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ABSTRACT

This paper deals with fault detection for
linear analog circuits. The methods described are
based on measurements of voltage using current
excitations and have been developed for the
location of single as well as for multiple faults.
They utilize certain algebraic invariants of
faulty elements. Computationally, they depend on
checking the consistency or inconsistency of
suitable sets of linear equations. The equations
themselves are formulated via adjoint circuit
simulations.

INTRODUCTION

The main objective of testing is to check
whether a circuit, already manufactured, meets the
required specifications or not. If not, testing
should detect the source which causes the circuit
to be wrong, principally, to indicate the
element(s) which is (are) at fault. By a fault we
mean not only an unwanted short or open circuit
but also, more generally, any large change in the
value of an element w.r.t. its nominal value. We
assume that the network design, i.e., the topology
as well as the nominal values of the parameters
are known.

Fault location can be done by the method
which identifies all element values (e.g., [1])
and then comparing the nominal and actual values.
However, we usually look for one, two or several
faults and there is no need to identify everything
as though we did not know anything about the
network.

There are a few papers dealing with fault
analysis without identifying all elements, mostly
to locate single faults. This can be done by
constructing a fault dictionary using computer
simulation of mainly single catastrophic faults
[2,3]. Another approach uses certain analytical
or geometrical invariants of element value changes
[4-8]. The latter approach is worth consideration
since it enables us to deal also with other than
catastrophic faults and the computational effort
required is much smaller than in the case of fault
dictionaries.

This paper presents a new approach to fault
detection in the foregoing sense. Analog linear
and lumped networks are considered. Methods for
single as well as for multiple fault location are
proposed. The methods are based on checking
consisteney or inconsistency of certain equations

This work was supported by the Natural
Sciences and Engineering Research Council of
Canada under Grant A7239.

which are independent of faulty elements. The
measurement tests are assumed to be performed at a
single frequency.

SINGLE-FAULT DETECTION

Consider two different network functions f
and f2 of the same element Y as
A1 + B Y A, +B.Y
£, = ——L , f, = 22 . (1)
1 C, +D.Y 2 C,+D.Y
1 1 2 2
If the two functions essentially depend on Y then
each of them can be solved for Y as

‘- A1 - C1f‘1 i A2 - szz
-B1 + D1f‘1 -82 + D2f2

1

(2)

From (2) we find the relation
(C1B2 - D,'Az)f1 + (A1D2 - B1Cz)f2
= (A1B2 - B1A2) + (C1D2 - D1CZ)f1f2. (3)

If the two network functions are of the same type
(3) becomes the linear relation

af'1 +bf, = ¢, ()

a
where a = C1B2 - D1A2, b A1D2 - 5102
A1B2 - B1A .

Equaéion (4) gives us the relationship
between values of f., and f. when all network
elements except Y aré kept 3nchanged. Similar
relationships between f1 and f_ can be derived for
all other elements. This f% done for nominal
values of all elements. Therefore, we obtain p
equations

aif1 + bifz =t 11,2, ..., 0, (5)
each of them corresponding to a certain element of
the network.

Based on 'measurements, we find the actual
values of f, and f,. If there is a single fault
within the network %hen the equation corresponding
to the faulty element is satisfied since all other
elements are at their nominal values. All other
equations are likely to be unsatisfied. To be
able to locate uniquely the faulty element it is
required that

> n

and c &

ak b
det 2 . 40, (6)

for any k, 4, k #2%.
Since the nominal values satisfy equations

(5) we can use the changes Af‘1 and Af2 instead of



f‘1 and f2 and we have homogeneous equations

atar, + bt af, =0, 1=1,2 .yp. (T)

The actual values of the network functions f
and f, are to be identified by measurements.
Using,  preferably, current excitation and voltage
measurements the two network functions should be
certain impedances or trans-impedances

- m
fy= Vy/lgy

The two excitations 181 and I

j=1, 2. (8)

g2 do not need to be
applied to the same port, but if they are then the
? and V; can be taken
simultaneously at the same measurement test. We
now derive a simple method which supplies the
coefficients of equation (7) for the latter case.
Consider the representation of the network
shown in Fig. 1. Note that the Ud-port network

voltage measurements V

A
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Fig. 1 Network with a single fault.

consists of elements which are at their nominal
values. According to Fig. 1 we have

A m .m T T
V=V, Vv,V vi] = g[ 00 Ig ‘ViAY1] .9

- 121
Since the left hand side of (9) can be expressed
as V = YO + AV, where Yo is the nominal vector
obtained for AYi = 0, we find
av = 200 0 0 1,17, (10)
Thus
ay? z
1 14
vm =Ii . (11)
A
2 Zay

Eliminating I, from (11) we obtain
Zo, AVT - Z1uAV? = 0. (12)

Note that in order to be able to eliminate Ii at

least one of Z1u and Zzu has to be different from
zZero.

The equation (12) is one of the equations
(7). It corresponds to the ith element. In this
way we can find all equations (7). But it would
be inconvenient to consider as many different
4-port networks as the number of elements. We
propose to use the adjoint network simulation for
this purpose. The method is explained in Fig. 2.

I 1
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Fig. 2 Adjoint network simulation.

We find

N =2

i1 and V,, = Z,,. (13)

14 24

Thus, the equation (12) can be rewritten as
- n N
Vo, AV - VL AV, = 0. (14)

Therefore, in order to obtain the coefficients of
the equations (7) two simulations of the adjoint
network are required. First, we apply a unit
current to the first measurement port and
calculate the voltages across all elements V1 y
Vo,y ooy V s Second, applying a unit cyrrent éo
gﬁé second Beasurement port we find V__, V_,, ...,
sz. Finally, we formulate the equatlgns %%4) for
i*= 1, 2, ..., p. In fact, only one simulation is
required since in both cases we have to solve
exactly the same system of equations with
different right hand sides. It can be calculated
simultaneously, or alternatively, using the same
LU factorization.

Finally, it is to be noted that the above
method can be used to detect more general faults
like shorts between nonincident nodes. We can
simply consider nonexisting elements between such
nodes as elements of nominal value Y = 0.

MULTIPLE-FAULT DETECTION

We now generalize the foregoing approach in
order to be able to deal with several simultaneous
faults within the network. These faults are re-
presented as external loads of (n+k)-port network
shown in Fig. 3. We consider nuports of measure-
ment with the voltage vector ¥V and the current
vector I°. The por%s of fault are described by
the voltage vector Y and the current vector

X X X X X X X, T
E = -[V1AY1 V2AY2...VkAYk] , (15)

where k < n-1.
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Fig. 3 Network with k simultaneous faults.

Assuming that the impedance matrix Z of the
(n+k)-port network exists we have -

B Zm 2 "
~ = ~ ~x . (16)
2o I || I

~ ~ ~ -~

If the ports of measurement are open-circuited or
are excited by independent current sources we find
that the voltage change vector can be expressed as

av® 0
- =2 |- , 7))
av® = *
and, in particular,
X
av" = 2 1 (18)

Z is a rectangular matrix having more rows than

cgfumns. Assuming that Z is a full column rank

matrix we can find the g%iution of the equation
(18) as

X T -1 7

‘E - (?.mx zmx) me A!m' (19)

Therefore, eliminating ;x from (18) and (19) we

find the equation

T

(z (2 7

-1,T
Z e Zx Exe? Zox = 1]AYm =0 (20)

which is a generalization of equation (12). Given
a vector of voltage changes A we check the
equation (20). It is consistent ?egardless of the
element changes AY1, AYZ, ey AYk if all other

elements are kept at their nominal values.

In order to be able to detect k simultaneous
faults we need to know equations similar to (20)
for all possible combinations consisting of k
elements.

As before, the matrix 2
means of the adjoint network.
network we have

can be found by
For the adjoint

e zim zzm ~
N = |- - N (21)
v 2! 2% *
~ ~Mmx ~XX ~
Let Ix = 0. Then we obtain
ezl 10 (22)

where I is the vector of an adjoint network

~

excitation. Taking n 1linearly independent
excitations, e.g.,
L™, (23)
we obtain
T ox1 oxXn
me = [! - ¥ ] (24)
Thus, we need n simulations of the adjoint

network (with the same LU factorization) in order
to obtain the coefficients of the equations (20)
for all possible combinations of k elements. We
apply a unit source to the measurement ports and
calculate voltages across all elements of the
adjoint nominal network. Taking the values
corresponding to a certain combination of elements
we find the corresponding matrix Zm .

If there are k faults withif the network we
can detect them by checking the equations (20) for
all possible combinations of k elements. The
expression which corresponds to the elements at
fault is equal to zero while the other expressions
are likely to be different from zero. This
enables us to indicate the suitable combination.
However, the approach is limited. Some problems
which may arise are discussed in the following
section.

INTERPRETATION

We now discuss the assumptions and the
capacity of the approach presented in this paper.
In order to use it we have to formulate an
appropriate set of p equations for single-faults,

(g) matrix equations for double-faults, (g) matrix

equations corresponding to three simultaneous
faults, ete. This can be done by practically one
simulation of the adjoint nominal network (with n
different excitations). Given measured voltages
we calculate the voltage changes w.r.t. nominal
values and check the equations. We start with
equations corresponding to single faults. If all
equations except one are not satisfied we can
suppose that there is a single fault in the
element which corresponds to the satisfied
equation. If all equations corresponding to
single faults are not satisfied we have to go
further and check the equations corresponding to
double faults, etec.

To be able to uniquely detect the suitable
fault combination the equations (20) should be
block independent [9] of each other. It can be
shown that two different equations (20) are block
dependent if the columns of the corresponding
matrices 2 generate exactly the same k-
dimensional “subspace in n-dimensional space.
Checking this we can find out which equations of
the form of (20) are dependent. In other words,
we can determine’ the combinations, whose influence
on the vector AV is similar, i.e., based on AV
we cannot distinguish these combinations. Then,
we should change measurement tests to be able to
determine which combination actually occurs.

The approach presented in this section is
based on the assumption of the existence of the



impedance matrix. This assumption, however, is
not essential since the impedance matrix exists
for most practical networks. A more crucial
assumption is the one which concerns the matrix
Z to be of full column rank, i.e., that there
éxist exactly k linearly independent rows of me.
These rows correspond to those voltages whichH we
can use to uniquely determine Lx as well as Y.
This is simply the problem of the identification
of elements AYx, AYS, .., A which was discussed
in [1]. Hence, there is an upper bound of k for
which we are able to construct the equation (20)
and, as a consequence, to detect k simultaneous
faults. If we want to consider more simultaneous
faults we can use the method of identification of
all elements described in, for instance, [1].

Finally, it is to be noted that in order to
implement the approach described in this paper a
concept of "fuzzy consistency" should be
developed.

EXAMPLE

Consider a simple resistive network shown in
Fig. 4 with nominal values of elements G, = 1, i =

1, ..., 5. For double-fault location “we choose
the port 11° as a port of excitation with I8 = 1A
2
G2 ///p Gq
1 { } 03
8, Gy > Gs
'o o3

Fig. 4 A simple resistive network example.

and ports.11’, 22° and 33" as ports of measurement

with nominal voltages V... = 5/8, V2 . = 2/8 and
V33, = 1/8. According to (24) we fin
- - - -
212 .1 g -3 23 .1 2 i
- y - ,
-mx 8 K -1 -mx 8 L1 2
(5 1) R
z;i - % 2 21|, 2;3 - %- 2 2,
- L1 =3 - L1 5J
r . r 1
23 1|3 2 a4 1|3 !
me =3 -2 uy . me =3 -2 2 y
- :1 2_‘ - .-1 -3-4
~ - ~ =
3 1 2 1
25 1 34 1
257 = 7 |=2 2 y Z2° =7 | U 2 ,
-mx ~ 8 -1 5 -mx ~ 8 L2 -3
f2 1] M1 1]
zgi - % y o2, z:: = % 2 2
- L2 5 - =3 5

Let the voltage measured be ym = [1/2 3/8 1/8]T.
Taﬁn the equation (20) is satisfied for the matrix
gm and is not satisfied for every other
coébination. Thus, the elements G2 and G, are
indicated as faulty elements. It can be checked
that G, = 4 and Gy = 0.5 cause this situation.

CONCLUSIONS

Fault analysis, even though it can be carried
out by methods of identification, should have its
own special approaches especially in the case when
only a few faults occur. Methods based on the
bilinear dependence of network functions on a
circuit parameter have been developed for
single-fault detection. A particular approach
utilizing a single current excitation and
measurements of two voltages has been proposed.
The adjoint network simulation has been found to
be a convenient way for the necessary
calculations. This approach has been successfully
extended in order to deal with multiple-fault
detection. However, there is a 1limit to the
number of simultaneous faults which can be
considered.
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