multivariable positive real functions are obtained. 
The necessary and sufficient conditions for an m-variable 
positive real function (PRF) to be realizable as the driv- 
ing-point impedance of a lossless two-port in one of the 
variables, with a termination of an (m - I)-variable PRF, 
are given. Augmentation with surplus factors as in the 
single-variable Darlington synthesis is not possible here. 
Consequently, the lossless two-port cannot always be re- 
alized with reciprocal elements only. In such a case, 
however, it can be realized using ideal gyrators. 

Conditions are also found for the case when an m- 
variable PRF is realizable both by a pi-variable lossless 
two-port network with a driving-point impedance termina- 
tion ZO,(~l,...,~i-,,~i+l,...,~m) as well as by apj-vari- 
able lossless two-port network with a driving-pomt im- 
pedance termination Z&p,; . . ,pj- ,,pj+ ,; - * ,p,J. Some 
special cases are also discussed where both the pi- and ti- ’ 
variable two-port networks reduce to either simple series 
or simple shunt branches. Numerical examples are given 
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