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Fig. 14. Tabulation of expressions for sensitivity coefficients for circuit
elements used in filter equivalent circuits. AU values normalized to
2.=1 O and ‘vOor2vO=iv.

of the effects of the element changes, it generally is

necessary to iterate the procedure a few times. Fig. 14

provides a tabulation of S12 sensitivity coefficients for

various element types. All currents, voltages, and imped-

ances are assumed to be normalized to the case where

ZO = 1 0 and 1VO or 2V0 = 1 V. The values for SI, or S22

may be obtained as special cases by letting all superscripts

be 1 or 2, respectively.
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Abstract-An attracthq exa@ and efficient approaah to network anafy- in paraflel with the main cascade, can he obtained anafyticafly in terms of

sis for cascaded strnctnrea is presented. It is nsefuf for sensitivity and the variable elements. Sensitivity and farge-change effects with respect to
tolerance anafy~ in particnfar, for a mrdtiple of simukaneons large these variables can be easily evafnated. The approach is not cotimed to
changes in design parameter vafues. It afsn facilitates the exploitation of 2-port elements but can be generalized to 2p-port cascaded elements.

symmetry to rednee computational effort for the analysis. Responses at
dffferent loads in branched networks, which may he connected in series or
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order sensitivities, for example, are useful in network

optimization by gradient methods. Large-change sensitivi-

ties are important in tolerance analysis and design center-

ing.

The approach we have developed permits the efficient

1)

2)

3)

4)

5)

6)

exact analysis of cascaded networks in any direc-

tion,

exact evaluation of first-order response sensitivities

at any location,

exact evaluation of the effects of any number of

simultaneous large changes in any elements,

exploitation of network structure, i.e., branches,

symmetry, reciprocity, etc.,

evaluation of the exact effect due to simultaneously

growing elements in appropriate locations, and

exact response and response sensitivity evaluation

for branches connected- in series or in parallel with

the main cascade.

The conceptual advantages enjoyed by our approach

and applicable to 2-port elements are as follows.

1) All calculations are applied directly to the given

network; no auxiliary or adjoint network is defined.

2) All calculations involve at most the premultiplica-

tion of 2 by 2 matrices by row vectors or postmultiplica-

tions by column vectors; no explicit matrix inversion is

ever required.

3) Response functions, sensitivities, or large-change

effects are represented analytically in terms of the param-

eters to be investigated; all parts of the network to be kept

constant are reduced numerically to a few 2-element vec-

tors appearing as constants in the formulas,

4) Calculations can be carried out easily by hand, if

appropriate or are readily programmed.

II. THEORETICAL FOUNDATION

Consider the 2-port element depicted in Fig. 1. The

basic iteration, also summarized by Table I, is J= Ay,

where A is the transmission or chain matrix, y contains

the output voltage and current, and Y the corresponding

input quantities.

Forward analysis as shown in Fig. 2 and Table I con-

sists of initializing a ii T row vector as either [1 O],

[0 1], or a suitable linear combination and successively

premultiplying each constant chain matrix by the resulting

row vector until an element of interest or a termination is

reached.

Reverse analysis, which is similar to conventional anal-

ysis of cascaded networks, proceeds by initializing a o

column vector as either [1 0]~, [0 1]~, or a suitable

linear combination and successively postmultiplying each
constant matrix by the resulting column vector, again

until either an element of interest or a termination is

reached.
In summary, assuming a cascade of n 2-ports we have

~l=yO=~l~z...AA”y~A”y~ (1)

and, applying forward and reverse analyses up to A‘, this

72 7=~Y Ye
+

IT
+

XAY,,.

Fig. 1. Notation for an element in the chain, indicating reference
directions and voltage and current variables.

Fix. 2. Forward and reverse anrdvses of a cascaded network with
source and load impeda~ces assumed constant.

TABLE 1
FRZNCIPALCONCEPTSINVOLVED IN THE ANALYSES

r“-”-

Forward operation
-T
UA=UT

-T-
tll=gfi~=$~---

Reverse operation ;,Av ~=cl==); =c;
. -. . .

[:

Al
Voltage .5elector

!?l=O

[1
o

Current selector $2 !

1

:1==>:1 or :1

f?2 ,=> tll or v-2

[1~s-% ‘I T
Equivalent smrce ~. :lX = VS-ZSI~, Z2Z = I;

%

Equivalent load [1‘L~. y = VL:l+(YLVL-IL):2

‘LVL-lL

reduces to an expression of the form

d=d>’=ciiuw (2)

where

~“=cu” (3)

and c and d relate selected output and input variables of

interest explicitly with A‘.

The typical formula,

the form as follows.

Function evaluation:

First-order sensitivi~:

therefore, will contain factors of

iiTAv-Q . (4)

UT6AV*13Q . (5)

Partial derivative:

(6)
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Large-change sensitivity:

ETAAv*AQ (7)

where the parameter @ is contained in A. A full reverse

analysis taking

[vfv~l=[: !]
yields

[V(V~]=Ai+IAi+’...An 1 0[101

and a corresponding full forward analysis taking

[1[~w==[~w= ; :
yields

[1
1 0 A1A2>.0A’-1

01
=[ti/iij]T.

A. Symmetrical Networks Consisting of Symmetrical Ele-

ments

In many practical cases we encounter symmetrical

networks (around a central plane) which consist of re-

ciprocal and symmetrical elements. Series impedances,

shunt admittances, transmission lines, and RC lines are

examples of such elements. Assume that, for each ele-

ment,

all = a22

and, for the network,

A.-i+l =Ai.

Let

‘A[~: x (8)

If we take the transformation

Aa=[e2e1]AT[e’el]

then

[v b~]a=[ti~-i+’ ~;-i+l]T

This equality can be used to reduce computational effort.

!3. Reference Planes

In considering more than one element in the cascade,

we divide the network into subnetworks by reference

>lanes. These in turn are chosen so that no more than one

>lement is to be explicitly considered between any pair of

“eference planes. In Fig. 2 the element A is the only

;lement whose effect is to be considered. In Fig. 3 the

:lements A‘, A‘, and AJ are considered in the kth, the ith,

md thejth subnetworks, respectively. Note that the super-

scripts of A here and from now on denote the subnetwork

md not the element. Forward and reverse analyses are

nitiated at the reference planes. A forward iteration of the

itructure of Fig. 3 is illustrated in Fig. 4, where equivalent

J

Fig. 3.

Fig. 4.

Subnetwork i cascaded with subnetworks k (at source end) and
j (at load end).

1 I
z: I z: 1

q

“1 +
9-

q

forward iteration V& ~
function of; : subnetworki

Forward iteration for Fig. 3, transferring an equivalent source
accounting for desia variables from subnetwork k from one reference
plane to tie other. -

I 1

fumxionof.,..
pY: f It

@

reverse iterdion [
wbnelwork t ‘L f 1[

Fig. 5. Reverse iteration for Fig. 3, transferring an equivalent source
accounting for design variables from subnetworkj from one referenee
plane to the other.

(Thevenin) sources are iteratively determined. Reverse

iteration is shown in Fig. 5, where equivalent (Norton)

sources are iteratively determined.

111. NETWORK FUNCTIONS IN TERMS OF ELEMENTS

UNDER CONSIDERATION

Performing forward analysis from the source of the ith

subnetwork to the input of A 1 and reverse analysis from

the load to the output of A i we have

Vi= (z, + Z:ti2)TA ‘( V;Ol + ( Y: V; – @2) = V; + 2;1;

(9)

and the current through the voltage source of the ith

subnetwork

lJ=r7;Ai(ViV, +( Y~Vi-1;)v2)= V:Y:-lL. (10)

From (9), letting l:= O and Y:= O, we have I{= O and the

Thevenin voltage

where the Q terms have been defined in (4). Letting V:= O

and Y;= O, we have Ii= – Z; and the output impedance

‘q- v:- (z, + Z@2)TAiV2= Q;,+ -Z:Qj2 ~12)

~; (ii, +Z;ii2)TA’v, Q;,+ z; Q;,

where, again, the Q terms of (4) are used to obtain a

compact expression. These expressions for Vj and Z~
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TABLE II
NOTATION AND lMPLIED INITIAL CONDITIONS

L f

D it ial Conditions

Factor Identification Forward Reverse

: (*) v
-1

(t),, voltage voltage

~ (*) :2 (t) ,2 voltage current

I
-Tt12(*)v-.1 (+)21

current voltage

I

! 7 (*) :2 (+)22
current current

, -2

(*lDenotes either A, &4, &4 /i3@, or AA.
(t)Denotes Q, 13Q, Q’, or AQ, as taken from (4), (5), (6), or (7),

respectively.

TABLE HI
ANALYSES REQUIRED BY CERTAIN TmMs

Term Analysis Required

UTV Forward and reverse (conventional ) cascade analysis
-.

to m corresponding rererence plane, whichever is
convenient

TT
:1:’ :2:

Preferably one reverse analysis to source pererenCe
plane (avoiding calculation of :1 and :2)

UTV , , UTV2 Preferably one _r@ analysis tO 10ad reference-----
plane (avoiding calculation of ~1 and :2)

~.v
One forward analysis to Input of & and one reverse

.-
analysis to output of ~

-T -’I
~1

.y, :2. y One f’ull forward analysis to input of ~ and one
reverse analysxs to output of A

~ ~
“:1’. “ !2

One full reverse analysis to output of & and one
forward analysis to input of A

–T -T
:1 “:1’ !1 “ !2

One full forward analysis to input of ~ and one full
reverse analysis to output of A

-T -T
!!2 “ !1’ !2 “ !2

TABLE IV
FUNCIIONS OF INPUT CURRENT Z~ AND OUTPUT VOLTAGE VL FOR

CHANGES IN A ONLY

Variable Input output

& v
A

1S = ‘S Q,,
VL=Q

Qll

v 6Q -I~6Q11

6$ 61s = ~
Q11

,,
2 Es= ‘SQ21-lSQ11
a+ a+ Q11

q
‘JSAQ21-WQU

‘lS ‘ Q1l+AQ1l

V2
L 6Q,16VL =-V
s

v:
AVL = - VL+V/AQ 11

permit equivalent Thevenin sources to be moved in a

forward iteration.

From (9) and (10), letting l:= O and Z:= O, we have

1~ = O and the input admittance

Letting V:= O and Z:= O, we have V:= O and the Norton

current

Zf= -1:= -Zj(Y@, -ti,)TAio,= - I:(YfQL- Q~,).

(14)

These expressions for 1} and Y: permit equivalent Norton

sources to be moved (if desired) in a reverse iteration.

The input current l; for Ii = O is obtained via (13) as

V;(Q;l + Y;Q;2)
.

QL+ y@i2+Z:QA+ZW:Qj2” (15)

Tables II and III summarize the procedures and the

effort required in evaluating the different factors in the

derived equations.

Useful special cases of these formulas for Zs and V~ in

Fig. 2 are, from (15) and (1 1), respectively,

iz2TAv,
Zs=vsy--= Vgl

U1Avl s Ql]
and

Vs Vs
vL=—=—

u:Av, QII “

(16)

(17)

Table IV gives some useful formulas which can be ob-

tained for variations in a particular element A. We note,

for example, that, since A is arbitrary and at most only

one full analysis yields all Q, ~, 13Q1,, Q~l, and AQ11, the

corresponding V~, 8 V~, ~ VJ&$, and A V= with respect to

all possible parameters anywhere in the cascade can be

evaluated exactly for one network analysis. This particular
special case is equivalent to the results of previous re-

searchers [1], [2].

IV. NUMERICAL EXAMPLE

The cascaded seven-section bandpass filter shown in

Fig, 6 [3], [4] serves as a numerical example. All sections
are quarter-wave at 2.175 GHz. The normalized minimax

characteristic impedances are [4]

Z;= Z;= 0.606463

1 I z;= Z:= O.303 051
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1 1

Fig. 6. Seven-section filter containing unit elements and stubs [3]. All
sections are quarter-wave at 2.175 GHz.

Z:= 2$=0.722 061

Z:= 0.235593.

The output voltage V~ at a normalized frequency of 0.7

is 0.497407 90–j3,901 1594 X 10–3, verified twice using

(1 1), once associating A i with 23, and once with 24

Furthermore, one analysis yielded

V~(Z/ +0.03)= 0.49838950 –jO.034 901610

V=(Z:– 0,03)= 0.49062912 +jO.034 959186.

The open-circuit voltage at the load end was calculated

using (11) as

VOC= 0.98624507 +jO.092 266904

and the Thevenin impedance using (12) is

ZTH = 0.98119253 +jO.201 03391

which further verified V~.

One analysis taking Cz= 0.021 and 65=0.024 yielded

P’=(Z;–<2,2:–es)=0.497 197 16+j2.219 136 ox 10-3

VL(Z)+ C2,Z$– 65)=0.495 83538 –j2.363 631 4x 10-2

VL(Z; –62, Z:+ C5)=0.497 324 62+jl.790 991 2x 10-2

VL(Z:+ Cz,2;+ C5)=0.497 51427 –j8.372 647 OX 10-3.

B=

0.5 – 0,2 0.9 –0.2 0.5 0.3 0.7
0.7 0.7

0.8 0.8
– 0.5

0.8
0.7

– 0.9
0.6

0.7 – 0.4 0.8 0.8 0.8

ized frequency. The circuit responses at 45 base points

(which is equal to (k+ I)(k +2)/2, where k is 8) were

needed to evaluate the coefficients of the quadratic poly-

nomial approximating the response function [5]. A base

point is a point where the approximation and the actual
function coincide. The center base point, which is the

center of the interpolation region in which the approxima-

tion is assumed to be valid, had the characteristic imped-

ances given before and a normalized frequency of 0.7.

Sixteen base points were determined by varying one

parameter at a time by f 8 with respect to its value at the

center of interpolation. For the characteristic impedances,

8 was chosen to be 0.03, and for the normalized

frequency, it was 0.01. At the remaining 28 base points

only two parameters were perturbed at a time from their

values at the center of interpolation by a percentage of

their 8.

The symmetry of the structure was taken into consider-

ation in choosing these base points. Letting ~ be the

center of the interpolation region, the base points can be

expressed by [6]

[r#J@2.. @]=D[lk -lk BOk]+[~?W?] (18)

where N is equal to 45 in our case, lk is a k-dimensional

identity matri~, Ok is a zero vector of dimension k,

‘=r0”03”oo30.0J

and B is a k x [k(k – 1)/2] matrix shown as follows:

0.5 0.7

0.9
0.8

– 0,9 – 0.9 0.9 – 0.5
0.8 0.7

0.7 0.5
– 0.2 0.9

0.9

0.9 0.7 –0.3

–0.2
0.5

0.4

0.8
0.8 0.8 0.8
0.7 0.7 –0.3

–0.2 0.5 0.7
0.4 0.9 0.4 0.6

A multidimensional quadratic approximation was Examining this B matrix we note that the entries for
carried out for V~ following the approach of Bandler and perturbing two parameters at a time are the same as for

Abdel-Malek [5]. The variables for the approximation their corresponding symmetrical parameters. The choice
were the characteristic impedances as well as the normal- of base points given by (18) preserves symmetry in the
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appropriate coefficients of the multidimensional poly-

nomials.

Taking the optimal minimax characteristic impedances

[4]

z,= Z7 = 0,606595

z~ = z~ = 0.303547

Zj=Z5=0.722287

Z4=0.235 183

and calculating the group delay using the derivative of V=

with respect to ~ obtained from the quadratic approxima-

tion yielded

T~ = 0.893 ns

while the exact group delay is [7]

T~exae,= 0.895 ns.

V. Two ALGORITHMS FOR EVALUATION OF LARGE

CHANGES

The two following algorithms were used to obtain re-

sponses at the base points for the interpolation performed

in the previous section. The first was used when one

parameter at a time was perturbed, and the second was

used when pairs of parameters were perturbed simulta-

neously. Note that when the normalized frequency was

perturbed a whole new analysis had to be performed.

A. Algorithm l—Mult@le One-at-a-Time Changes

Step 1:

Comment:

Step 2:

Comment:

Step 3:

Step 4:

Step 5:

Comment:

Step 6:

Step 7:

Step 8:

Step 9:

Initialize z and o.

Set i+-1, me-l, j~n.

n is the total number of elements in the

cascade, and m is a counter for the vari-

able elements.

If i= 1~, go to Step 5.
1~ is an element of L, an index set contain-

ing superscripts of the k matrices contain-

ing the k variable parameters and ordered

consecutively. It is assumed that each

matrix contains only one variable.

ii T+ti TA ‘.
i-i+l.

If i= 1~, go to Step 5.
Go to Step 3.
Let Xmeti.

If i= 1~, go to Step 7.
X*, X*,” “ “ ,x k are working arrays to store

the ii vectors required in the evaluation of

the large changes taking place.

mem + 1. Go to Step 3.

If n = 1~, go to Step 10.

V= AJV.
j-j–l.

If j= 1~, go to Step 10.

Go to Step 8.

+-
stage

1—!P

2 Uo

3 “s ‘% ‘2 ‘ets)
UoU1

4 “o Ul+xl

5 “s ‘Zs“se+)
u’?U’+X* , U2-+X3

-D

6 -1—v
7 v

chonges (1,3),(2,3)

8 v

change (1,2 )

Fig, 7. Illustration for a cascade of six 2-ports of the principal stages in
the calculations involved in the mukiple-pairwise-changes algorithm.
Three variable elements are considered; hence three sets of simultan-
eous analyses are effectively performed.

Step 10: Evaluate Q using the stored Xm, o, and the

perturbed A~.
If j= Zl, stop.

Comment: Positive and negative extremes of the vari-

able in AJ are considered simultaneously.

Step 11: m~m – 1. Go to Step 8.

B. Algorithm 2—Mult@le Pairwise Changes

This algorithm is for evaluating the response at the

k(k – 1)/2 base points where two parameters are per-

turbed at a time. At the first k – 1 points following those

considered in Algorithm 1, the parameters indicated by

the subscripts 1,2 1,300. 1, k are changed; at the next

k – 2 points the parameters indicated by the subscripts 2,3

2,4. .02, k are changed, and so on, until the final point at

which parameters k – 1 and k are perturbed,, Fig. 7 serves

to illustrate the analyses involved.

Step 1:

Comment:

Step 2;

Comment:

Step 3:

Step 4:

Initialize u;, u;, u:, and u;.
Set i-l, m-l, q-0, r-l, and s-k–l.

u; and U; are vectors to be initialized as u!
and u;, respectively. They have the same

role as u? and U; in the forward analysis

initiated at a reference plane immediately

following the first variable element.

If i= f~, go to Step 4.

1~ is an element of L, an index set contain-

ing superscripts of the k matrices contain-

ing the k variable parameters as indicated
in Algorithm 1.

U:T+U;TA ‘.
U:T+U:TA ‘.
If m=l, go to Step 5.

U;T+ U;TA’.
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Comment:

Step 5:

Step 6:

Step 7;

Comment:

Step 8:

Step 9:

Comment;

Step 10:

Comment:

Step 11:

Step 12:

Step 13:

Step 14:

Comment;

U;T+U; TA‘.

U: T+U;TA ‘.
u~T+u~TA ‘.
This step is not performed until we reach a

variable element, since the analyses involv-

ing the UJ do not begin until the jth vari-

able element has been considered.

Set iei+ 1.

If i= 1~, go to Step 7.

Go to Step 3.

If m = k, go to Step 9.

Calculate the Thevenin impedances and

voltages:

Z~(m, 1),. . . . Z~(m, .s)

V~(m, 1),. --, V~(m,S).

.s+s — 1.

For the first variable element k – 1 sets of

Z~ and V~ have to be evaluated since

changes in this element will be coupled one

at a time with changes in the next k – 1

variable elements. For the second variable

element k – 2 sets of Z~ and V~ are calcu-

lated, and so on. See Fig. 7.

If m= 1, go to Step 13.

Setp+-1.

p is an internal counter.

x’++’.
If p = q, go to Step 12.

When the analysis has reached a reference

plane immediately preceding an element

containing a variable whose change is to be

associated with any previously encountered

variable, a snapshot of the appropriate u
vectors is taken and stored in the x arrays.

See Fig. 7.

Set r-r+ 1.
p+p+l.

Go to Step 10.

Set r-r+ 1.

If m = k, go to Step 16.

U;T+U;TA ‘.
U;T+U;TA ‘.
If m= 1, go to Step 15.
U;T+U; TA‘.
U;T+U; TA ‘.

UfTH;TA ‘.
u:Te+;TA ‘.
In Step 7 we calculated sets of Z~ and V~

accounting for variations in A‘. In Steps 13

and 14, however, we carry forward the

analyses for which A i is considered fixed.

Step 15:

Comment:

Step 16:

Comment:

Step 17:

Comment;

Step 18:

Step 19:

Step 20:

Step 21:

Comment:

Step 22:

Step 23:

Set i-i+ 1.

mem+l.

q+q+l.

Initialize U; and u: and go to Step 6.

U: and U; are initialized to start a forward

analysis at a reference plane immediately

following a variable element A‘.
Set r-r– 1.

mem–1.

Initialize VI and 02

At this step we start the analysis from the

load end.

If n = 1~, go to Step 20.

Set jen.

n is the total number of elements in the

cascade.

q+A@.
V2+LAJV2.
j+j– 1.

If j= 1~, go to Step 20.

Go to Step 18.

p-l.

Calculate Q using V~, Z~, Aj, and o, and

the appropriate x.

When we reach the kth variable element

we calculate k – 1 values of Q, and when

the variable element k – 1 k reached we

calculate k – 2 values of Q, and so on, as

illustrated in Fig. 7.

If p = q, go to Step 23.

Set r-r– 1.

p+p+ 1.

Go to Step 21.

If m= 1, stop.

Set q-q– 1.

m+-m-l.

Go to Step 18.

VI. BRANCHED CIRCUITS

Consider, as an example, the cascaded circuit shown in

Fig. 8 which has two branches, one connected in series

and one in parallel. In the series and parallel branches, we

highlight, for example, the elements B and C, respectively.

The series branch can be thought of equivalently as an

element consisting of a series impedance connected in
cascade with the main circuit as shown in Fig. 8. This

impedance Z may be taken as the inverse of the input

admittance derived in (13) and is given by

(19)

where the subscript B distinguishes terms associated with

the branch from that of the cascaded main circuit. The

forward analysis is initiated at reference plane d, and the

reverse analysis is initiated at reference plane b, as shown

in Fig. 8.
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+ v~~ - + v~- -
b ––e–––c–- ––+–––+–- ~ and, as shown in Appendix IV, as a function of B as

I 1 1 1

load load

A L ‘A A

‘lB ––+–~–a–– ––*–:_+__7c

VCL(B)=
e~q ~VS

[1

(24)
-T’lz”17,:co,cu,z ~ ~ ~lz

,,,, .=.. .-g!% VII. CASCADED NETWORKS OF 2p-PoRT ELEMENTS

‘/?$l3-

The approach we have developed can also be utilized in

the analysis and design of cascaded networks consisting of

f y h k a 2p-port elements. Consider the 2p-port element shown in
d~– -~ +- --- -+0

q Q

Fig. 9, possessing p input ports and p output ports. Its..-.
-“.--J”- +.L1 ,

k!! .! z~...~ Y! / transmission matrix is given by. 1. . . load ~V~L,,

[1AllA*2j J
t z ‘1z WY VIY

A~
AZ, A22

Fig. 8. An example of a cascaded circuit with a branch connected in
~eries and a bra~ch connected in parallel. Branches are represented in
the cascade by their equivalents. Reference planes where different
analyses are initiated are labeled.

Similarly, the parallel branch can be thought of equiv-

alently as an admittance Y connected in shunt in the

cascade. The admittance Y (as in (13)) is given by

ii2Tc Cv ,~
Y=

izl~ccqc
(20)

where the forward analysis is initiated at reference plane

e, and the reverse analysis is initiated at reference plane c.

Different formulas relating the load voltages of the

branches to the variables can be derived. The load voltage

of the series branch can be derived, as shown in Appendix

I, as a function of B as

where ti~z is the result at reference plane j of a forward

analysis initiated at the source, and v, z is the result at

reference plane g of a reverse analysis initiated at the load

reference plane a.

It can also be obtained, as shown in Appendix II, as a

function of C as

where ti~y is the result at reference plane h of a forward

analysis, VI y is the result at reference plane k of a reverse

analysis, fil~yf is the result at reference plane h of a forward

analysis initiated at reference plane J and %TYg is the

result at reference plane h of a forward analysis initiated
at reference plane g.

The load voltage of the parallel branch can also be

derived, as shown in Appendix III, as a function of C as

where A, ~,A ,2, A21, and A22 are p Xp matrices. The inPu~

quantities in this case are

y=

71

.7-2

Yp

Yp+l

YP+2

.r2p

and the output quantities are

.

where the element with subscripts 1 to p denote voltages

and from p + 1 to 2P denote currents.

For the forward and reverse analyses

~2, V,, and V2 are initialized such that

the matrices al,

E2+ U2 or V2

where

elTvly V~
VCL(C)=

[1
10

(23)
171TCG7, #ilTy

Y 1 “y
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jptl

:4
++Y,$+2++2p port

Y2
element

. A

L
..

Y2P

++

Yp
—

Yp+l

=%+

Y,

---o-

YP+2

=%+’

Y2

--o-
.
.
.

y2p

-+

YP

+-

Fig, 9. A 2p-port element: a generalization of Fig. 1.

and where 1P is the unit matrix of order p, and OP is the

null matrix of order p.

We can now derive in an analogous manner to the

derivation of (9)

V.= (~:+ Z.~:)z4( VI VL + Vz( YL VL – IL)) (25)

where

u,,0,,
V~~a{d V2 matrices obtained from forward and re-

verse analyses,

v~ vector containing the p source voltages,

VL vector of load voltages,

IL vector of current sources at the loads (if

any),

z~ diagonal matrix containing the impedances

of the sources,

YL diagonal matrix containing the load admit-

tances.

To evaluate the unknowns VL, having obtained numeri-

cal values for (25), a system of p linear equations is solved.

When A is perturbed or when derivatives are required,

only 6p3 additional multiplications and the solution of a

p-system of linear equations are needed and not a whole
reanalysis of the entire cascaded circuit.

VIII. CONCLUSIONS

An important claim we make in this paper is that

(9)-(15) can be used to generate in a straightforward

manner, following differencing or differentiating (as ap-

propriate), any desired exact formulas for multiple

network analyses, sensitivity, and tolerance analysis with

simultaneous large changes, All calculations are carried

forward simultaneously, and redundant calculations are

obviated as demonstrated by the examples and algorithms

presented.

The symmetry of the networks analyzed can be ex-

ploited leading to the saving of computational effort.

Branched circuits can be handled readily. Formulas, simi-

lar to (2 1)–(24), can be derived for other branched struc-

tures using the same concepts so as to render the sensitiv-

ity analysis and design of these circuits as simple as

possible. The approach should prove to be very suitable

for the computer-aided design of cascaded microwave

circuits and systems consisting of 2-ports. It appears to be

readily extendable to 2p-port networks.

APPENDIX I

To OBTAIN VBL AS A FUNCTION OF V~ AND B

The voltage across the impedance Z representing the

branched circuit in terms of VBL is given by

Vz = ti;h,~ v~= (Al)

and it can be expressed in terms of voltages in the main

cascaded circuit as

Vz=e~[i$z– O1z] VL (M)

where El= is the result of the reverse analysis at reference

plane j. So (A2) can be written, substituting for the chain

matrix of the element representing the branch, as

(A3)‘Z=e’mflv’z-v’zlvL
=[1 O]([A ;]-[: ~])V,zVL (A4)

= ezTvlzZVL. (A5)

The load voltage of the main cascade VL can be ex-

pressed by

VL=
v~

[1-TI.Z

“z o 1 ‘lZ

and (A 1) can be rewritten as

Substituting for Vz of (A5) we have

VBL=
e2Tv,z Z VL

iil;Bvl ~

(A6)

(A7)

(A8)

and substituting for VL from (A6) and Z from (19), we get

q) Bv ~~
e2Tv1z_= v~

u2~Bv1~
VBL=

[1
lZ”

(A9)

iZ1~BVlDiilTz
o 1 “z

Hence,

V,L(B) =
e2Tv,~ VS

t72;Bv ,~zil~ [1
lZ”
o 1 ‘1=
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APPENDIX II So, substituting this V~ into (A16) and the resulting VY

To OBTAIN VBL AS A FUNCTION OF V~ w C into (Al 5) we get

From (A7) and (A2) we can write V~~ as
VCL(C) =

el~olYV~
(A18)

~ = e~[tilz-viz] V~
(A1O) til~ccvl ~ti,=y[1

10”
BL

17,;Bv,~
Y 1 “y

The load voltage VL can be expressed, (cf. (A6)) by

VL=
v~

[1-T lo”
“y Y 1 ‘lY

(Al

We can write, using the notation defined for (22),

[1-TIO

‘Fti’z=u’yf Y 1 ‘lY”
(Al

Similarly,

APPENDIX IV

)
To OBTAIN VCL AS A FUNCTION OF V~ AND B

From (A15), (A16), and (A6) we can write VCL as

)

elTvly V~
VCL(B)=

[1

1 z ‘“
(A19)

ii,~c Cvl ctil~ o ~ VIZ

ACKNOWLEDGMENT

e,Tvlz [110
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section on symmetrical networks.
Substituting these terms and VL of (A 11) into (A1O) we

obtain

[ ii*Tyf
10

1[ ]— %TYg y 1 v,yv~ [1]

VBL(C)=

[1
10

. (A14)

J7,T~Bo~~iil=y
Y 1 ‘lY

[2]

APPENDIX III [3]

To OBTAIN VCL AS A FUNCTION OF V~ AND C

The voltage across Yin terms of VCL is given by
[4]

Vy = i&ct)~~v~L (A15)

and in terms of VL as [5]

Vy=e~vly VL. (A16)

But VL is also given by [6]

VL=
v~

[1-T lo” (Al? [7]

‘lY Y 1 ‘lY
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