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ABSTRACT

An exact and efficient approach to network
analysis for cascaded structures suggested by
Bandler et al. is extended to second-order
sensitivities and to the evaluation of the response
and its first-order sensitivity at the vertices of
a tolerance region located in the design parameter
space. A substantial saving in computational
effort is achieved over the approach of reanalyzing
the circuit at every vertex.

INTRODUCTION

A new approach for the chain matrix analysis
of cascaded networks has been used efficiently to
perform response evaluation as well as simultaneous
and arbitrary large-change sensitivity [1]. This
paper shows how first- and second-order
sensitivities of the response w.r.t. the variable
parameters can be obtained using this approach.

In tolerance optimization, the response and
its first-order sensitivity at the vertices of the
tolerance region [2] are needed by gradient
algorithms. This information is useful in a
worst-case search algorithm to identify the worst
vertex.

THEORETICAL FOUNDATION

Consider the two-port element depicted in Fig.
1. The basic iteration, also summarized by Table
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Fig. 1 Notation for an element in the chain,
indicating reference directions.

I, is y = Ay, where A is the transmission or chain
matrix, Z'bontains the output voltage and current
and ¥ the corresponding input quantities. Table I
presents some of the principal concepts involved in
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TABLE I
PRINCIPAL CONCEPTS INVOLVED IN THE ANALYSES

Concept Definition Implication

Basic ; = Ay ==> ;

iteration oo ~ ~

Forward ;TA = uT u]y = ETAy = uTy
operation " ~to v
Reverse v = Av y = cv ==> ; = ev
operation ~o ~ ~

the following analyses. Fig. 2 depicts a cascaded
network with appropriate terminations.
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Fig. 2 Cascaded network with terminations.

Forward analysis consists of initializing a §T
row vector as either [1 0], [0 1] or a suitable
linear combination and successively premultiplying
each constant chain matrix by the resulting row
vector until an element of interest or a
termination is reached.

Reverse analysis, which is similar to
conventional analysis of cascaded networks,
proceeds by }nitializing,ra v column vector as
either [1 0] or [0 1]° or a suitable linear
combination and successively postmultiplying each
constant matrix by the resulting column vector,
again until either an element of interest, or a
termination is reached.

For more than one element in the cascade we
divide the network into subnetworks by reference
planes. These in turn are chosen so that no more
than one element is explicitly considered between



any pair ﬁf qgference planes. In Fig. 3 the
elements A", A" and A" are considered in the kth,
the ith and the jth subnetworks, respectively.
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Fig. 3 Subnetwork i cascaded with subnetworks k
(at source end) and j (at load end).

Note that the superscripts of A denote the
subnetwork and not the element. ~ Forward and
reverse analyses are initiated at the reference
planes. A forward iteration of the structure of
Fig. 3 is illustrated in Fig. 4, where equivalent
(Thevenin) sources are iteratively determined.
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Fig. 4 Forward iteration for Fig. 3, transferring
an equivalent source accounting for design
variables from subnetwork k from one reference
plane to the other.

Equivalent (Norton) sources can also be iteratively
determined by reverse iteration [1].

NETWORK FUNCTIONS IN TERMS OF ELEMENTS

Performing forward analysis from .the source of
the ith subnetwork to the input of A ang reverse
analysis from the load to the output of A” we have

lVl—Ii)v y = Vk+ZlIl 1

i = i T i
Vg = (qvZgup) A7 (Vpyge (4 V-1 0%,) = Wy w2glg

S%2

and the current through the voltage source of the
ith subnetwork

i T ii igi i k., Kk k
Ig = u, A (Vv (GVi-I9y,) = VY -I. (2)
From (1), letting I' = 0 and Yi = 0, we have I% =0
and the Thevenin vo&tage
i i
N v
. . s
vl T (3)
Gozia)Taly,  Qi+tsy
Yregiy) 2 Yy
where the Q terms are defined in Table II. Letting
i _ i Jo_ i
Vs = 0 and YL = 0, we have IS = -IL and the output
impedance
i - iz (T,i i id
g L (tEely) By QpvisG, i~
S 11 obazidd
L (ug+Zgu,) ATy, 1178721

These expressions permit equivalent Thevenin
sources to be moved in a forward iteration.

Expressions which permit equivalent Norton
sources to be moved (if desired) in a reverse
iteration are derived analogously [1].

TABLE II
NOTATION AND IMPLIED INITIAL CONDITIONS

Initial Condition

Factor Identification Forward Reverse
;f (*) ¥, E (*)11 voltage voltage
Wy = (t) voltage current
~1 ~2 12
-T -

#* =
u, ( ) v, ()54 current voltage
—r

# =
u, * v, ("')22 current current

(¥) denotes either A, 94/3¢ or AA

(f) denotes Q, Q' or AQ

A special case of (3) applicable to Fig. 2 is

-7
VL = Vs((g1 A 31) = VS/Q11' (5)
Table III gives some useful formulas for variations
in a particular element A involving one network
analysis. b

TABLE IITI
FUNCTIONS OF VL FOR CHANGES IN A ONLY
Variable Output
é VL = VS/Q11
2 1
34730 avL/a¢ = - (VL/VS) 011
2
Aé AVL = - VL/(VL+VS/AQ11)

SECOND-ORDER SENSITIVITIES

The first-order sensitivity of V. w.r.t. a
variable parameter ¢1 is given using (5) by

—BVL ==V —BQ” Q? (6)

3, ~ S 3¢ 11°

1 1
Differentiating (6) w.r.t. ¢, we get
2
Q ® 9 ) %244 39
11 3¢,3¢ 3 LX)
2°%1 1 % .
-V . (7
L 2 ]

11
and 9Q,./3¢, is
For the evalua-

2
A
3¢23¢1

The evaluation of BQ1 /34>1
straightforward (seg Table fII).
tion of the term 3°Q,,/34¢.9¢,, we assume that the

1 2 1.
variables are numbere& consSecutively from source to
load so that, for example,
2
TR T -
3¢9 -9 ~ 3
¢2 ¢1 ¢1 1 )

Note that §T is a function of a certain chain

matrix which contains the variable ¢1, A is the

(8)



chain matrix containing ¢_, and v, is evaluated at
the reference plane following §.~

An algorithm [3] similar to one in [1] can be
used to obtain the first- and second-order
sensitivities of VL w.r.t. the design variables.

THE EVALUATION OF VL AND ITS SENSITIVITIES
AT ALL VERTICES OF THE TOLERANCE REGION

Algorithms for finding worst vertices of the
tolerance region need the response at the vertices
[4] and the sensitivity of this response w.r.t. the
design parameters [5]. Each parameter will have a
tolerance associated with it so that it has the
value ¢ + € or ¢ - €, where € is the tolerance [2].
The number of vertices is 27, where k is the number
of parameters.

Assume we have partitioned the network by
reference planes into subnetworks such that each
subnetwork contains one chain matrix containing a
variable parameter. Each reference plane is chosen
to fall immediately after a variable element.

The Thevenin voltage/impedance of the ith
subnetwork is considered as the source voltage/
impedance of the (i+1)th subnetwork, given by (3)
and (4), respectively, where j = i+1. We note that

0?1, 021, Q?z and Q;? are as in Table II with v,
and Vs set to [1 0] and [O 1]T, respectively,

since the appropriate reference plane immediately

follows the element él.

i+1 i+1
terms VS and ZS
each subnetwork contains one variable elgment with
two extreme values (assuming that each A~ contains
only one variable parameter).

Differentiating (3) w.r.t. ¢h’
i

not belong to ﬁl, but VS and Zé are functions of ¢h

The number of pairs of

to be evaluated is 21, since

where ¢h does

(i.e., ¢ _ is in a subnetwork h before the ith
subnetwogi) we get
) v azt
. i i i S i S i
it (s ) 5 - Vs e %y
S _ h h (9)
9 - i i i .2 ’
h (Q11 +2g Q5)
and differentiating (4) w.r.t. ¢h’ we get
3 i+l 3 i i i _ i i
ZS _ _Eﬁ (Q11Q22 Q12021) (10)
S T s S
117 % ¥

On the other hand, the derivatives w.r.t. ¢i

which is contained in Qi (Z; and V. are not

functions of ¢i), are S

b e 1 . a°§1)
avS S 3¢i S 3¢i
= . — (11)
30, ’
(Q?1 + Z; Q;1)2
and
a72i* 30 = (x - i ii .2
Zs / ¢1 (X Y)/(Q11 + ZS Q21) , (12)
where .
1.1 3%1 129,
X = (Qy+Z5 °21)(3¢i + I3 2, ) s

i i
. . s aQ . 9Q
_ i i1y 11 i_"21
Y= (Qp+Zg sz)'a¢i + Zg 20, ),

where 3011/a¢i, BQ§1/3¢1’ 3Q#2/3¢i and BQ;2/3¢1
correspond to Table 1II. This sensitivity
information is carried through the analysis for
each subnetwork. The number of variables for which
sensitivitieg exist at the (i+1)th subnetwork is i
so that Zl.i sensitivity calculations are
performed. Having Y, and I. as 2zeros, the
expression relating V. and the &ast sets of Vo and
Z., is given by (3), so that 2= values for Vs and
iés sensitivities can be obtained from appropriate
values of Vg, Z, and A.

Fig. § shows the stages involved in the
algorithm to obtain the response and its
sensitivities at the vertices (3 variables ==> 8
vertices) of the tolerance region.

/variuble “
T O

stage
*
1 —ug,u,
22— uy,u,
*
Uy Uz
VsiZsg
33— 2sets avs /a¢1
8z /3¢,
4 Ug,Up
ug,Up
VgiZg
S ———————— 4sets ( Vg /39, Vs /3¢,
0 104,02/08,
6 v
v
V.9V, 79¢.
7 gsets { = -
AV, /0$,,8V, /3¢5

% denotes initialization of wu,,up

Fig. 5 Illustration of the principal stages of the
algorithm.

Algorithm

Step 1 Initialize u1, u, and v. Set i«1, m<l,
j*n. ~ -

Comment n is the total number of elements in the
cascade.

Step 2 Ifi= & go to Step 6.

Comment The & s an element of an index set

contafhing superscripts of k matrices
containing k variable parameters and
ordered conses;tively.i

st ﬁT - g? él' U« us e . Set i+« i+1.

If i = 2m go to Step 5. Go to Step 3.

If m=k go to Step 7.



TABLE IV
THE RESPONSE VL AND ITS SENSITIVITIES AT THE VERTICES OF THE TOLERANCE REGION AT NORMALIZED FREQUENCY 0.7

Sign of

Vertex v 3VL/3Z1 BVL/azu avL/’éz5 Tolerance

Extreme
1 0.49135+30.02351 -0.02450+30.05953 0.26004-31. 15934 0.02549+30.32944 - - -
2 0.48819+30.02571 -0.07761+30.01588 0.28346-31.05326 0.00954+3j0.34878 + - -
3 0.49679-30.04862 0.03751+j0.15916 -0.06631-30.94430 0.04534+30.29165 - + -
il 0.49677-30.04046 -0.03384+30. 11417 -0.00L426-30.87724 0.03578+3j0.31848 + + -
5 0.49209+30.04341 -0.04367+30.08072 0.29407-31.19530 -0.00103+3j0.33324 - - +
6 0.48786+3j0.04670 -0.09378+30.03123 0.32067-31.07952 -0.02042+30.35007 + - +
7 0.49889-30.03101 0.02608+j0.18868 -0.05742-30.97346 0.02462+30.29494 - + +
8 0.49818-3j0.02127 -0.04526+30.13735 0.01132-30.90191 0.01113+3j0.32057 + +

D 3 ]
Step € Calculate VS’ ZS’ aVS/a¢1, ceey VS/ ¢m’

92g/00 1, .-y 3Lg/30 ., 2™ sets all

together. Set m <+ m+1. 1 <« i+1.
Initialize u, and u, and go to Step 4.

Step 7 If n sz go to Step 10.
Step 8 AJ y. Set j « j-1.
Step 9 If Jj = go to Step 10. Go to Step 8.
Step 10 Calculate Q, 3Q/8¢1, oy aQ/a¢k 2" times.
Stop.
EXAMPLE

The filter shown in Fig. 6 [6] was considered.

/
)

Fig. 6 Seven-section filter containing unit
elements and stubs [6]. All sections are quarter-
wave at 2.175 GHz.

The optimal minimax characteristic impedances [71
are the nominal values. They are

Z1 = Z7 = 0.606595, 22 = 26 = 0.303547,

Zy = Zg = 0.722287, Z, = 0.235183.

A tolerance of *#0.03 on Z., 24 and Z5 was
chosen. V. /3Z avL/aZ and av /3Z_" were
evaluated a% the elght vertices of the tof%rance
region. The results are in Table IV. They were

checked individually by reanalysis.
DISCUSSION AND CONCLUSIONS

The calculation of the first- and second-order
sensitivities of a circuit response involves one
additional analysis of the adjoint network and
k(k+1)/2 analyses to find second-order sensiti-
vities calculated by finite differences. A more
efficient approach is to calculate these second-
order sensitivities using the adjoint network
concept by performing only k analyses. Using our
approach for cascaded structures, however, less
than k analyses are performed and no additional

memory is required.

The seven-section filter example was run with
tolerances on the characteristic impedances of the
stubs and transmission lines (all seven). It took
0.269 s CPU time to evaluate the response (only) at
the 128 vertices. Using the conventional method of
reanalysis would take 0.074 x 128 = 9.472 s CPU,
where one analysis is performed in approximately
0.074 s. It took 0.118 s CPU time compared with 8
x 0.074 = 0.592 s for 8 analyses to evaluate the
response and its sensitivities at vertices.
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ABSTRACT

This paper exploits the biquadratic behaviour
w.r.t. a variable exhibited in the frequency domain
by certain lumped, linear circuits. Boundary
points of the constraint region of acceptable
designs are explicitly calculated w.r.t. any such
variable at any sample point in the frequency
domain. An algorithm to exactly determine the
constraint region itself for the general nonconvex
case has been developed. A minimax algorithm has
also been developed and tested to optimize the
frequency response w.r.t. any circuit parameter.

INTRODUCTION

A number of researchers have considered
properties of response or constraint functions
w.r.t. one designable variable at a time in the
contexts of sensitivity evaluation of 1linear
circuits [1-3] and the prediction of worst cases in
design centering and tolerance assignment [4-T].

We exploit the resulting biquadratic function
obtained from the modulus squared of the bilinear
function to produce new results. In particular, at
any frequency point we can explicitly calculate
boundary points of the constraint region of
acceptable designs to exactly determine the
constraint region itself for the general nonconvex
case. This leads to explicit determination of
circuit tunability and design centering and
tolerance assignment w.r.t. each parameter at a
time is facilitated.

We present ideas for predicting worst cases.
A globally convergent and extremely efficient
minimax algorithm is derived and stated. Examples
employing a realistic tunable active filter
demonstrate the optimization of the frequency
response w.r.t. a circuit parameter.

THEORY

For certain lumped, linear circuits, we can
express the response as a bilinear function in a
variable parameter ¢ (see, for example, Fidler [1])

£(¢) = (u+a $)/(1 + b ¢), QD)
This work was supported by the Natural Sciences and

Engineering Research Council of Canada under Grant
AT7239.

where f is the circuit response at a particular
frequency s, while u, a and b are complex constants
in general. The variable ¢ does not necessarily
have the value of the parameter, but it may take
the value of the parameter p reserred to a
reference value p . Hence, ¢ = p - p . Note that
b is never zero for practical problems. Three
analyses to obtain the complex constants in (1) can
be efficiently carried out [8].

Since |f| or functions of this magnitude are
often of interest, we may write

#
lul?+2 R(u a)e+lal%e® @
142 R(b)o+|b| %2

*
where u is the complex conjugate of u and R(e)
denotes the real part of (°).

For simplicity, we write (2) as

If(¢)|2 =

F = (A+2Bp+Cy2)/(142Dp+Ee) . (3)
Hence, c
un F=%, E4o0. )
¢->icn

To find values of ¢ at which F = S, a
specification, we replace F by S in (3). Then

(SE-C)¢2 + 2(SD-B)p + S - A = 0. (5)

When S # C/E, (5) has two finite roots

ry,=-8 t\/ez-(s-A)/(SE-C), (6)

where
g8 = (SD-B)/(SE-C). (7)
Consider real roots r, £ r,. F satisfies

2
<

If S = C/E, E # 0, a single root is obtained as

F2S forall ¢ ¢ [r,r,] if S % C/E.  (8)

r = -0.5(C-AE)/(CD-BE). (9)

We can also derive

F2S forall ¢ ¢ [r, =] if BE z o, (10
F % S for all ¢ € [~, r] if BE ; cp. (1)

For imaginary roots

F$Sforallge (mo) if S 2 C/E. (12)



VALID PARAMETER INTERVALS
Consider the set of specifications

A
e, = wi(Fi - Si) £0,1i=1,2, ..., m, (13)
where w. = -1(1) for lower(upper) specification Si
and m may be the number of frequency points.

It is possible to define a unique continuous
interval Ii so that if the specification is
satisfied on I. then it is violated for all ¢ £ L
and vice versa. The logical variable ti is defined
by

t, = True if I,

i s {¢|ei < 0}, (1)

or

t. = False if 1,

i 5 {¢!ei > 0}. (15)

A check to investigate meeting the m specifications
of (13) simultaneously by adjusting ¢ only can be
carried out by finding the feasible region RS of ¢
given by

Rg = (ﬂw I, - L,) L. (16)

t.=True t.=False
i i
Ry is not necessarily a continuous interval. In
general,
ko -
RS = 191 [¢£, ¢2], @7

where k is the number of the closed intervals. A
flow diagram is has been deyeloped [8] which
provides k and the intervals [¢z, 0,1, + =1, 2,
.y kK, as well as the indices of the functions F
which actually define the extreme points of eac%
interval. These indices are denoted i, and il for
the lower and upper extremes, respectively.
Having obtained RS we center ¢ at
00 = (0 40.)/2,
where 4

A

(¢j - ¢j) 2 (0 = 0,), % =1, 2, ..., k.

The corresponding tolerance will be
€ = ¢-—¢ /2.
( j j)

For several parameters this process may be
successively carried out for each parameter
independently [91]).

An ocutcome will be tunable if

(e, ¢.1( \Bg # 8, (18)

where [¢t, ¢t] is the tuning range of ¢.

EXTREMES OF A BIQUADRATIC FUNCTION
The stationary points of F, see (3), are given
by
dF _ , (B-AD)+(C-AE)¢s(CD-BE)¢°
a¢ (142D¢+E¢2)°2

For finite stationary points, we solve

= 0. (19)

(CD—BE)¢2 + (C-AE)¢ + (B-AD) = 0. (20)

In general, there are two stationary points [5],
but if CD - BE = 0, there is only one stationary

point given by ¢ = - (B-AD)/(C-AE).
For a stationary point we can show that
2
d g = 2 SBE 5 - (21)
de¢ 1+2D¢+E¢

If it is an inflection point, i.e., if d2F/d¢2 =0,
then (21) leads to

F = C/E. (22)

The finite point at which F = C/E is obtained by
replacing F by C/E in (3) to get

¢ = -0.5(C-AE)/(CD-BE). (23)
A stationary point satisfies
F = (B+C¢)/(D+E¢). (24)

Hence, for a finite stationary point to be an
inflection point (22) and (24) have to be satisfied

simultaneously for a finite value of ¢. This is
true if
BE = CD, (25)
which indicates that ¢ is infinite unless
C - AE = 0. (26)

Substituting for C from (26) into (25) for E # 0
B = AD, (27)

But, (25) to (27) make dF/d¢ = 0 everywhere. This
special case of a constant function F=A is of no
interest.

To summarize, the stationary points of a
biquadratic function which has no real poles are
extreme points.

IMPLICATIONS OF A POLE

A pole of F = lf‘I2 of order two w.r.t. ¢ at ¢
= -1/b is possible only if b is real, otherwise the
zeros of the denominator of (2) are complex.
Similarly, the numerator of (2) indicates that a
real zero of order two w.r.t. ¢ exists if (u%a) is

real at ¢ = - (u*a)/lulzlalz.
Note that
2 2
(bo+1)“( R(u®*a)+|al®$) J
a& _, -b(b¢+1)(|u12+2 R(u*a)¢+JaJ2¢2) . (28)
dé (oos1)"

Thus, one of the zeros of the numerator will be ¢ =
=1/b, which is a point of infinite gradient and the
stationary point is

2
blul®~ R(u®a) _ AD-B
R(u*a) _ AD-B (29)

Ialz-b R(u%*a)

If C-DB # 0, this point is a minimum since



.yt

2
Q—% = “‘—2——E lub-a|? > o. (30)

do (1+bd)

THE ONE-DIMENSIONAL MINIMAX ALGORITHM

A minimax algorithm guaranteed to converge
[10] to the global optimum (Fig. 1) follows.

‘;2 Ist i

intervals

3 2nd iteration
2 intervals

v
¢2
—_— —_—

;

=8>

Fig. 1 Illustration of the behaviour of the one-
dimensional minimax algorithm. Note that the
algorithm switches from interval 1 to interval 2,
based on predictions of the decrease in the
maximum.

Step 1 Find u., a; and bi’ i=1,2, ..., m.
Step 2 Initialize'®.
Step 3 Find § = max ei(¢).
i
Step 4 Find [¢,, 8,1 and i,, $,, ¢ =1, 2, ...,

k, using the specifications ei <8 ,1i-=
1, 2, veoy M,

Comment This is carried out using the flow diagram
developed [8]. If all functions are
convex, k will always be one.

Step 5 Find g, and &, * = 1, 2, ..., k, given by
g = deiz/d¢($£),
gl = deiz/d‘»(&z).
Step 6 If k=1, set j * 1 and go to Step 8.
Step 7 Find j such that
AJ'?'A‘Q" L=1,2, ..., k
where AV A v v A
by = gog, (6,-0,)/(gy-g,) -

Comment We select the jth interval which appears
most promising in terms of expected
improvement in the minimax optimum based
on linearization. Al should be positive.

Step 8 Set ¢ * (g.b.-8.6.)/(g.-8.) if i, # i,.

Comment The new value ¢ is the intersection of the
linear approximation to the two_functions.
Set ¢ to the minimum of e; if i, =

R R

Step 10 Set ¢ + ($.+5.)/2 if ¢ 4 (8.,4.).

Comment This defaﬁlg value obvia eg numerical
problems arising, say, if g; = O.

Step 11 Stop if k = 1 and if (¢1-¢1) is suffi-
ciently small.

Step 12 Go to Step 3.

EXAMPLE

A tunable active filter [8,11] has been
chosen to implement the theoryzand algorithms. The
specifications on F = |V2/Vg| are

F < 0.5 for f/fo < 1-10/f0,

F < 1.21 for 1-10/f0,g f/f‘0 5_1+10/fo,
F £ 0.5 for f/f‘0 2,1+10/f0,

F > 0.5 for 1-8/f0 < f'/f‘o 5,1+8/f0,
F>1for £ = fo Hz,

where f  is the center frequency. We use the one
pole rofl-off model for the operational amplifiers,
given by A(s) = A w /(s+w_), where s is the complex
frequency, A, is the d.¢. gain and W, the 3 dB
radian bandwidth. Refer to [11] for exact details.
A biquadratic model in tuning resistor R, was
obtained at each frequency, normalized as 1 and 1 +
10/f, for the upper specifications, 1 and 1 + 8/f
for ghe lower specifications. The range of R, for
which the specifications are satisfied (see Fig. 2)

local minima
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lower
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Q2
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a (
0 . . . .
150 175 200
\ﬁg 225
-0t Ry (8)
Fig. 2 Max e, versus the tuning resistor R, for

specifications defined around f = 10 Hz
indicating the active functions (and hence active
frequency points).

is that for which e, £ 0, i =1, 2, ..., 6. A
single run of a computer program indicated that the
filter is tunable for the specifications defined at
a center frequency of 100 Hz. It meets these
specifications if R, ¢ [181.126, 187.166] and with
other circuit parameters fixed at Rg = 50 9 C1 =

0.728556 1F, R, = 12.446 k% C, = 0.728556 WF, R,
26.5 k%, Ay = 2 x 10°, Ry = 75 8 u = 12 7 rad/s.

It is also tunable around a center frequency of 700
Hz (see Fig. 3) and meets the specifications if Ry
e [3.4881, 3.5012].

Observe the 1local minima in PRig. 2.
Convergence of other algorithms to the global
minimum depends upon the starting point. For our
algorithm the results are shown in Table I for
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Fig. 3 Max e, versus R, for specifications defined
around ., = %OO Hz for two cases (a) R1 = 12.446
ke, (b) Q1 = 14 kQ.

different starting points and at different center
frequencies. Note the small number of iterations

required.
TABLE I
MINIMAX OPTIMUM OF TUNING RESISTOR RM
Center RH(Q) CcDC
Frequency Optimum s Time
(Hz) Starting Optimum $ N.0.I. (s)
100.0 184.3998 ~0.0458 3 0.14
100 300.0 184.3998 -0.0458 3 0.14
® 184.3998 -0.0458 3 0.14
10.0 3.4946 ~0.0403 3 0.14
700 200.04, 3.4946 -0.0403 3 0.14
200.0 3.4940  0.1434 2 0.14
* N.O.I. = number of iterations

#% R, was altered to 14.0 k@ and the filter is
not tunable since §>0.

CONCLUSIONS

The explicit determination of the points
defining the boundary of the feasible region w.r.t.
one parameter led to results on centering and
tolerance assignment as well as a simple check on
tunability. Detection of worst cases within an
interval for any circuit parameter, of course, is
also facilitated.

Our minimax algorithm is not only extremely
efficient but is also globally convergent. It
requires few iterations to reach to the global
minimax optimum from any starting point. There are
no difficulties arising out of multiple local
minima unlike a one-dimensional version of the
minimax algorithm of Madsen et al. [12].
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