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ABSTRACT

New theoretical and computational tools are presented which deal with generalized symmetry concepts related

to the computer-aided design of cascaded structures. The presentation includes the computational implications of

networks consisting of symmetrically located reverse adjoint subnetworks with and without scaling, as well as

antisymmetry. Formulas presented are designed to be used in simulation, sensitivity and tolerance analyses as

well as in optimal design.

Introduction

Symmetry or antisymmetry pervades microwave
oircuits [1]. To date, there has hardly been any
systematic exploration or utilization of such features

in computer-aided design.
Bandler et al. [2,31 recently provided theoretical

tools for handling cascaded structures. Their

framework permits the special constraints imposed by

symmetry (interpreted generally) to be embodied
directly into an overall computational scheme.

Advantages include reducing the sizes of design
problems with the attendant reduction in computation

cost .
This paper presents and interprets a new

definition of generalized symmetry described by the
term symmetrically located reverse adjoint subnetworks

with scaling. Antisymmetrical structures are studied

analogously.

Theoretical Background

Consider a two-port element with transmission or

chain matrix A, output vector y and input vector ~,

containing in ‘the first and sec6nd rows, respectivel~,

the voltage and current. Then ~ . A y is termed the
basic iteration [2,31. Analysis-is e%p~essed by

be

we

-T T —
forward: ~ ~ . u , reverse: v = A v. (1)-.

Consider a cascade of n two-ports. Let ~1 and :2

unit vectors. Taking

n
v.=e.,
‘“J ‘J

j c {1,2} (2)

have
i+ 1

~;=A
Ai+2

An e- - ““” -, -j (3)

and, letting

we have

Consider a rotation matrix given by

r -i

-1 J
01

R:
10”

(4)

(5)

(6)

Premultiplying a vector by ! interchanges its rows,

Consider a similarity transformation we will refer
to as antitransposition given by

This work was supported by the Natural Sciences

and Engineering Research Council of Canada under Grant
A7239.

Important properties of this transformation are

(~’ ~2)R= (~2)R(A1)R,(:R)R❑ A.

Consider a scaling matrix given by

-[ 1a o
s!

01”

This transformation allows us to define

A;

[1
all aa12 ❑SAS-’.

-a . . .

a21’a a22

Important implications of this are

(~’~2)a❑ (A’)a (A2)a, (AT) = (A ‘,. a -l/a)

(8)

(9)

(lo)

(11)

Consider

symmetrically

T,
1

Generalized Svmmetrv

a network with a pair of elements placed
within certain subnetworks as in Fig. 1.
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Fig. 1 A network with a pair of elements under
consideration. Directions indicate those of analysis

and subscripts correspond to unit initialization with i

$ j.

Consider also that the left subnetwork is being

analyzed in the forward direction and the right
subnetwork is being analyzed in the reverse direction.

This means that we are simultaneously considering for

i,j ~ {1,2} the iteration pair

-T .
forward: .1 ~u. A = $ reverse: .J: v..

~j --J
(12)

We can show in this case that
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=SR;. <==> ;.=SRU
~j -----1

iij. (13)
--J - -- -i’ [1

a a
11 12

[ 1
alla12

i! : & ❑

1
(26)

.
21 22 all a22 - a12 a21 a21 a22

This means that the condition assumed at the beginning

of the iteration is preserved for the next iteration.
Similarly, it is easy to show that

Interchanging the ports of the adjoint, i.e., reversing

the element. we obtain . .

RS~j=:i<==>RSu ❑;i, i$j. (14)
-- .- -j

The broad implicationsRof the foregoing presenta-

tion is that if A and A represent elements in a

network then a forw&d/rev6~se iteration for ~ sup lies
#

the results of a reverselforward iteration for A and

vice versa. The RS transformation must hold f;~ the

previous iteration 1-
Initializations at the source and load of a

network, for example, may be related by

(27)

by definition (7). Finally, applying the seal ing

transformation (10) we obtain the final result.
Fig. 2 shows an equivalent network representation

(15)

where e. refers to the load end and ~i to the source

end. ~dr the opposite case

[1
e.

RSd = :i$ iij,
--

6i

(16)

60+.
VI %2 % - - % II V2where6j.aifj. ;and lifj.2.

Antisvmmetrv with Scaling
Fig. 2 Impedance matrix representation of a pair of

reverse ad joint subnetworks with sealing.Following a very similar approach we replace (12)
by

forward: ~ A = ::, reverse:

and, in the opposite direction,

of a pair of symmetrically located reverse adjoint

subnetworks or elements with scaling. Notice that,

unlike the ad j oint element which requires interchanging

of controlling and controlled branches of nonreciprocal
elements and unlike the reversed element which would,

for example, reverse the direction of amplification of
amplifiers, the symmetrical element preserves the

—
= (AT)a :i,

!i .
(17)

7
~i (AT)

T
= :i, (18)

a

—
. A v., forward:

Yi . .1

— —

reverse:

Then directions of any nonreciprocal propagation caused by
ite comDanion.

Co;sider a network consisting of symmetrically

located identical pairs of elements, each element of

which is itself symmetrical:

.Su. <.+yi.sui
Yi .- .1 (19)--

towards the plane of antisymmetry and

si=~i<==mli=ji (20)
---1

for analyses

n-j . AJ“+1
identical pairs: A j= 0,1, . . ..1.l, (28)

-’

away from the plane of antisymmetry.
Ini~ializations corresponding to (15) and (16)

symmetrical elements: A
i

= (~i)R, i = 1,2, . . ..n. (29)for analvses

Notice that there is no reciprocity assumption.
Another case is for reciprocal networks: a sym-

metrically decomposed symmetrical network implied by

are, respectively, given by

(21)

n-j
symmetrical pairs: A = (Aj+l)R, j=o, l,. ..,1,’l, (30)and

-[1e.
~

S8 = :i.

i

sym. decomposition: (~i)R = (Ai)rev, i=l,2, . . ..n. (31)(22)

where the designation rev implies a reversed element.
Reverse Adioint Subnetworks

Antisvmmetrical Network?
Suppose we have a cascade of two-ports. Let

An-j ❑ (23)(Aj+l)~, j=O, 1, . . . . n/2- 1.
For antisymmetrical networks

n-j
A=

~(Aj+l T
)) ~$j=o~ l,..., n-1. (32)

Then

A
n-j An-j+l . . . An = (A’ A2 . . . Aj+’)~.

(24)
-. -.

In this case

An-j An-j+l
. . . An = ((A’ A2 . . . Aj+’)T) (33). . “.. a“

Ladder network and stepped impedance transmission-line

This situation is described by the phrase

SYrmUetriCally located reverse adjoint subnetworks with
scaling. The following is an interpretation.

A given element i. described by
networks are well-known examples.

For a transmission line, for example,

A!

-[ 1“
all a12

a21 a22

(25)

Its adjoint is given by [4]
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This implies that the product of the corresponding

characteristic impedances is a.

Network Simulation and Design EXDIOitinR Svmmetry

Bandler et al. [2] have shown that

(34)

embodies al 1 the information required in the
calculation of responses, first- and higher-order
sensitivities as well as large-change sensitivities for

that subnetwork (or network) containing ~, where the ii
and !L -5variables are associated with forward an
reverse analyses, respectively, in that subnetwork
initiated by appropriate unit vectors.

The corresponding term for a subnetwork containing
~~ is given by

k, !?, m, nc {1,2}, (35)

kim, tdn.

Notice that the forward vector must be multiplied by Sk

and the reverse vector divided by St so that the

formula is valid for unit initializations on the

symmetrical subnetwork (Fig. 1). Notice also that (35)
already incorporates Me constraints (13) and (14).
Upon substituting for l.; we have

From (34) and (35) we have

’11 = Q22, P12 = CXQ12, P21 ❑ Q21/~, P22 =

which can be used directly in ~ of the

formulas of Bandler et al. [2,3].

(36)

Q,1, (37)

recursive

Network Simulation and Desire ExDloitinR Antisvmm etrv

By analogy the ter~ corresponding to (35) for a
subnetwork containing (A )a is given by

‘I& ❑ &k [S-’ yklT (AT)a [S;L]/6L.. . (38)

Substituting for (AT)a we have.

hence

’11 = ’11’ ’12 = aQ21’ ’21 = ‘12’a’ ’22 = ’22’
(40)

which can be utilized to calculate responses,
sensitivities end tolerances to reduce effort.

Numerical ExamDle

We consider as a numerical example the optimi-

zation over 100 percent relative bandwidth of the
response of a quarter-wave transformer having n . 6 and
terminated resistively in 1 $? at the source and 100 n
at the load [1]. See Table 1. Obviously, a = 100.
Optimization w.r.t. all variables: 6 lengths and 6
characteristic impedances was carried out in two ways.

The first follows Bandler et al. [2] in which the 12
variables were treated independently. The second uses
the results of the present paper, in which the

appropriate constraint is imposed before the analysis
and only half the network is analyzed. Only 6
variables are optimized in this case. Least pth
optimization by a new package called FLOPT5 was used

[51. The sequence of p was 2, 20, 1,000, 50,000 and

Table 1
The Results of Optimization

Value
Section Parameter

Start Optimum

1 z 1.2 1.2960244
9, 0.8 1.0000000

2 z 2.4 2.3894713
.!, 1.0000000

3 z H 5.9778006
9. 1.5

4
1.0000000

z 100/6 .1 16.728561
9, 1.5 1.0000000

5 z 100/2.4 41.850262(3)
E 1.1

6
1.0000000

z 100/1 .2 77.159040
.!, 0.8 1.0000000

1,000,000. Twenty-one sample points were used during
optimization. At each least pth optimum quadratic
interpolation at 101 points identified maxima in the
reflection coefficient and appropriate sample points in

the set of 21 were replaced. The length variable is
normalized to the quarter wave length at center
frequency. The incredible consistency of the solutions

(only one digit differs in the two approaches) was

achieved by FLOPT5 on a CDC 64OO in 266 response

evaluations (40 s CPU time) and 140 response
evaluations (8 s CPU time).

Conclusions

This paper deals with the exploitation of symmetry
and antisymmetry in cascaded networks. The principal
goal is to save computational effort in computer-aided
design and optimization of such structures. Theoretical
descriptions of symmetry and antisymmetry were given

for the general case of nonreciprocal as well as scaled

networks. Our generalization permits us to consider
active and scaled networks with similar computational

savings as expected for classical symmetrical and
antisymmetrical networks.
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