PPAs

Al o

4
’“

Proc. 1979 IEEE International Symposium on Circuits and Systems, Tokyo, Japan, July 1979

CENTERING, TOLERANCING, TUNING AND MINIMAX DESIGN EMPLOYING BIQUADRATIC MODELS

H.L. Abdel-Malek and J.W. Bandler

Group on Simulation, Optimization and Control, Faculty of Engineering
McMaster University, Hamilton, Canada L8S ULT7

ABSTRACT

This paper exploits the biquadratic behaviour
w.r.t. a variable exhibited in the frequency domain
by certain lumped, linear circuits. Boundary
points of the constraint region of acceptable
designs are explicitly calculated w.r.t. any such
variable at any sample point in the frequency
domain. An algorithm to exactly determine the
constraint region itself for the general nonconvex
case has been developed. A minimax algorithm has
also been developed and tested to optimize the
frequency response w.r.t. any circuit parameter.

INTRODUCTION

A number of researchers have considered
properties of response or constraint functions
w.r.t. one designable variable at a time in the
contexts of sensitivity evaluation of 1linear
circuits [1-3] and the prediction of worst cases in
design centering and tolerance assignment [4-7].

We exploit the resulting biquadratic function
obtained from the modulus squared of the bilinear
function to produce new results. In particular, at
any frequency point we can explicitly calculate
boundary points of the constraint region of
acceptable designs to exactly determine the
constraint region itself for the general nonconvex
case. This leads to explicit determination of
circuit tunability and design centering and
tolerance assignment w.r.t. each parameter at a
time is facilitated.

We present ideas for predicting worst cases.
A globally convergent and extremely efficient
minimax algorithm is derived and stated. Examples
employing a realistic tunable active filter
demonstrate the optimization of the frequency
response wW.r.t. a circuit parameter.

THEORY
For certain lumped, linear circuits, we can

express the response as a bilinear function in a
variable parameter ¢ (see, for example, Fidler [1])

£(®) = (u+a $)/(1 + b 9), (1)
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where f is the circuit response at a particular
frequency s, while u, a and b are complex constants
in general. The variable ¢ does not necessarily
have the value of the parameter, but it may take
the value of the parameter p reserred to a
reference value p . Hence, ¢ = p - p . Note that
b is never zero for practical problems. Three
analyses to obtain the complex constants in (1) can
be efficiently carried out [8].

Since |f| or functions of this magnitude are
often of interest, we may write

lul®s2 R(u"a)e+|a)? @
22 ’
1+2 R(b)o+|b| "¢

*
where u is the complex conjugate of u and R(e)
denotes the real part of (°).

For simplicity, we write (2) as

1£(6)]2 =

F = (A+2Bp+Co2)/(142Dp+E¢°) . (3)
Hence, c
lim F=¢, E#0. (4)
¢»im
To find values of ¢ at which F = S, a
specification, we replace F by S in (3). Then
(SE-C)¢2 + 2(SD-B)p + S - A = 0. (5)
When S # C/E, (5) has two finite roots
ry o= B tﬁz-(S-A)/(SE-C), (6)
1
where
g = (SD-B)/(SE-C). (7

Consider real roots r, s_rz. F satisfies
> 2
F'? S for all ¢ € [r1,r2] if S r C/E. (8)
If S = C/E, E # 0, a single root is obtained as
r = -0.5(C-AE)/(CD-BE). (9)

We can also derive

F%s for all ¢ ¢ [r, =] if BEZCD, (10)
F2S forall ¢ ¢ [, r] if BE § CD. (1)

For imaginary roots

F j S for all ¢ ¢ (-=,=) if S  C/E. (12)



VALID PARAMETER INTERVALS

Consider the set of specifications

A
e; = w(F, -=8S)€0,1=1,2, ..., m, (13)

where w, = -1(1) for lower(upper) specification Si
and m may be the number of frequency points.

It is possible to define a unique continuous
interval I, so that if the specification is
satisfied on I, then it is violated for all ¢ £ I
and vice versa. The logical variable ti is define
by

ti = True if Ii

t., = False if 1,
i i

tole; < 0}, (14)

or

{@Iei > 0}. (15)

A check to investigate meeting the m specifications
of (13) simultaneously by adjusting ¢ only can be
carried out by finding the feasible region RS of ¢

given by

Ro= () 1 - L,J I, (16)
t.=False
i

S [
t.=True
i

R, is not necessarily a continuous interval. In
general,

k v -
Ro = U [é,, ¢,] QT
S L=1 * o

where k is the number of the closed intervals. A
flow diagram is has been deyeloped [8] which
provides k and the intervals [¢k’ ¢l], L =1, 2,

., k, as well as the indices of the functions F,
which actually define the extreme points of eac
interval. These indices are denoted i, and 12 for
the lower and upper extremes, respectively.

Having obtained RS we center ¢ at
00 = (6 .40
= (9.+0.)/2,

where 43

(0 -0 2 (8 =0, 4 =1, 2, ..., k

The corresponding tolerance will be
e = (¢, - ¢.)/2.
( j J)

For several parameters this process may be
successively carried out for each parameter
independently [9]).

An outcome will be tunable if

o, o1 |Rg # 0, (18)
where [¢t, ¢t] is the tuning range of ¢.

EXTREMES OF A BIQUADRATIC FUNCTION
The stationary points of F, see (3), are given
by
4 |, (B=AD)+(C-AE)¢+(CD-BE)E® _
de (1+2D¢+E¢>)2

For finite stationary points, we solve

. (19)

(CD-BE)¢2 + (C-AE)¢ + (B-AD) = 0. (20)

In general, there are two stationary points [5],
but if CD - BE = 0, there is only one stationary
point given by ¢ = - (B-AD)/(C-AE).

For a stationary point we can show that

2
._g=2ﬂ_30 (21)
d¢ 1+2D¢+E¢

If it is an inflection point, i.e., if d°F/d¢® = 0,
then (21) leads to

F = C/E. (22)

The finite point at which F = C/E is obtained by
replacing F by C/E in (3) to get

¢ = =0.5(C=AE)/(CD-BE). (23)
A stationary point satisfies
F = (B+C¢)/(D+E9%). (24)

Hence, for a finite stationary point to be an
inflection point (22) and (24) have to be satisfied

simultaneously for a finite value of ¢. This is
true if
BE = CD, (25)
which indicates that ¢ is infinite unless
C - AE = 0. (26)

Substituting for C from (26) into (25) for E # 0
B = AD, 27)

But, (25) to (27) make dF/d¢ = 0 everywhere. This
special case of a constant function F=A is of no
interest.

To summarize, the stationary points of a
biquadratic function which has no real poles are
extreme points.

IMPLICATIONS OF A POLE

A pole of F = lflz of order two w.r.t. ¢ at ¢
= -1/b is possible only if b is real, otherwise the
zeros of the denominator of (2) are complex.
Similarly, the numerator of (2) indicates that a
real zero of order two w.r.t. ¢ exists if (u¥*a) is

real at ¢ = - (u*a)/lulzlalz.
Note that
(bo+1)2( R(u*a)+]a|%e) J
@ _ ,Lbern)(lul®s2 R(uta)eslal®®)) o
de (b¢+1)u

Thus, one of the zeros of the numerator will be ¢ =
~1/b, which is a point of infinite gradient and the
stationary point is

_plul® R(u*a) _ AD-B
|a|2~b R(u%*a)

If C-DB # 0, this point is a minimum since

. (29)



2
g—g-: *——g——i lub-a|2 > 0. (30)
de (1+bd)

THE ONE-DIMENSIONAL MINIMAX ALGORITHM

A minimax algorithm guaranteed to converge
[10] to the global optimum (Fig. 1) follows.

max e;
1

|

$2 Ist i
intervals
LY
A
\
\!
\
4"\’(\ ¢ 1 '
4, 22
v a v 2nd iteration
¢| 4’| ¢z 2 intervals

Fig. 1 1Illustration of the behaviour of the one-
dimensional minimax algorithm. Note that the
algorithm switches from interval 1 to interval 2,
based on predictions of the decrease in the
maximum.

Step 1 Find u,, a; and bi, i=1,2, ..., m.
Step 2 Initialize 9.
Step 3 Find $ = max ei(¢).
i
Step 4 Find [¢,, 8,] and i,, 3,, ¢ =1, 2, ...,

k, using the specifications e, < § , i =
1, 2, ¢o0y M. +

Comment This is carried out using the flow diagram
developed [8]. If all functions are
convex, k will always be one.

Step 5 Find g, and &, * = 1, 2, ..., k, given by
gy = deiz/d¢($l)’
8y = de] /a0(s,).
Step 6 If k=1, set j* 1 and go to Step 8.
Step 7 Find j such that
Aj?_Az) =1, 2, siuy ky
where av A v v A
By = 8.8y (9-09)/(gy-gy) .

Comment We select the jth interval which appears
most promising in terms of expected
improvement in the minimax optimum based
on linearization. Az should be positive.

Step 8 Set ¢ * (g.b.-8.4.)/(g.-8.) if i i,.

Step 8 (gJ j 834’3) (33 gJ) if i, # 1

Comment The new value ¢ is the intersection of the
linear approximation to the two_functions.
Step 9

Set ¢ to the minimum of eg if i, = §..
j J J

Step 10 Set ¢ *+ (b +$.)/2 if ¢ 4 (8.,4.).
Comment This defa%l value obviadtes numerical
problems arising, say, if §: = 0.
Step 11 Stop if k = 1 and if (¢.,-¢,) is suffi-
1M
ciently small.
Step 12 Go to Step 3.

EXAMPLE

A tunable active filter [8,11] has been
chosen to implement the theoryzand algorithms. The
specifications on F = |V2/V8I are

£ 0.5 for f/fo < 1-10/f0,

£ 1.21 for 1—10/f‘0 g,f/fo 5_1+10/f0,

£ 0.5 for f/f0 2_1+10/r0,

2 0.5 for 1-8/:‘0 < f/f‘0 5,1+8/f0,

21 for f = fo Hz,

where f, is the center frequency. We use the one

pole rofl—off model for the operational amplifiers,

given by A(s) = A w /(s+w_), where s is the complex

frequency, A, is éhe d.c. gain and ma the 3 dB

radian bandwidth. Refer to [11] for exact details.
A biquadratic model in tuning resistor R, was

obtained at each frequency, normalized as 1 and 1 +

10/f . for the upper specifications, 1 and 1 + 8/f

for %he lower specifications. The range of R, for

which the specifications are satisfied (see Fig. 2)

Lo I B I B S ]

max  e;
0.5
local minima
04 100H2 / v \
!
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° 150 s N/ o :
I
e 225
-0t Ry (2)
Fig. 2 Max e, versus the tuning resistor R, for

specifications defined around f = 10 Hz
indicating the active functions (and hence active
frequency points).

is that for whiche, <0, i=1, 2, ..., 6. A
single run of a computer program indicated that the
filter is tunable for the. specifications defined at
a center frequency of 100 Hz. It meets these
specifications if R, ¢ [181.126, 187.166] and with
other circuit parameters fixed at Rs = 50 9 C1 =

0.728556 WF, R, = 12.446 k®, C, = 0.728556 WF, R,
26.5 k9, Ay = 2 x 102, Ry =75 9 u =12 7rad/s.

It is also tunable around a center frequency of 700
Hz (see Fig. 3) and meets the specifications if Ru
e [3.4881, 3.5012].

Observe the 1local minima in PRig. 2.
Convergence of other algorithms to the global
minimum depends upon the starting point. For our
algorithm the results are shown in Table I for



TOOHz lower

700 Hz lower

34 % 5 * 36
M R4 (Q)

Fig. 3 Max e, versus R, for specifications defined
around f. = 700 Hz for two cases (a) R1 = 12.446
ke, (b) §1 = 14 ke.

different starting points and at different center
frequencies. Note the small number of iterations

required.
TABLE I
MINIMAX OPTIMUM OF TUNING RESISTOR R4

Center RM(Q) cbC
Frequency Optimum s Time

(Hz) Starting Optimum § N.0.I. (s)
100.0 184.3998 -0.0458 3 0.14
100 300.0 184.3998 -0.0458 3 0.14
® 184.3998 -0.0458 3 0.14
10.0 3.4946 ~0.0403 3 0.14
700 200.0,, 3.4946 -0.0403 3 0.14
200.0 3.4940  0.143Y4 2 0.14

# N.0.I. = number of iterations

i R1 was altered to 14.0 k@ and the filter is
not tunable since §>0. .

CONCLUSIONS

The explicit determination of the points
defining the boundary of the feasible region w.r.t.
one parameter led to results on centering and
tolerance assignment as well as a simple check on
tunability. Detection of worst cases within an
interval for any circuit parameter, of course, is
also facilitated.

Our minimax algorithm is not only extremely
efficient but is also globally convergent. It
requires few iterations to reach to the global
minimax optimum from any starting point. There are
no difficulties arising out of multiple local
minima wunlike a one-dimensional version of the
minimax algorithm of Madsen et al. [12].
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