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An exact analysis approach for efficiently

evaluating the response and its sensitivities with
respect to all design parameters for cascaded 2p-port

networks is presented for any value of p. It is

illustrated via a quasi-optical bandpass filter.

Introduction

A generalization of an analysis approach for
2-port cascaded networks [1] to handle 2p-port networks
is presented. The generalized approach has the same
advantages as those for 2.port networks. These
advantages include efficient and fast analytical and
numerical investigations of response, first-order

sensitivities of the response w.r.t. variable
parameters, and large change sensitivities. The need

for this generalization evolved from the fact that many

microwave networks are represented as a cascade of
2p-port elements.

Thevenin and Norton equivalents for these cascaded
networks can be obtained systematically using this
approach. These in turn are very useful for worst-case
analysis [2]. As an example a quasi-optical bandpass
filter has been analyzed using this approach and the

exact sensitivities of the response w.r.t. a parameter

aPPearin8 in two of the 2p-port elements, representing
the filter elements, have been evaluated.

Theory

The analysis approach consists of two principal

types

consi;tj~; R’~;;li%’1~ ~ti~~~tr!yl~~~~ ~~~’$~~~
are defined as

where d:ld:l

1 IS the unit matrix of order p,
-P

O is the null matrix of order p,
-P

and successively premultiplying each constant chain

matrix by the resulting matrix until an element of
interest (which contains a variable parameter) , a

reference plane or a termination is reached. The

second type of analysis is the reverse analysis which

consists of initializing a V matrix as either E or E
and successively postmultip~ying each constan;lmatr;;

by the resulting matrix until an element of interest, a
reference plane or a termination is reached.

Consider the 2p-port element shown in Fig. 1,
possessing p input ports and p output ports. It S

transmission matrix is given by

-[1
!11A-12

A~

!21 !22

where !+ll, A
-12’ !.21 a*d 422

are p x p matrices. The

input quantities m this case are

— — — — —
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Fig. 1 A 2p-port element.

and the output quantities are

T
Y=[Y, Y2.. . Yp Yp+l YP+2 . . . Y2PI 9

where the elements with subscripts 1 to p denote
voltages and from p+l to 2p denote currents.

For the forward and reverse analyses the matrices

~1, g2, ~1 and 12 are initialized such that

!1
==> :1 or xl, ~2 ..> LJ2 or V

-2”

We can now derive in an analogous manner to the
derivation of (9) of [1]

where

lj, 12, xl and 12 are the matrices obtained from

forward and reverse analyses,

!JJ is the vector containing the p source voltages,

lJL is the vector of load voltages,

:L is the vector of current sources at the loads

(if any),

~S and :L are diagonal matrices containing the

source impedances and the load admittances,

respectively.

To evaluate the unknowns ~L, having obtained
numerical values for (l), a system of p linear
equations is solved.

To obtain the Thevenin voltages of the subnetwork
on the l.h.s. of the element A, we let I
O in (l), which gives

.L’!?and:L=

YS = (~+:&) ~~1 ~L = (~1, +: SQ21) ~L, (2)

where

!?1 1
.~~y1,:21=~N1,

and from (2)

~TH
= !?L = (clll + ~s Q21)-I IjS! (3)

The output impedance matrix or the Thevenin impedance

is obtained one column at a time by letting YS . 0, :L

. 0 and I = O except ILi
-L .

(which is the current s;urce



at the load end for the ith port) which leads to an

equation from which the ith column of the p x p ;T
matrix is obtained. Fig. OF

the subnetwork preceding
2t&w;1j;~nt~T~ and;i$I&

formulas can be derived (analogous to (lS)”and (14) of

[1]) for the input admittance matrix and the Norton
current equivalent matrix.

2p port
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Fig. 2 Equivalent Thevenin voltages and impedance

matrix for a subnetwork consisting of 2p-port elements.

As a special case when ~S and ~ are Q or when

they are considered as the first an &last elements,

respectively, (1) becomes

so that the load voltages are given by

(4)

(5)

When ~ is perturbed to ~ + b!, the new values for th
load voltages (!L ~ A~L) can be obtained by 6 p 3

additional multlpllcatlons and the solution of a
p-system of linear equations. Alternativel.y, the

Sherman-Mo risen formula [3] can be used to find
-Y

(QII+AQI1) . Note that the reanalysis of the cascaded
network 1s not performed. We use the results of only
one analysis.

Differentiating (4) w.r.t, a parameter $ which

aPPears in the matrix A only we get

o =Z(ayao) y, IL +Ij ~ yl (a~L/aO), (6)

so that the sensitivity of the load voltages can be
obtained from

where

- F( A/a )V .aQ1l/ao - -1 a- $ -I

(7)

(8)

Numerical Example

The analysis and sensitivity evaluation of the

response of a quasi-optical bandpass filter have been

performed using the analysis approach described. The

filter consists of three metallic (copper) wire grids

in space with separations of 12.5 mm (5/41). The

equivalent circuit of the filter is shown in Fig. 3
[4]. The first and third gratings (in the x-y plane)
have their wires parallel to the x axis, while the

middle grating has the wires oriented at an angle o
with respect to the x axis. The circuits R($) and

R(-$) are used to connect the middle grating with the

adjacent local coordinates (the equivalent circuit of

the filter is based on the local coordinate concept

[41). The free space between the gratings is

represented by the uncoupled transmission lines (with
lengths equal to the separations between the gratings)

as shown in Fig. 3. The parameters B , Bb, X and Xb

can be found in [5] and R and X area from [fi. The

dimensions of the grating] are g?ven in Fig. 4. The

t’

Fig. 4 Physical dimensions of the wire
p = 0.2mm, w . 0.12 mm, t = 0.01 mm.

grid :

dielectric sheets supporting the metal gratings were

not considered in our analysis. The filter is excited

by a source representing an incident wave linearly

polarized in the direction perpendicular to the first
grating (i.e., polarized in the y direction). The

transmitted wave is represented by the output voltage
at port 3.

The insertion loss of the filter (the center

frequency f
9

is equal to 30 GHz) is shown in Fig. 5 for

various ang es $. The exact sensitivity of the voltage
at port 3 w.r.t. o is plotted in Figs. 6, 7 and 8 fbr
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Fig. 3 Equivalent circuit
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a= Cos+

p= sin+

ter [4].
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Fig. 5 Insertion loss of the filter for different

values of $ .
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Fig. 6 Real part of av3/a0 at O = 45° and O = 600.

different values of $. A slightly more complicated
formula than (7) was used since $ appears in two
elements of the cascade.

Conclusions

The use of this analysis approach avoids the need
for reanalyzing the cascaded networks to evaluate large

change sensitivities. It also facilitates the
evaluation of first-order sensitivities of the response

w.r.t. variable design parameters without defining and
analyzing any additional network (adjoint network) .

These advantages lead to a considerable saving in
computational time and effort.
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Fig. 7 Imaginary part of aV3/a@ at o . 45G an @ . 600.
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Fig. 8 Real and imaginary parts of av=/a$ at o . 75°.
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