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Optimization of Microwave Networks

by Razor Search

JOHN W. BANDLER, MEMBER, IEEE, AND PATRICK A. MACDONALD

Absfracf—A new optimization method called razor search is pre-

sented. The method, which is based on pattern search, was specifically

developed for the automatic optimization by computer of networks for

which the objective is to minimize the maximum deviation of some

response from a desired ideal response specification. Mhdmax response

objectives, which can lead to eqnal-ripple optima, will in general give rise

to discontinuous partial derivatives of the objective firnction with respect

to the network parameters. Otherwise efficient optimization methods may

slow down or even fail to reach an optimnm in snch circumstances, par-

ticularly when the response hypersurface has a narrow curved valley

along which the path of discontinuous derivatives lies. Another direct

search method called ripple search is also presented. This method was

developed to locate the extrema of multimodal fnuctions of one variable in

an efficient manner, and is used to determine the maximum deviation of

the response from the desired response. Sufficiently detailed flow dia-

grams are available so that the methods can be readily programmed. The

razor search strategy (with ripple search) has been successfully applied

to the optimization of inhomogeneous wavegoide transformers. It is

illustrated in this paper by examples of cascaded cosnmensnrate and

noncounnensorate transmission lines acting as impedance transformers

for which the optima are known.

I. INTRODUCTION

M INIMAX response objectives, which can lead to
equal-ripple optimum responses, are probably the

most desirable objectives in microwave network
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optimization. This is because the designer is usually given

an ideal response specification and has to synthesize a net-

work which meets the ideal specification to within a specified

maximum allowable deviation. For such problems a formu-

lation which aims at reducing the maximum deviation of the

response is the only one for which the optimum represents

the best possible attempt at satisfying the design specifica-

tions within the constraints of the particular problem.

Methods for approaching minimax response optima and

which can be used on networks whose parameters are con-

strained have been proposed [1 ]–[4]. The method described

by Waren et al. [1], [2] reduces the constrained problem

to a sequence of penalized unconstrained optimization

problems, each one being started within the feasible region.

The method of Ishizaki et al. [3], [4] reduces the orig-

inal nonlinear problem to a series of linear programming

problems. Assuming the methods converge, the minimax

optimum can be arbitrarily closely approached.

If one raises the response deviation to a sufficiently high

even power p and uses that in the objective function, the

maximum deviation can be reduced [4], [5]. The objec-

tive function becomes minimax as p+ w. Temes and Zai
have recently described such a least pth approximation
method and its implementation [5].

In this paper a new optimization method called razor

search is presented. The method, which is based on the pat-

tern search technique of Hooke and Jeeves [6], was de-

veloped for the direct automatic optimization by computer

of networks using as the objective function the maximum

deviation of the response from the desired ideal response

specification. Such a formulation will, in general, give rise to

discontinuous partial derivatives of the objective function

with respect to the network parameters [4], [7]–[ 11]. Under

these circumstances otherwise efficient optimization meth-

ods~ertainly on-line manual methods—may slow down or
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even fail to reach an optimum, particularly when the re-

sponse hypersurface has a narrow curved valley along which

the path of discontinuous derivatives lies [9]. This is prob-

ably the reason that success with the direct minimax formu-

lation does not seem to have been previously demonstrated.

To the authors’ knowledge, the optimization of functions

with discontinuous derivatives does not appear to have

received much serious attention in the literature.

Essentially, the razor search strategy begins with a modi-

fied version of pattern search until this fails. A random point

is selected automatically in the neighborhood (cf., Gelfand

and Tsetlin [12]) and a second pattern search is initiated

until this one fails. Using the two points where pattern search

failed, a new pattern in the direction of the optimum is

established and a pattern search strategy resumed until it too

fails. This process is repeated until any of several possible

terminating criteria is satisfied. Thus, the strategy should

work on problems involving narrow “razor sharp” valleys in

multidimensional space.

Since the only point of interest in the network response at

any given time during optimization is that point where the

maximum deviation occurs, it is important to obtain this

point to any desired accuracy with as few response evalua-

tions as possible. Another direct search method called ripple

search, which locates the extrema of multimodal functions

of one variable in an efficient manner, was developed for this

purpose. Unlike the usual practice of sampling, for example,

a frequency response at closely spaced fixed frequencies, the

ripple search strategy first conducts a uniform search to

determine the extrema and appropriate unimodal regions;

subsequently, during optimization, it locates the extrema

within the previously defined regions using a Fibonacci

search scheme [13], [14]. Safeguards are built into the pro-

gram to deal with continuously changing ripple patterns dur-

ing optimization.

Descriptive and mathematical flow diagrams of the razor

search and ripple search strategies are presented so that the

methods can be readily programmed. Examples are also

presented of the optimization of cascaded commensurate

and noncommensurate transmission lines acting as impe-

dance transformers for which the optima are known.

Bandler describes the constrained optimization of inhomo-

geneous waveguide transformers using these methods in

another paper [10]. In the present paper the advantages and

disadvantages of the methods are discussed and ways of

improving them are indicated.

11. PROBLEM FORMULATION

Fig. 1 shows examples falling within the scope of this

paper. In Fig. l(a) the problem is to maximize the minimum

gain of an amplifier over a frequency band of interest subject

to a maximum allowable gain. In Fig. l(b) the problem is to

minimize the maximum deviation of the gain from a desired

gain. In Fig. l(c) the problem is to minimize the maximum

reflection coefficient of a matching network. A wide range of

microwave network design problems can be formulated

along these or similar lines. Note that the response specifica-

tion need not be linear.
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Fig. 1. Examples having minimax response objectives and
falling within the scope of this paper,
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Fig. 2. m-section resistively terminated cascade of transmission lines.

A detailed discussion on the formulation of direct mini-

max response objectives in general is presented elsewhere

in this issue [11]. Also discussed in that paper are methods

of dealing with parameter and other constraints subject to

which the optimization is to be carried out (see also Bandler

[10]). The present paper is, therefore, devoted to a presenta-
tion of the razor search and ripple search strategies and an

examination of their behavior on essentially unconstrained

test problems.

The test problems are examples of the optimization of

cascaded commensurate and noncommensurate transmis-

sion lines acting as impedance transformers between resistive

terminations as shown in Fig. 2. A previous, numerical in-

vestigation [8] found that the optimum designs were, not

unexpectedly, quarter-wave Chebyshev transformers [15].

So the results obtained by optimization may be compared

with the results obtained by analytic methods. It should be

born in mind, however, that none of the well-known proper-

ties of quarter-wave transformers are employed to simplify

the process—as far as the optimization strategies are con-

cerned the problems are quite arbitrary.
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Fig. 3. Block diagram summarizing the computer program structure
and indicating the relative hierarchy of the subprograms.

The objective for a matching network [Fig. l(c)] is to find

where @represents the variable parameters of the network,

p is the reflection coefficient, f is frequency, and fl and f. are

the lower and upper band edges, respectively. U is seen to be

the maximum magnitude of p in the band, and the objective

is to find a set of parameter values ~ which minimizes U

(expressions of the form of (1) can be written down for the

other examples in Fig. 1).

A computer program was written to calculate the reflec-

tion coefficient of a resistively terminated cascade of trans-

mission lines at any frequency and for any section lengths

and characteristic impedances as shown in the Appendix. It

is in the form of a function subprogram to be called by the

ripple search package (Section IV).

III. THE RAZOR SEARCH STRATEGY

The razor search strategy presented in this paper employs

a pattern search strategy which is different from published

versions of pattern search [6], [ 16]–[ 18] in the following

ways:

1) The exploratory increments depend on the total prog-

ress made between the previous two base points. Thus, they

automatically increase or decrease in accordance with previ-

ous successes or failures, respectively.

2) When a pattern move plus exploratory moves fail the

pattern is not immediately discarded. Instead, the same pro-

cedure is repeated closer to the base point. If this too is un-

successful, the procedure is attempted in the opposite direc-

tion.

Fig. 3 shows a block diagram summarizing the computer

program. The razor search strategy is outlined by the

descriptive flow diagrams of Figs. 4 to 7, Also shown in these
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figures are the essential details of the computer program in

symbolic form,l Perhaps the best way of comprehending the

strategy is by studying an example which demonstrates most

of the main features, and by discussing their general implica-

tions.

The problem of optimizing a 2-section transmission-line

transformer for a load to source impedance ratio of 10:1
over a 100 percent bandwidth with the section lengths fixed

at their optimum values, i.e., quarter-wave at center fre-

quency, is a good choice because ordinary pattern search

fails to reach the optimum under certain circumstances [9].

I Details such as counters for the numbers of function evaluations
made in the subroutines, and other statements not directly involved in
the logic of the optimization process, are not shown.
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(b) Mathematical flow diagram of subroutine EXPLR.

Formally, the problem is to reach

f7=m~(U) =m~{ max [Id+, f)l]} (2)
[0.5,1.51

where the center frequency is taken as 1 GHz. It is conven-

ient to define

+ = (4W 4’2) = (21, 22). (@

Contours of U versus ZI and 2,, the characteristic imped-

ances of the two sections normalized to the :source imped-

ance, are plotted in Fig. 8. The sharp points in the contours

indicate the presence of the discontinuous derivatives which

arise when U jumps from one response ripple extremum to

another.
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The notation used in Figs. 4 to 7 is defined in the Appen-

dix. For the purpose of the present discussion superscripts

will denote sequential parameter or function values ob-

tained during optimization. It is important to note that in

Figs. 4 to 7, ~ refers to any current projected, exploratory or

random point, while ~ is temporarily the best point. Thus, a

particular set of parameter values maybe differently defined,

depending upon which subroutine it finds itself in.

The starting point @=(1 .25, 4.50) is selected as the first

base point @ on entering RAZOR (see Fig. 4). The objective

function is evaluated at +1. Let its value U+obe denoted U1. A

N“

Fig. 8. Example illustrating the razor search strategy showing how
following one random move the path of discontinuous derivatives
leading to the optimum is effectively located.

user supplied finish criterion is tested next.2 If this is not

satisfied we prepare for a pattern search. The vector S,

which keeps track of previous successful directions for the

exploratory moves, has all its components initially set at 1.

It is also seen that

~ - ~~i~?lx (4)

where ~ is the current minimum permissible exploratory in-

crement, K is the maximum number of random moves to be

allowed, and ~ is a scale factor (greater than or equal to

unity); ~~i. is the minimum possible value of e. Subsequently,

every time a random move is made

e -+--E/Q. (5)

This feature is included to prevent the parameter increments

from becoming too small during the early stages of optimi-

zation which would probably result in wasted effort. In the

– 001, K= 3, and T= 2; therefore initiallypresent example %,n- .

c=0,08.
Before attempting a pattern search (see Fig. 5) the ex-

ploratory increment A@(= 8 in the program at this stage) is

compared with E. Initially, in this example, A@= 0.25> e

=0.08. Exploration begins with 41 as indicated in Fig. 6 and

takes us to 02. Since U2< U1 we retain 42 and continue ex-

ploration with 42. The next point 43 is rejected because

Us> U2 and & is incremented in the opposite direction to

zThe finish criterion can take several forms. For example, a test
could be made to determine whether the maximum deviation has fallen
below some specified value. Alternatively, a test could be made to deter-
mine whether any significant improvement has occurred since the last
one or more times the finish criterion was tested. One could even check
the number of response extrema and use it as a finish criterion.
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44” U4<U2S0 +’isretained in place of 42. The first set of
exploratory moves is now complete. Returning to PATSER

(Fig. 5) we find that U’< U’.

The point +4 becomes the second base point ~ and in

accordance with the pattern move strategy we obtain a pro-

jected point @ such that $5– +4 = +4– @l, i.e., in general

++~+8 (6)

where 6 is the vector difference between the last two base

points. Before proceeding with the pattern move strategy

of Fig. 7 the exploratory increment is compared with e. The

value of A+ is I +4—@lI /tik, where k is the dimensionality

of the space; here k= 2. Each parameter was successfully in-

cremented during the previous exploration; therefore, A@

remains at 0.25 (otherwise the increment would have been

automatically reduced). Since the exploratory increment is

not too small, U5 is evaluated, and the next set of explora-

tory moves is started. Incrementing 41 in the direction previ-

ously found successful takes us to @. It is found that U6< U5

so we retain @ and increment r)’ in the direction previously

found successful for this parameter. Thus, +2 is first de-

creased because S’= — 1. However, neither +7 nor subse-

quently 48 result in any improvement over @.

The outcome of the pattern move plus exploration is an

improvement because U6< U4 and the parameter change is

also significant (see Fig. 7). Thus, @’ becomes the third base

point. We now obtain a projected point +9 such that +9– @

=@- # and an exploratory increment A@= I #- 1$’I /tik

= ~10/8. Exploration around @ ends at +“ with W’< U’.

It is unsuccessful, however, since U12> U6.

Not wishing to destroy the pattern already established,

we project a point midway between @ and +9 to @13and re-

duce the exploratory increment appropriately. This is shown

in Fig. 7, where it is also seen that m, the counter for pro-

jected points, is set at 2. We finally arrive at +15which is an

improvement over @G.However, on entering PATMV h is

found that A@< e. The first pattern search is, therefore,

terminated at +15.

Returning to RAZOR the finish criterion is tested. If this is

not satisfied we prepare for the first random move. The

random point @b is given by the instruction

~,++,” + p.ii(l )., ~=l,g,...,k (7)

where P (not to be confused with reflection coefficient) is a

scale factor and R(1) generates random numbers between
– 1 and 1. The minimum exploratory increment is reduced in

accordance with (5) and 8= Ad = 10IG– 1$’51/tik.

A second pattern search is conducted starting at @’.

Eventually we arrive at +36where this pattern search is aban-

doned because A$ < c= 0.04. The values U36 and U15 are

compared. Since U36< U15 the direction of the valley indi-

cated in Fig. 8 is given by +3’ —@s. Taking $36 as a base

point and ~“ as a projected point down the valley such that
@T— & = +36— I+lS, we continue with the pattern move

strategy until Ad< 0.04. Then the finish criterion is tested.

If this is not satisfied we prepare for the next random move.

Table I summarizes the important steps in this example.

Note that @37=(2.21791, 4.44943). Thus, at the 37th func-

TABLE I

StJMMARYOF THE IMPORTANT STEPSIN THE EXAMPLE

ILLUSTRATING THE RAZOR SEARC: STRA’rEGY

U1= Q.64907 U37=0. 42986 U=O. 42857

Point

1
2, 3, 4

5
6, 7, 8

9
10, 11, 12

13
14, 15

16

36

37

Initial base point +l.
Exploratory points ~z, ~’, +4

from +1.
Second base point is ~’.
Projected point $5.
Exploratory points b’, +7, ~’

from +5.
Thn’d base point is ~’.
Projected point @’.
Exploratory points +10, +11,

412from @g.
Projected point @3.
Exploratory points +1*, +16

from &3.
First pattern search termi-

nates at @15.
Random point +“ projected

from @’5.
Second pattern search termi-

nates at @38.
Point +37 projeeted down

valley using +15and @a’.

Value

@=(l,:!5, 4.5)
r$4=(l .5, 4.25)

+’=(2.0, 4.0)

@’= (2.05236, 4.07264)

O’G= (2.23389, 3.95552)

~“ =(2. 13514,4.26104)

O“ =(2.:21791, 4.44943)

tion evaluation the parameters are within about 1 percent

and ~ percent, respectively, of their values at the optimum

~=(2.2361, 4.4721).

IV. THE RIPPLE SEARCH STRATEGY

The program for ripple search is in three parts. First, there

is the function subprogram U which is represented by the

flow diagram of Fig. 9. Secondly, there is the subroutine

LOCATE represented in Fig. 10. Thirdly, there is a subroutine

called FIBSERwhich conducts the Fibonacci search [14] for

an extremum. FIBSERis not shown as it is a version of a pub-

lished algorithm [13] which has been slightly modified to

handle both maxima and minima. The notation used in Figs.

9 and 10 is defined in the Appendix.

Refer to Fig. 9. When U is called for the first time by

RAZORj=j’ = O. As a consequence it is seen that LOCATE is

immediately called, As shown in Fig. 10, LOCATE sets 01, the

location of the first extremum, and el, the left hand end

point of the first unimodal interval (see Fig,. 11). A test is

then made to determine whether the first turning point (if

any) will be a local minimum as in Fig. 11 c~ra local maxi-

mum. Following this a uniform search loop is entered. This

keeps a record of y,, the temporary maximum value of the

objective function y. The locations of the local extrema are

recorded sequentially as 01, 02, 08) OA, “ “ “ as indicated in

Fig. 11. End points of intervals subsequently to be explored

by HBSER are first defined here. Denoted e they are located

midway between adjacent extrema with the exception of the

first and last as shown in Fig. 11. Finally, the maximum value

of y obtained is set equal to U.

This process, i.e., the search for U by uniformly spaced

test poirits, will be repeated next time U is called until j

changes to 1, Since j in RAZOR is not set equal to 1 until the
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first random move is made, this means that during the first

pattern search the response is uniformly sampled. When

~= 1~~’ is still O SO,as shown by Fig. 9, a new increment (pre-
ferably smaller than before) is set for any subsequent uniform

searches.

Also,

U ~ Urnin I_’ (8)

where u is the uncertainty interval in the Fibonacci search; K

is the maximum number of random moves in RAZOR and ~ is

a scale factor (greater than or equal to unity); umin is the

minimum value of u. Accompanying every random move in

RAZOR, therefore,

(r +-- ,7/{. (9)

1
/
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Fig. 10. Flow diagram of subroutine LOCATE.

Fig. 11. Example illustrating the ripple search strategy showing how
a uniform search defines end points of intervals subsequently to be
explored by a series of Fibonacci searches.
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This feature is similar to the one in the razor search strategy

which prevents the parameter increments from becoming too

small. In the present case we do not want the uncertainty

interval to be too small in the early stages of optimization,

which would be wasteful j’ is now set equal to j and the

counter k to 1. A final uniform search is then made before

PIBSERis called for the first time,

Next time U is called (Fig. 9), j= j’ = 1, so unless k= 1

mod k. (in which case a uniform search is carried out) a

series of Fibonacci searches is made to locate the extrema

within the previously defined intervals to intervals of uncer-

tainty u. If the first argument in the call statement of FIBSER,

namely r, is + 1 a maximum is expected, if it is — 1 a mini-

mum is expected. Notice that following each Fibonacci

search certain safety checks are made. These determine

whether the response is consistently divided up into a mono-

tonically increasing or decreasing portion followed appro-

priately by a series of maxima and minima and ending in a

monotonic portion. These tests are important because the

series of end points, which are continually being redefined

(as indicated in Fig. 11), were set after a previous search and
may not correspond to the present ripple pattern. For exam-

ple, the ripples may have shifted substantially or a new one
may have appeared and so on. Thus, if any such inconsis-

tency is detected, LOCATE is called so that the search for U

becomes uniform and the end points are redefined in ac-

cordance with the current ripple pattern. If no inconsistency

occurs the end points are redefined in U using the current

local extrema, and the maximum value of y obtained is set

equal to U.

V. NUMERICAL RESULTS

Table 11 shows typical results obtained for the 2-section

example defined by (2) and (3) starting from each corner of

Fig. 8. Two runs per corner were made, one with an initial

exploratory increment of 0.25, the other with an increment

of 0.5. Data not shown in Table II but relevant to the stra-

tegy is
a = 0.1

6min = 10-5

~=5

~=~

%=8

nj = 100

k. = 2000

fJrnin = 10-3

{=2.

The number of function evaluations required to bring the

maximum reflection coefficient to within 0,01 percent of its

optimum value before the next random move was made

is shown for each case. The maxima in each response agree

to at least five significant figures (but this is not in itself an

indication that the optimum has been reached). Fig. 12

shows responses corresponding to the four starting points

and the optimum response.

TABLE II

OPTIMIZATION OF A 2-SECTION 10:1 QUARTER-WAVE TRANSFORMER
OVER100 PERCENTBANDWIDTH

Starting Point
8

z, z,

1.0 3.0
1.0 3.0
1.0 6.0
1.0 6.0
3.5 6.0
3.5 6.0
3.5 3.0
3.5 3.0

0.25
0.5
0.25
0.5
0.25
0.5
0.25
0.5

P

10
10
—
10
5
5
5

10

Number
of ran-

dom
moves

2
2
0
2
2
1
3
1

Number
of function

eval-
uations

157
207

34
152
223
100
210
163

The number of random moves and function evaluations required
to bring the reflection coeilicient within 0.01 percent of its optimum
value are shown.

K

3
m
>

5

‘o .5 1.0 1.5
normalized frequency

Fig. 12. Responses of the 2-section transformer corresponding to the
starting points tabulated in Table II. The optimum response is also
shown,

Extensive experimentation with the various constants and

scale factors to reduce the number of function evaluations

has not yet been attempted so these results should not be

regarded as the best possible. A published version of pattern

search [16], [17] on the other hand performed rather poorly

on this problem. It terminated outside the bounded area

starting from (1, 3), and only came reasonably close to the

optimum starting from other corners when the initial incre-

ment was 0.25, The reader is referred to another publication

[9] for more details on the behavior of pattern search.
Table III presents some results obtained for 3-section

10:1 transformers optimized over 100 percent bandwidth.

The relevant data for the three examples is the same as for

the previous examples with the following exceptions:

6 = 0.25

~=5

?L = 12.

The starting points for the first two cases essentially repre-

sent optimum single-section quarter-wave transformers (see

curve a in Fig. 13). In the first one the section lengths are

held fixed at the optimum quarter-wave value 1,. In the

second one they are allowed to vary. The third CaSecan be
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Parameters

&

l,/lq
z,
L2/lq
z,
[,/lg
z,

Maximum
reflection
coefficient

—

Number of
function
evaluations

8

7

6
l\
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TABLE III

OPTIMIZATION OFA 3-SECTION 10:1 TRANSFORMEROWR A 100 PERCENTBANDWIDTH
—-

Fixed Lengths Variable Lengths
Optimum

Start Finish Start Finish Start Finish
[15]

1.0 1,0 0.99814 0.8 0.99871
1.0

1.0
1 63716 1.0 1.62888 1.5 1.63363 1.63471

1.0 1.0 0.99995 1.2 1.00000
3.16228

1.0
3.16698 3.16228 3.16157

1.0
3.0 3.15250 3.16228

1.0 1.00190 0.8 1.00124
10.0

1.0
6.12645 10.0 6.09571 6.0 6.11328 6.11729

0.70930 0.19729 0.70930 0.19733 0.38865 0.19731 0.19729

406 1300

!

1250

I

—

VI. DISCUSSION

The razor search strategy was tested on Rosenbrock’s

\ / “T( ‘“ncti”n[’’]~::]loo(o-di)+(l-ol) 00)
5 -

$
m
‘4 -

3

2-

‘0 ,5 10 15 20
normalized frequency

Fig. 13. Responses of the 3-seetion transformer corresponding to the
starting points tabulated in Table 111. Curve a corresponds to the
first two cases, curve b to the third case. The optimum response is
also shown.

thought of as a reasonable guess at an optimum 3-section

transformer (see curve b in Fig. 13), and both lengths and

impedances are allowed to vary.

The number of function evaluations and the maximum re-

flection coefficient before and after optimization are shown

for each case in Table 111, Optimization was continued until

all 5 random moves had been made and the exploratory in-

crements had fallen below 10–5. Again all maxima in each

response agreed to 5 significant figures. The optimum re-
sponse is shown in Fig. 13. Observe that neither of the initial

responses has as many extrema as the optimum response.

Furthermore, as the transformer corresponding to curve a

has essentially one section, one could, in a rather loose way,

say that two additional sections have “grown” during opti-

mization.

It should be emphasized that the small differences between

the results obtained by optimization and the analytic results

[15] are not attributable to any a priori approximations in
the formulation. These differences, which do, however, re-

flect the efficiency of the optimization process as a function of

the input data determining the strategy, can be reduced

simply by continuing the optimization process,

in order to make an adequate comparison with other direct

search methods on a problem not involving discontinuous

derivatives and to assess the effects of the modifications

described in Section III. A contour diagram of (10) is given

by Bandler [11].

Table IV presents the comparison. Typical results ob-

tained with razor search with and without random moves

are shown. Without random moves razor search compares

very favorably with previous versions of pattern search,

with random moves it compares favorably with Rosen-

brock’s method. It may be conjectured, therefore, that a

random move is ultimately more efficient at locating an im-

proved direction of search along a narrow valley than is

reducing the exploratory increments. When the path of

discontinuous derivatives lies along such a valley as in Fig.

8, where exploring parallel to the coordinate axes from this

path yields no improvement, a random move is obviously

more efficient.

Powell’s method [21], [22] which performs very well on

Rosenbrock’s function (since it has quadratic convergence)

was also tried on the example defined by (2) but failed in
much the same way as pattern search after one linear mini-

mization.

O’Hagan’s spider search method [23], also based on pat-

tern search, but which explores in randomly chosen orthog-

onal directions, should ultimately be successful because of the

finite probability of obtaining a direction yielding improve-

ment [24]. This suggests that a rotation of coordinates

coupled with the facility of a random move could result in

greater efficiency. Another possibility is to use three base

points to make a pseudo-quadratic extrapolation so as to get

a better estimate of the path of discontinuous derivatives,

Following this, a one-dimensional minimization could be

made to find the minimum along that path.
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TABLE IV

A COMPARISONOF RAZOR SEARCH WITH PUBLISHED RESULTSOF SOME
OTHER DIRECT SEARCHMETHODS ON ROSENBROCK’SFUNCTION

Strategy

Ordinary pattern search [19]
Pattern with adjusted steps [19]
Razor search without random moves
Rotating coordinates [20]
Razor search with 3 random moves
Powell’s method [21 ]
Minimum

Function
u Eval-

8.03 x10-’
1 .03x 10-’
7.4 X1 O-’
2.2x1 o-5
1.6xl&$
7X 10-10

0

‘ uations

200
200
200
200
172
151
—

.—

The ripple search method might be made more efficient if

quadratic interpolation [11 ] is employed to find the extrema,

rather than the Fibonacci search. But in either case there is

the danger that if the maxima are not accurately evaluated it

may be difficult for razor search to determine a direction of

improvement when any two maxima are nearly equal. The

additional function evaluation made just prior to every ran-

dom move (Fig. 4) when the uncertainty interval for the

Fibonacci search is reduced is included to alleviate this

difficulty to some extent.

To date, razor search and ripple search have been success-

fully applied to optimization problems having up to 14

variables and 8 ripple maxima. More experience is required,

however, before the practical limitations of the methods are

realized. A worthwhile investigation would be an in-depth

comparison of the methods with the other currently available

methods for approaching minimax optima [1 ]–[5]. It is

computation time, reliability in a wide range of problems

and ease of implementation that should form the basis of

any comparison.

VII. CONCLUSIONS

Efficient direct search methods have been presented for

the computer-aided optimization of networks for which

minimax response optima are desired. In this paper the

methods have been tested on problems for which the optima

are known. In another paper [10] these methods are applied

to the constrained optimization of inhomogeneous wave-

guide transformers (including parasitic junction discontinu-
ity effects).

The methods described should find immediate application

to a wide range of microwave network design problems,

particularly where optimum broadband performance is

required. Noncommensurate network components present

no special difficulties. Parasitic effects can be taken into

account if reliable data to represent them is available. Re-

sponse and parameter constraints can also be taken into

account to guarantee physical realizability. Iri common with

other optimization methods, generally the closer the starting

point is to a local optimum the faster will be the convergence

onto that optimum. So, if an approximate feasible solution

can be found by “exact” methods, this can be used as a

starting point.

APPENDIX

The Razor Search Package

Variables in RAZOR as shown in Fig. 4:

conv

i

R(l)

s

s,

u

Ub

u@

6

initially true, becomes false unless finish criterion

satisfied

counts number of random moves

dimensionality of space

generates random numbers between – 1 and 1

vector controlling directions for exploratory moves

ith component of S

objective function to be minimized

value of U at ~

value of U at @

defines next exploratory increment

current minimum permissible exploratory incre-

ment

minimum value of e

scale factor3 for e

vector determining projected point and subsequent

8

maximum number of random moves

scale factor for randomization

current projected, exploratory or random point

ith component of $

temporarily the best point

ith component of W.

The following variables are initially assigned values ex-

ternally to the razor search package3: k, 8, ~~i.j q, K, p, and

W. The variables j and K are common to the ripple search

package.

Variables in PATSER as shown in Fig. 5: The variables

U+, U@o,@ and @’ are defined as in RAZOR. The variables 6,

c and 8 are common to RAZOR, with a being the scale factor

for reduction of 6. The variable LYis initially assigned a value

externally to the razor search package.

Variables in EXPLR as showtt in Fig. 6: The function U

and variables S~, U+, Udo, + and & are defined as in RAZOR.

The variables K, ~ and S are common to RAZOR.

Variables in PATMV as shown itt Fig. 7: ‘The function U

and variables U+, U+., +, 4,, +0 and 4,0 are defined as in

RAZOR. The variables k, 8, e, 0 and S are common to RAZOR,

with m being the counter for projected points.

The Ripple Search Package

Variables in Function U as shown in Fig. 9:

d

e

i

j

7

dummy argument

end point of starting interval in Fibonacci search for

local extremum

numbers intervals from left to right

integer set externally (initially O) controlling reduc-
tion of u

integer (initially O) storing previous value of j

J In retrospect, the scale factors ~, p, and ~ would probably be more
conveniently calculated by the computer. They could be obtained by
assigning initial values to e, the expression p. e in (7) and C, say, e,, rl
and u1, respectively. Then q+ (~l/e~,JIK, p+rJq and f- (al/rm,#K.
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k

kc

n

nf
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:

x

xl

x.

Y

yl

y.
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Y.
8X
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K

u

Urn in

T

T’
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counter for ripple search

a uniform search is carried out whenever k= 1 mod k.

number of intervals in uniform search

value for n in uniform search when k= 1 mod k.

number of turning points plus one

location of local extremum

maximum value of y

independent variable, e.g., frequency

lower bound on x (left end)

upper bound on x (right end)

objective function y(x), e.g., network response devi-

ation

value of y at left hand e

local extremal value of y

value of y at right hand e

temporary maximum value of y

value of y at x.

increment of x in uniform search

scale factors for fJ

maximum value of j

interval of uncertainty in Fibonacci search

minimum value of u

= 1(– 1) if searching for maximum (minimum)

= 1(– 1) if the first turning point is expected to be a

maximum (minimum).

following variables are initially assigned values ex-

ternally to the ripple search packages: j, j’, k., n, nf, xl, xU,

r, K, and u~i.. The variables j and K are common to RAZOR.

The variable e is common to FIBSER.

Variables in LOCATE as shown in Fig. 10: The function y

and the variables x, yi, and U are defined as in the function

subprogram U. The variables e, n, nO, o, XJ, xU, 5X and # are

common to U.

j = 1(2) while searching for a local minimum (maximum)

yz current value of y at x

j temporary local minimum value of y

f temporary local maximum value of y.

Computation of Reflection Coe@cient

Using the notation of Fig. 2, the basic steps in calculating

the reflection coefficient p of a resistively terminated cascade

of transmission lines were

i+-m, m-1, ... ,l

Zr–1

‘-zr+l

wherej= ~ – 1, c is the velocity of light and where mod (a, b)
is equivalent to a – b times the integral part of (a/b).

All programs were written in FORTRAN IV for the IBM

360/’65,
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