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ABSTRACT

This paper deals with postproduction
identification of network parameters for linear
analog circuits. Methods for selected as well as
for the identification of all parameters are
discussed. The methods are based on measurements
of voltage using current excitations. Tests are
assumed to be performed at a single frequency.
The well known nodal approach is used to formulate
the appropriate systems of equations for
identification of all parameters for passive as
well as active circuits. A ladder network example
is studied in some detail.

INTRODUCTION

Computer-aided circuit design, which has
become one of the most powerful tools in the
design of analog electrical devices [1,2], enables
us to deal with manufacturing tolerance and tuning
problems. So-called deterministic tuning requires
not only knowledge as to which elements have to be
altered, but also the actual values of network
parameters in order to be able to calculate the
amount of tuning to be carried out. This is the
subject of the actual parameter identification.

The solvability of the all parameter
identification problem was first considered by
Berkowitz [3]. His approach was mostly based on
current measurements. Later, several other
authors [4-9] investigated the problem. Trick et
al. [6,7] considered the identification using
nodal voltage measurements only. They proved the
very important result that, for linear networks,
the problem can be solved by means of linear
equations. Their approach, however, seems to be
unnecessarily complicated, because many
simulations of the adjoint have to be performed in
order to formulate the equations.

Most papers on parameter identification
assume tests to be performed at a single
frequency. This provides the values of passive
admittances and control coefficients of controlled
sources. Repeating the identification at
different frequencies enables us to identify the
component values provided that there is a unique
dependence of element values on the frequency
response (as for canonical structures).

We also assume that there are no direct
parallel connections of elements or, alterna-
tively, we have to be satisfied with the knowledge
of the admittance of the whole connection [3].
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IDENTIFICATION OF SELECTED PARAMETERS

In this section we discuss two extreme
situations that (1) voltages across unknown
elements are available to be measured, and (2)
ports of measurement are different from ports of
identification.

The first situation can be represented as an
active n-port being terminated by unknown elements

Ty, Y2, ceny Yn (Fig. 1(a)). Assume that there
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Fig. 1 Active n-port and its hybrid equivalent.
exists a hybrid equivalent of the active n-port
shown in Fig. 1(b). The equivalent is described

by the vector of port voltage sources Vi é [V? VS

s &

. VE]T, the vector of port current sources Ib

S S

S T . -
[Ik+1 Ik+1 ee In], and the hybrid matrix of the
n-port without independent sources defined by
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From Fig. 1(b) we obtain
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where 1 is the identity matrix of appropriate
order and I is the vector of currents through the
unknown elements. Knowing I we obtain
¥, = -L,/V, or Z, = -V./L; (3)
for i =1, 2, ..., n.
From (2) it is seen that the existence of the
inverse of ga is necessary to obtain the
solution. This is equivalent to the existence of



the admittance matrix of the n-port. On the other
hand we have considered another assumption, i.e.,
that the hybrid equivalent exists. It can be
shown that the existence of a hybrid matrix is
sufficient for the existence of the corresponding
hybrid equivalent. Therefore, if we assume that
the admittance matrix exists we can consider the
Norton equivalent and, according to the above
discussion, we can find the solution. This leads
to the following theorem.

Theorem 1

Identification of n elements based on
voltages across these elements is possible if and
only if there exists the admittance matrix of the
corresponding n-port (after shorting independent
voltage sources and open-circuiting independent
current sources).

Now, consider that the measurement ports are
different from the ports of the elements which are
to be identified. Using a similar hybrid
equivalent approach it can be proved [10] that the
existence of the transmission matrix linking ports
of identification as the input with ports of
measurement as the output is necessary for the
identification. On the other hand, assuming that
there exists a mixed "transmission-hybrid"
representation of the network described by (see
Fig. 2)
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Fig. 2 (2n+m)-port with m external excitations.
we find, for I" = 0,
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This discussion gives us the following theorem.

Theorem 2

Existence of the transmission-type matrix
defined by (4) is necessary and sufficient for

identification of n unknown elements based upon n
voltage measurements if ports of measurement are
different from ports of identification.

The requirements of Theorem 1 can easily be
verified. The admittance matrix exists if and
only if no port can be shorted by shorting all the
remaining ports. In contrast, verifying the
conditions of Theorem 2 is more difficult. This
is simply because the elements of a general
transmission matrix of a 2n-port network (unlike a
2-port) cannot be defined as ratios of single
input and single output in the presence of shorts
and opens of other ports. Nevertheless, we
observe that in both cases there exists a limit to
the number of elements which can be identified.
Usually, Theorems 1 and 2 are satisfied as far as
the identification of one or two elements is
concerned. The more elements we want to consider
the more unlikely it 1is to satisfy the
corresponding theorem. The number of elements
which can still be identified strongly depends
upon topology and elements chosen.

IDENTIFICATION OF ALL PARAMETERS

We now consider the situation when all
network elements are unknown. We assume that
voltages across all elements are available. Since
Kirchhoff’s voltage law is satisfied (i.e., we
assume that measurements are accurate enough) we
can consider nodal voltages only. Using the
current excitations we have a generalized branch
shown in Fig. 3. As is well known, a network with
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Fig. 3 Generalized branch.

p branches and r nodes can be described by the
branch-node incidence matrix A = [A, ], i = 1,
- ik
wesoy P=1Tand k = 1, ..., pP.
Following the typical nodal approach we write
Kirchhoff s current law in the form

= - 15, (6)

PERRE Ip]T is the vector of branch
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where I 4 [I1 I

currents and IS ﬁ A[J1 J2 ee

Using the notation Y = [Y1 Y2 YP]T for
the vector of- branch admittances, and U =
diag(U1 U2 ce Up) for the matrix of branch

voltages, we can write Ohm’s law for all branches
of the network as
I=-UY. (7

~ ~



Since Kirchhoff’s voltage law is satisfied
automatically we note that equation (6) together
with (7) are all the available equations for the
network. The current vector I is of no interest,
so eliminating it from (6) and™(7) we find

(oY =15, (8)
This is simply the system of equations which we
have sought. It contains r-1 equations with p
unknown values of all admittances. Matrix A
consists of r-1 linearly independent rows, so if
branch voltages are different from zero then the
‘matrix (AU) also consists of r-1 linearly
independent rows. Note that p can be equal to r-1
only if the network graph 1is a tree. In other
cases we always have p > r-1 and we are not able
to 1identify all elements. If some of these
elements are known we can solve (8) for the
remaining parameters provided that the resulting
system contains an appropriate number of linearly
independent equations. This is another approach
to the problems considered in the foregoing
section.

Now, we are interested in the identification
of all parameters of the network. Since the
number of equations in (8) is less than the number
of unknowns we have to find additional equations
based on other test(s). According to (8) one test
gives us at most r-1 independent equations. This
means that we need at least m tests, where

R B
m = int( — ) (9)

and int(x) denotes the smallest integer x_ such
that x < x_. Because the number of branches p is
between r-T (for a tree-network) and r(r-1)/2 (for
a complete-graph network), we find that

1< m < int( % ). (10)

For typical networks m is expected to equal 2 or
3. Every set of measurements U~ provides the
appropriate system of equations (8). All of those
systems give us the final matrix equation
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where M > m.

The system (11) is required to contain
exactly p independent equations. How to arrange
for the least number of independent measurements,
however, is not known so far. Nevertheless,
several directions can be proposed. It would seem
to be optimal if the subsequent measurements

provided equations which formed an independent
system along with all previously obtained
equations and, furthermore, if the final system

was not ill-conditioned. To this end we would
propose to use different 1locations for the

excitations for the different tests. These
excitations should be as remote from one another
as possible.

METHODS FOR LADDER NETWORKS

Consider the ladder network shown in Fig. 4.

Fig. 4 Ladder network.

The branch-node incidence matrix A consists of r-1
= n+1 rows and p = 2n+1 columns.” Using only the
input source for the first test

el 00 Lol (12)
we obtain the first subsystem of (11).

According to (9) we find m = 2, so we have to
arrange for another test. We will discuss three
difference tests such that each of them can be
chosen as the second test.

1. We use the same excitations (i.e., ISZ = I
and the output port is shorted. ~ -

51)

2. We use only the output source for the second
test, i.e.,

S2 _ s2 ,T
=00 0 ... 0 12n+1] , (13)

and the input port is shorted.

3. We do not make any shorts and we apply the
output source only.

Note that regardless of the method chosen,
for any row of A2 we can find an identical row

within the matrix A‘. Hence the linear
independence or linear dependence of the final
system (11) depends on the particular values of
voltages from the first test in comparison with
those from the second test. Because of this the
first method is likely tc be ill-conditioned. It
can be caused by relatively insensitive behaviour
of voltages across the elements located close to
the input w.r.t. a change of the output load. From
this point of view it is obvious that we are
looking for quite a different excitation for the
second test. The second and the third methods
satisfy this requirement. We will discuss the
third method but most of the following results
will be applicable to the second method. The

resulting system of equations (11), after
reordering, can be expressed in the form
A Y =B, (14)

where
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The particular sparse form of the matrix A enables
us to find explicit formulae for the solution of
(14). It is more convenient to use nodal voltages

v?, ceny vz+1, i =1, 2, such that
i i i i i
Uney = Ve and U, =V -V “7)

for 1 =1, 2 and k = 1, 2, ... .
two equations we obtain Y2n and
sS2 1 1
I2n+1 (Vn - Vn+1)

Y2n+1 = an . (18)

Substituting YZn into the preceding two equations
we can determine Y2n-1 and Y2n—2'
find the recurrent formulas

From the last

In this way we

Y. =

1 . (23)
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Finally, from the first equation of the system
(14) we have
S1 1 1
I1 - (V1 - VZ)Y2
1

v
1
Alternatively, since the system is overdetermined,
we obtain from the second equation
2 2
v, - V1
Y =_2—'—Y
1 2 2
v1

(2u)

and both solutions should be identical. of
course, this second equation does not appear in
the second method (because of shorting the input
port). The above solution may be described by the
term backward solution.

Similarly, starting from the first two
equations we can derive the forward solution [10].
For the second method, only the backward solution
exists and Y, is expressed by (23). For the third
method we can use the backward as well as the
forward solution and the two solutions should be
identical. They can be different from each other
if the measurements are inaccurate. Then the
question arises of how to take advantage of the
fact that the system (14) is overdetermined.

The solvability of the problem depends on the
determinants (21). Detailed discussion of this
can be found in [10].

ACTIVE NETWORKS

We now consider a network which consists of
passive as well as active lumped elements.
Control sources are taken into account as models
of active elements. We will consider only voltage
controlled current sources (VCCS) which are
typical for the nodal approach, It 1is
sufficiently general for many practical cases.

The general formulation discussed earlier can
easily be extended to identify unknown control

coefficients besides all other passive
admittances.
Consider a network with passive branches and
s voltage controlled current sources. The VCCS
elements are described by the equation
JE = yi Ui, k=12, ..., s. (25)

‘For our purposes we have to treat the
controlled branches as different from those which
contain passive elements and/or independent
sources even if they are parallel. Now,
Kirchhoff’s current low can be written in the form
S

c
ad =-1 (26)
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where J° & [J? Jc ... JCJT, A_ is the (r-1) x p
co e~ s ~g X

incidence matrix concerning paSsive branches and
éa is an (r-1) x s matrix constructed for all
controlled branches in the same way as A .

. Using the notation U = diag(U UZ°P.. v ug
02 v Us) we finally find the equation P
@ 0y = 15, 7

where A = [Ap -Aa] and Y is the vector of unknown

c ,C c,T
parameters { = [Y1 Y2 - Yp Y1 YZ . Ys] . The
system (27) contains r-1 equations with p+s

unknowns. As before, in order to obtain an
appropriate number of independent equations we
have to arrange "for other tests. The number of
tests which we need is at least

=2, (28)

m = int (
r-

The same approaches are valid as for the choice of
independent measurements.



EXAMPLE

As an example consider the identification of
unknownparametersG,G G,G,G andG of a
resistive active circuit sho&h 1n Fi

We have
G°U,
+ U =+ Uy -
---c ‘ l I I °---
+ 2 + 4
13 Uyl [Gs Gs s 13
B = O---
Fig. 5 An active network example.
1 0 0
A = 0 -1 1 1 0 1
- 0 0 0 -1 1 -1
and U = diag(U u, U, U, U_. U ) The number
2 73 "4 75 T
of tests required is 2. First we let I -[2 0 0]
and measure voltages U = diag(1 1 0 -1 1 1).
Second, for ISz (0 0 8]T we measure U2 =
diag(1 -1 2 -4 6 1). The two tests give the final
equation
~ 7 ~ - 9
1 1 0 0 0 0 61 2
0 -1 0 -1 0 1 62 0
0 0 0 1 1 -1 G 0
3.
- ’
1 -1 0 0 0 0 Gu 0
0 1 2 -4 0 1 65 0
o o o 4 6 -1]|c 8
- < - o . J

wnose solution is G = [1 1 0.5 1 1 217

CONCLUSIONS

A very basic approach to the problem of
postproduction parameter identification has been
discussed. Methods presented here are oriented to
linear analog electrical networks. They are based
mainly on voltage measurements of the network,
which 1is excited by current source(s). The
limitations for the selected element
identification have been derived and formulated in
Theorems 1 and 2.

For identification of all elements, a simple
approach based on nodal analysis has been
proposed. This approach provides the maximum
number of independent equations which can be
formulated based on a single test. As a very
important example we present a method for ladder
networks. The method is much simpler than that of
Trick and Sakla [6] and, because of a particular
sparse form of the equations, we obtain explicit
recurrent formulas for the solution. For arbitrary

network topologies, however, there are still many
open questions and unsolved problems.

It is to be noted that the presented nodal
approach to the identification of all elements is
also valid under limited measurements. In such a
case we simply do not have all of equations in
(11). The equations containing explicitly the
voltages which are not available have to be
dropped from (11). If necessary, we should
perform more tests. Then, the identification can
be done if the network is element-value-solvable.
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