
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-17, NO. 8, AUGUST 1969 563

Computer Optimization of Inhomogeneous

Waveguide Transformers

JOHN W. BANDLER, MEMBER, IEEE

Abstract-The problem of designingbroadband mtdtisection stepped

rectrmgrdar waveguide impedance transformers, when the input and output

gnides have different cutoff frequencies but propagate the same mode, is

formulated in general terms for direct optimization hy digital computer.

The formulation is sufficiently flexible to allow nonideal junction discon-

tinuity effects and mismatched terminations to be taken into account

doring optimization, Constraints placed on the width, height, or length of

any section need he dictated ordy by considerations for dominant mode

propagation and the requirement of small (hut not necessarily negligible)

jonction disconthmities. The objective of the present formrdation is a

minimax equal-ripple response over a predetermined frequency band

satisfying the constraints seleeted for the particular problem. The ripple

search strategy to locate the maximum reflection coefficient within the

band and the razor search strategy to minimize it, as described by

Baodler and Macdonald [8] in another paper, were employed. Con-

strained optimum equal-ripple sohrtions to examples previously published

by Yoong [2]-[4] Matthaei et al. [4] and Riblet [5] are presented. They

demonstrate the considerable improvements made possible hy the present

formulation with regard to performance, reduction in number of sections,

and physical size. The approach used in this paper should also find appli-

cation in the design of broadband microwave matching or equalizing net-

works consisting of noncommensurate components and for which exact

synthesis techniques may be unavailable.

I. INTRODUCTION

T

HE PROBLEM of designing broadband multisection

stepped rectangular waveguide impedance transfor-

mers, when the input and output guides have different

cutoff frequencies but propagate the same mode, has

already received some attention [1]–[5]. However, the in-

herent complexity of an exact synthesis of such structures

to have broadband performance has led previous authors to

formulate approximate design theories based on equal-ripple

solutions for homogeneous quarter-wave transformers [6].

Young, who studied one- and two-section transformers

[1]-[4], restricted the lengths of the sections to be quarter-

wave at a common frequency within the band of interest.

Riblet [5] specified that each section be quarter-wave at the

midband guide wavelength of that section defined by the

guide wavelengths at the upper and lower edges of the fre-

quency band. Thus, in general, the sections would be quarter-

wave at different frequencies. Young’s broadband designs

resulted from modifications to his exact maximally flat solu-

tions. Riblet’s multisection design procedure involves making
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certain approximations permitting one to identify the coeffi-

cients of the insertion loss function of an arbitrary inhomo-

geneous transformer with those of a suitable equal-ripple

function. A system of nonlinear equations results, which

leads to the unknown parameters of the transformer.

In this paper, the problem is formulated in very general

terms for direct optimization by digital computer. The

formulation is sufficiently flexible to facilitate the design of

multisection, inhomogeneous, nonsynchronous, nonquarter-

wave rectangular waveguide transformers having nonideal

junctions and possibly mismatched terminations, The only

restriction is that any effect to be included be known and

calculable. Constraints placed on the width, height, or

length of any section need be dictated only by considerations

for dominant mode propagation and the requirement of

small (but not necessarily negligible) junction discontinuities.

If reliable data is available for discontinuity effects due to

simultaneous changes in width and height at a junction, it

can be incorporated directly into the optimization process.

This would obviate the usual need for subsequent correc-

tion using, for example, formulas due to Cohn [7].

Optimum equal-ripple solutions are presented to examples

considered by Young [2], [4], Matthaei et al. [,4], and Riblet

[5]. The considerable improvements possible over their

design procedures by the present more accurate but simpler

formulation for computer optimization are thereby demon-

strated. The optimization technique itself is a new direct

search method called razor search, details of which are pre-

sented in a companion paper by Bandler and Macdonald

[8]. Direct search methods, which do not require derivatives,

have already found useful application to microwave network

optimization involving complicated functions and con-

straints [9]. The problem here involves both noncommen-

surate and irrational transcendental functions of frequency.

The objective function dictates that the maximum reflection

coefficient of the transformer be minimized over a specified

bandwidth. This maximum is located by an optimization

strategy called ripple search [8]. The objective function is

thus characterized by discontinuous partial derivatives [8]–

[10]. The razor search strategy was designed to handle such

problems.

To conclude the introduction, a few words of explanation
are in order about the meaning of “optimum’” as used in thk

paper. All optimum designs presented here are constrained

in one way or another as discussed in Section 1[1.But Young’s

and Riblet’s designs are also constrained. The essential dif-

ference lies in the fact that the present formulation has as its

objective a minimax equal-ripple response over a predeter-

mined frequency band satisfying the constraints seleeted for

the particular problem. And in achieving this objective, no
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approximations are made concerning the behavior of the

transformer at any given frequency other than those em-

ployed in predicting the final response, whether based on

ideal or nonideal junctions. Thus, assuming proper conver-

gence is obtained, effects such as the unexpected band-

broadening observed by Riblet [5] will not occur.

II. GENERAL FORMULATION OF THE PROBLEM

A. The Objective

Fig. 1 represents the inhomogeneous rectangular wave-

guide transformer in terms of the geometrical parameters

which can be varied. The objective is to find

where

4 = [al, ~1, 11, a2, ~2, 12, “ “ “ um, bm, Zm]T
(2)

where ah, bk and lk are the width, height and length of the kth

waveguide section (k = 1, 2, “ . . m), p is the reflection coeffi- ~

cient at the transformer input, f is frequency, and f t and f.
are the lower and upper band edges, respectively. Thus, as

illustrated in Fig. 2, the objective is to obtain a set of param-

eter values ~ which minimizes U, which is the maximum

magnitude of p in the band,

B. The Objective Function

U is obtained from the following considerations. Using

the notation of Fig. 1

k=nz, m-1, . ..l

where

Ph = j tan & (4)

Yic is the characteristic admittance of the kth section

l% is the electrical length of the kth section

YIk k the input admittance to the kth section

Bk is the discontinuity susceptance at the kth junction.

At the output terminals

where YL is the complex normalized load admittance. At the

input terminals we can define p as

ys*Y(I – ( YI1 + jBJ
p= (6)

usYo + YI, + jBI

where ys is the complex normalized source admittance.

Under matched conditions y.= 1 and ~L = 1; otherwise the
frequency dependencies of y, and y~ must be specified. Under

IYl,-mode operation

K’,k

\

I--Ik+,

Representation of the inhomogeneous rectangular waveguide
impedance transformer.

P,iw“~
ft . . . . . . . .. f.. . ..f~

—
hi@eet %off’ ‘ IoWst CIJlOff

U=max(lpl)
~ of - of

H,O mode hqher-ordsr modes

H20 or HOI

Fig. 2. The objective function Uto be minimized over some frequency
band within the permissible operating range of the transformer.

Yk = Y(ak, h, f) (7)

&’h= O(ah, Zk, j) (8)

& = B(a~, ~., j) K=ii-~Jh (9)

C. The Constraints

Constraints on the a, b and 1dimensions must be such that

1) only HIO-mode propagation within the transformer

band is allowed,

2) the network representation of the transformer as in

Fig. 1 is valid,

3) sufficiently accurate descriptions of Y, d and B can

be found.

I) Limits on Individual Parameters: Upper and lower

limits on the geometrical parameters of the transformer are
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(lo)
b I

where Ai( = c/’J and XJ = c/’J are the free space wavelengths

at the lower and upper band edges, respectively. Constraints

(10) and (11) ensure H,,-mode propagation and that the

next higher order modes, namely the HaO-mode and the

Ifo,-mode are cutoff, as shown in Fig. 2. Inequality (12)

expresses the belief that optimum solutions will have the

length of any section lying between zero and half the short-

est guide wavelength in that section.

Given the input and output guide dimensions the chosen

band~z to f. must, of course, conform to

~<%<hi.1 (13)

lc=O, m+l.

(14)

2) Constraints for Small Symmetrical Steps: There still

seems to be no data available for waveguide discontinuities

involving simultaneous changes in the a and b dimensions.

In order to use simple and reliable formulas for Y and 13,and

in order to be able to superimpose individual values for dis-

continuity susceptances due to separate changes in the a and

b dimensions at any junction with sufficient accuracy, the

present discussion will restrict itself to small, but not neces-

sarily negligible, symmetrical steps. To use the appropriate

formulas from Marcuvitz [11] let

m-l--l.

(15)

(16)

D, The Functions Y and b’

Riblet has shown [5] that the most suitable expression for

the characteristic impedance Z of a rectangular waveguide

to fit in with the representation in Fig. 1 is Z= b~a, where Au

is the guide wavelength, This closely approximates a formula

found in Marcuvitz [11, p. 296], and its validity was con-

firmed experimentally [12]. The result can also be confirmed

from experimental results obtained by the author [13], Thus

we can write

A

‘g=v’1 – (k/2a)2 “

H-plane discontinuity effects (change

(17)

(18)

in a-dimension)

involve a shift in reference plane from the physical plane of

the discontinuity [11, p, 296]. However, if (10), (13) and

(15) are imposed, this shift becomes negligible for practical

purposes. In this case

2Tl
e=y. (19)

#

The functional dependence of Y~ and 19kin (7) and (8) is now

specified in (17) through (19).

The frequency dependent impedance ratio R of the trans-

former is defined, using (17), as

bm+lbm+l
R=

boxgo
(20)

E. The Discontinuity Susceptance B

During optimization any of the nine situaticms depicted in

Fig. 3 could arise. All possibilities must be converted to the

form in Fig. 4 for the purpose of calculatin~~ the disconti-

nuity susceptances from the formulas derived from Marcu-

vitz [11] and set out in the Appendix. For programming

convenience, the correspondence of the variables of Fig. 3

with those of Fig. 4 is established in Table I.

Table I implies the following: the H-plane component B~

of the discontinuity susceptance is calculated from (27)

assuming the height of the wider waveguide to be constant

across the junction, and the 13-plane component B, is calcu-

lated from (28) assuming the width of the higher waveguide to

be constant across the junction. Note that there are no con-

flicting choices to be made when a junction has a discon-

tinuity of one kind only.

We have, therefore, at the kth junction the approximate

susceptance

Bh = Bhk + & (21)

where Bhk and B.k are calculated from (27) and (28) using

the appropriate variables obtained from Table 1,

F. Further Considerations

Both Young [2] and Riblet [5] have observed that we

have more degrees of freedom than are strictly required to

find “optimum” transformer designs. One thing that can be

done is to hold the values of a constant such that the H-plane

discontinuities are reduced. Thus, one would optimize only

with the b and 1parameters with

Al
~<ak=ch<~. 1~=1,2, . ..m
.

where the Ckare constant.

Another possibility is to specify that

m, .

k=l k=l

where L is some maximum allowable overall length.

natively one might specify that

(@

(23)

Alter-
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‘k-l < ak ‘k-l = ak ‘k-l ‘ ‘k

‘k-’<’&&@
bk-’=bk@@@
‘k-’’’k@@69

Fig. 3. Types of waveguide junction allowed during optimization.

H - place

A9 ~9

t
I

‘ 1’u+ y ‘“ ‘

Fig. 4. Representation of H-plane and E-plane junctions.

TABLE I

CORRESPONDENCEOF THE VARIABLES OF FIG, 3 WITH THOSE OF FIG. 4
FOR THE PURPOSEOF ESTIMATING THE DISCONTINUITY SUSCEPTANCES

USING (27) AND (28)

H-Plane la~’~ay

ak–1< ah ah ak_l Aok Yk
ak_l=ak no H-plane discontinuity
ak_l>ak ak_l a~ A&l Yk_,

E-Plane b b’ An Y

bk_l <b~ bk bl,_l A*h yk
b*_~ = bk no E-plane discontinuity
b~l >bk b~l bh A@_l Yk_l

where l.~ is an upper limit on lk such that

(25)

Such constraints can lead to nonsynchronous transformers.

Under certain circumstances, some of the constraints

need not be imposed during the optimization. It is unlikely,

for example, that the section lengths will violate (12) if not

constrained assuming the initial values are sensibly chosen to

lie in the region of &J4 at some frequency between f t and

~ti. It maybe found unnecessary to monitor (15) and (16)

continuously, particularly if the a~ are fixed as in (22). These

decisions could be made on the basis of the known behavior

of equal length homogeneous transformers.

If the incorporation of constrained variables into the com-

puter program becomes necessary, the following possibilities

exist: the constrained variables may be transformed into

new variables which are not constrained and in which the

optimization is carried out [9], [14], but perhaps the simplest

way is to impose a penalty on the objective function when

any constraint is violated, e.g.,

U=l (26)

which represents the worst possible transformer design.

G. The Computer Program

The program for optimizing inhomogeneous rectangular

waveguide impedance transformers was written following

the theory outlined in this section. Additional details con-

cerning the structuring of the program are found in the

Appendix.

III. OPTIMIZED DESIGN EXAMPLES

A. Young’s Two-Section Tran#ormers [2]

The predicted VSWI? versus frequency for both of Young’s

two-section designs are reproduced in Fig. 5. The designs

resulted from modifications to his exact maximally flat

solutions using the homogeneous quarter-wave transformer

tables as a guide. In Young’s first design (Fig. 5(a)) both sec-

tions are quarter-wave at 1.3 GHz. In his second (Fig. 5(b))

both sections are quarter-wave at 8.5 GHz. His design pro-

cedure takes Z as b&/aX, therefore, his predicted responses

in Fig. 5 use this definition of Z. All junctions are assumed

ideal.

Table II shows the dimensions of the transformers. Note

that the broad dimensions were fixed at Young’s values (see

(22)) and that the starting values for the four varied param-

eters are Young’s design values.1 Using Z= b~c, the first

transformer was optimized over the band 1.255 to 1.365

GHz, and the second from 8.16 to 9.25 GHz.2 The optimiza-

tion process was assumed to have converged when all the

reflection coefficient minima became less than 0.001, corre-
sponding to a VSWR of about 1.002.3 For the first trans-

former, a maximum VSWR of 1.0230 was obtained, for the

second a maximum VSWR of 1.0470. The optimum re-

sponses and the transformer impedance ratios are plotted

in Fig. 5.

As Table II shows, a slight decrease in overall length was

obtained in Example 1, indicating that the substantial im-

1The fact that junction 2 violates (15) was ignored for this example.
z Young did not specify any desired frequency band in advance,

therefore, the author selected the equal-ripple band in Example 1, and
the band predicting a VSWR of 1.09 in Example 2.

8For all practical purposes, therefore, we have two zeros of reflec-
tion,
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cutoff
.0

8 9
frequency GHz

(b)

Fig. 5. Responses of Young’s two-section transformers (based on
Z= b&/ah) and comparison with those of the author’s optimized
designs (Table II).

TABLE II

THE DIMENSIONSIN CENTIMETERSOF YOUNG’S TWO-SECTION
TRANSFORMERSBEFOREAND AFTER OPTIMIZATION

,,
Ex- ~

I I

bk

I

I,
ample ak Start Finish Start Finish

—l—1 1 I
o 20.32 5.080 .

1
1 20.32 8.920 7.43255 7.025 6.90951
2 13.5661 8.04418 8.14517 11.03 11.0770
3 12.70 7.620 co

o 2.286 1.016

2 ;
2.159 1.110 1.08486 1.53312~ 1.46572
1.95834 1.03886 1.04832 2.03877 2.14850

3 1.905 1.016 co

provement in response is not attributable to any allowance

for increase in length.4

B. Riblet’s Three-Section Transformer [51

The predicted response of Riblet’s three-section trans-

former is reproduced in Fig. 6 together with his design speci-

fication of a VSWR of 1.03 over 500 MHz centered at

6.175 GHz. It was designed assuming ideal junctions, then

corrected for junction discontinuities by Cohn’s method [7].

The author took the dimensions of Riblet’s corrected design

and calculated the response including discontinuity effects

according the rules established in Section II. The response is

so close to the ideal one that it is not shown separately in

AIt is also interesting to note that the maximum height of the trans-
former bz is less than the maximum height before optimization bl.

‘“6[ I

15

1 A

Riblet 3-eeetia. {
ideal design nqlec~ discontin,tities

corrected desqn inciuding disamtkmitiee

14 A

567

76

‘:1‘-xi8mdler 3-section opttmum Ideal deeqn

:~li’ “’
4 5 6 7 8°

fmqwy GHz

Fig. 6. The response of Riblet’s three-section design. The ideal design
neglecting discontinuities exhibits for all practical purposes the same
response as the corrected design including discontinuities. The
response of an optimum ideal design neglecting discontinuities (Table
111) is also shown.

Fig. 6. Riblet’s measured response [5] is also very close to

the predicted ones. Thus the validity of both Riblet’s and

the author’s approximation concerning the superposition of

small symmetrical discontinuities is verified, at any rate,

for this example.

It maybe observed in Fig. 6 that Riblet has unexpectedly

exceeded his design specification by a substantial margin.

The question arises: can his specification be met by a shorter

design ? First, however, as an example, Riblet’s design was

optimized keeping the waveguide widths fixed for conveni-

ence and assuming ideal junctions. The outcome of optimiz-

ing over the band 5.4 to 6.95 GHz is shown in Fig. 6. A max-

imum VSWR of 1.0157 was obtained, and the minima are

less than 1.0015. The relevant dimensions are given in
Table III. The improvement in bandwidth is idmost 45 per-

cent for a mere one percent increase in overall length.5

An interesting phenomenon first pointed out to the author

by Young [15] is the behavior of the response near cutoff.

The explanation is probably the following: the transformer

impedance ratio R is very close to 1 at the minimum nearest

the cutoff frequency. Here the guide wavelengths are fairly

high causing the transformer to be electrically short. The

result is a more nearly matched system which could give

rise to the dip in VSWR.

One and two-section designs were investigated assuming

ideal junctions. The results are plotted in Fig. 7. First, a

single section transformer having a width equal to that of the

output waveguide was optimized from 5.925 to 6.425 GHz.

As shown in Fig, 7(a) it fails to meet the specification. In

addition, its first junction violates (16). Second, a two-section

transformer having its first section width equal to the input

waveguide width and its second section width equal to the

output waveguide width was tried over the required band.

Its optimum response is shown in Fig. 7(b). With a maximum

VSWR of 1.0070 it looks attractive. However, its second
junction violates (16). Third, a two-section transformer hav-

EBy raising the lower band edge very slightly, the overall length could
be decreased to Riblet’s value without significantly changing the per-
centage bandwidth improvement.
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TABLE III

THE DIMENSIONSIN CENTIMETERSOF OPTIMIZED Two- AND THREE-SECTIONTRANSFORMERSSATISFYINGRIBLET’S SPECIFICATION

Description

Input guide

Three-section
Ideal

Two-section
Ideal

Two-section
Nonideal

Output guide

k
bk

a.t Start Finish

o 3.48488 0.508

1 3.51536 0.59182 0.598878
2 3.65 0.96266 0.956654
3 3.90144 1.64846 1.62020

1

1

3.6 I 0.75 0.711967
2 3.8 1.25 1.39486

1 3.6 0.711967 0.713153

2 3.8 1.39486 1.39661

4, 3 4.0386 2.0193

&
Start Finish

m

1.67906 1.69602
1.6262 1.63686
1.55055 1.55684

1.6 1.65733
1.6 1.59002

1.65733 1.56044
1.59002 1.51621

.

1.2-

(a) ~ ,,, -

I.0 1

“):=

‘C)EW

“’ElN22z_
5.7 6.0 6.6

frequency GHz

Fig. 7. Responses of some optimized transformers assuming ideal
junctions attempting to satisfy Riblet’s specification, (a) one-section
with al= a~,(b) two-section with al= aO and aj = as, (c) and (d) two-
section with al= 3.6 cm and az = 3.8 cm. (See text for further details.)

ing al= 3,6 cm and az = 3,8 cm was optimized. Its response

is shown in Fig, 7(c). The maximum VSWR is 1,0089 and it

satisfies (16). It also meets the specification required by

Riblet. [Fig. 7(d) shows another possible design, optimized

over 5.9 to 6.45 GHz using broad dimensions as for Fig.

7(c)].

The dimensions of the two-section transformer are given

in Table III. The response of this ideal design when junction

discontinuities are included is shown in Fig. 8. It violates the

specification. Therefore, it was re-optimized with discon-

tinuity effects accounted for in the manner of Section II,

using the dimensions of the ideal design as a starting point.b

The outcome is plotted in Fig. 8, and the corresponding

dimensions are found in Table III. The predicted response of

the nonideal design including discontinuities is so close to

‘zNote that changesin height as well as length were allowed, unlike
the common practice of correcting only the lengths.

L2

[h

optimumideal dee!gn negkting diemntinuities
then rmideal design includingdiscanthuities /

; ,,,
>

cptimum ided

. diecontrnuities

I .0 55 6.0 6.5

frequency GHz

Fig. 8. Responses of optimized two-section transformers satisfying
Riblet’s specification. The corresponding dimensions are given in
Table III.

the ideal design neglecting discontinuities that only one

curve is shown. In fact, the maximum VSWR is 1.0090 in the

former case as compared with about 1.0089 in the latter.

Note that for all intents and purposes the response minima

for Figs. 7 and 8 are zeros of reflection.

C. The Five-Section Transformer in Matthaei et al. [4, p.

333-334]

This five-section transformer consists of an optimum

three-section homogeneous transformer followed by a two-

section inhomogeneous transformer. The transformer was

designed assuming ideal junctions using Z= bX,/aX and hav-

ing a nominal center frequency of 6.15 GHz. Its response is

shown in Fig. 9. It exhibits a VSWR of less than 1.05 over a
20 percent band.

It was decided to try optimizing a three-section trans-

former over the range 5.7 to 7.2 GHz, which exceeds the

band of the five-section design. The widths of the sections

were fixed, for convenience, so that the step changes were

equal from one section to the next. The dimensions of the

resulting transformer are shown in Table IV, and the cor-

responding response in Fig. 9. The maximum pass band

VSWR is 1,0340. All-round improvements in desired band-

width, VSWR and overall length have been obtained.

It is interesting to observe that none of the minima in the

response are zeros of reflection. However, it should be

recalled that the objective is to minimize the maximum re-
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w
31,1 -
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cutoff

10 5.5 60 6.5 70

frequency GHz

Fig. 9. Comparison of the response of a five-section transformer
(based on Z= bhO/aX) taken from Matthaei et al. with that of a
three-section transformer (Table IV), designed by the author. Both
designs assume ideal junctions.

TABLE IV

THE DIMENSIONS IN CENTIMETERSOF THE OPTIMIZED THREE-SECTION
TRANSFORMERWHOSE RESPONSEIS SHOWN IN FIG. 9

k ah bk [h
—

o 3.48488 0.762
1 3.30581 0903176 1.5:879
2 3.12674 1.37093 1.58375
3 2.94767 1.73609
4

1.64590
2.76860 1.60325 ‘w

flection coefficient, without consideration for the minima,

Exhaustive searches in the vicinity of the apparent optimum

were conducted to see (with the widths constant at their

original values) whether a better response having lower

minima was possible. The results are negative.’

D. Young’s Seven-Section Homogeneous Transformer ~16]

This example is considered not so much to demonstrate

significant improvement due to computer optimization (since

exact analytic methods are available for homogeneous

transformer design) but to test the author’s computer pro-

gram including discontinuity effects.

The seven-section transformer was designed by a first-

order method resulting in the continuous curve in Fig. 10.

A computer program to evaluate the response including dis-

continuity effects was not available to Young at that time.

So he estimated it by computing the response of an ideal

transformer obtained by adding the length corrections the
“wrong” way. The author calculated this response and

compared it with the dashed curve in Fig. 10, which is the

response of the ideal design including discontinuities. For

all practical purposes the responses are the same and are,

therefore, not shown separately.

The curves of Fig. 11 are probably of more interest. One is

the response of Young’s corrected design including discon-

tinuity effects. Although the ripples are within the nominal

VSWR of 1.01, there is a slight deterioration at the edges.

Using Young’s final design parameter values as a starting

point, the optimized response shown in Fig. 11 was arrived

TIt is quite likely that if the section widths were also allowed to vary,
zeros could have been obtained, together with a “better” optimum.

114

1

1.12 R = 8.125

II

t

Young’s tdeol design including discontinuities,

I --l

‘ii .;/Young’s ideal design rwglecting discmtiwities,, 1

J \, ‘ ,- --------- ,. /’~L-
10 II 12 1.3 14 1.5 L6 I .7 18 1.9

freqw?cy GHz

Fig. 10. The response of a seven-section ideal homogeneous trans-
former designed by Young, with and without consideration for
junction discontinuity effects.

I 06

[1

R ‘ 8.125

I
$:/k]=,cYoungs corrected design mcludmg dlscontmudles

[1106
R =8.125 I

H-;Iw
>

10 optimized ncmdeal design including dlscontinuities /

~=J ~=
I 00

I,0 1,1 1.2 13 1,4 15 16 17 18 19

frequewy GHz

Fig. 11. The response of Young’s corrected seven-section transformer
including discontinuity effects. Also shown is the response obtained
by the author after optimization including discontinuity effects. The
dimensions of both designs are given in Table V.

at. s Discontinuity effects were included in the optimization,

and both the b and 1parameters were allowed to vary. Table

V compares the dimensions for both designs.

The maximum pass band VSWR of the author’s design is

1.0078. The failure of the minimum at the high frequency

end to be substantially a zero of reflection is thought to be

due to the inclusion of discontinuity effects ‘which, as seen

from Fig. 10, are more severe at higher frequencies. The

peaks are all within 0.0002 of 1.0078.

E. Computer Execution Times

With the exception of the seven-section example just

described all the VSWR maxima agreed to five significant
figures, rather more than required for practical purposes.g

8An inhomogeneous design is not presented because (10) would
have had to be violated.

sRounding off the optimized dimensions to six fsignificant figures
as shown in the tables may cause the five figure agreement to deteriorate
very slightly in some cases. In view of the approximation made, for
example with regard to discontinuity effects, such accuracy could
probably not be justified experimentally anyway.
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TABLE V

THB DIMENSIONSIN CENTIMETERSOF THE SEVEN-SECTIONHOMOGENEOUS
TRANSFORMERS(a= 16.51 cm) WHOSERESPONSESARE SHOWN IN FIG. 11

I Young
k

b,

o 8.255
1 7.85876

2 6.60400

3 4.66598

4 2.89560

1.79832
2 1.27000
7 1.06680
8 1.016

7. 1;534
7.07898
6.91134
6.92404
7.00532
7.06374
7.10692

m

Bandler

8.255

7.85315
6.58323

4,65041

2,89463

1.80056
1.27067
1.06691
1.016

7.2:134
7.05331
6.89954
6,91110
7.00313
7.06581
7.12327

.

Running times on the IBM 360/65 werel”: for two-section,

four-va~able transformers in the region of ~ minute; for

three-section, six-variable transformers in the region of

three minutes. The times are strongly dependent on the

choice of an initial design and on the scaling of the param-

eters. Some initial effort spent in working out an approx-

imate design using, for example, the homogeneous trans-

former theory is recommended. Good scaling can decrease

the computing times by as much as two-thirds. For three

figure agreement between the maxima there will be further

reduction in computing time.11

IV, CONCLUSIONS

This paper has concerned itself with the computer optimi-

zation of inhomogeneous waveguide transformers. A gen-

eral formulation of the problem has been presented which

should enable the design of such transformers to meet most

practical spechications. A systematic method for including

discontinuity effects directly into the optimization process

has been described. Several design examples taken from the

literature have been considered and discussed. Note that the

author’s results are not necessarily the “best possible”

optima, since in the examples presented the waveguide

widths were fixed in advance. Even if all available param-

eters had been allowed to vary there could still be some

doubt if the constraints of Section II are imposed. An experi-

mental transformer was not constructed as sufficient experi-

mental evidence of the accurate predictability of the response

of inhomogeneous waveguide transformers [1], [5] and

waveguide junctions [12], [13] exists for the kind of dimen-

sions considered in this paper. Through the use of constraints

both realizable and practical transformers are always guar-

anteed.

The approach used in this paper should also find applica-

tion in the computer-aided design of broadband microwave

matching or equalizing networks consisting of noncom-

mensurate components and for which exact synthesis tech-

niques may be unavailable,

10The programs were run using FORTRANlV-G under full OS-MFT.

Running times could probably be reduced by a third by using FORTRAN
IV-H.

n Dqendingontheconstraints imposed in a particular problem it
may not be possible to equalize the maxima even to three figures.

APPENDIX

Computation of Discontinuity S’usceptances

The formula used for computing the discontinuity suscep-

tance due to small symmetrical H-plane steps is derived from

Marcuvitz [11, p. 296] as - -

l–—
2

(
27 Q+Q’

. l–l.

)“

> ,R<<l

l+tlln~

where

(27)

Qk,-/,-(~)2

and where a, a’, Y and A~ are as shown in Fig. 4(a), and Y

and & are defined by (17) and (18), respectively. The range

of application of (27) is maintained by (10), (1 1), (13), (14)

and (15).

The formula for computing the discontinuity suseeptance

due to small symmetrical E-plane steps is obtained from

Marcuvitz [11, p. 308] as

6<<1

where 6 = 1—b’/b and where b, b!, ~~ and Y are as shown in

Fig. 4(b). The range of application of (28) is maintained by

(10), (11), (13), (14), and (16).

Description of the Computer Program

In addition to the package of subroutines comprising the
razor search strategy and the ripple search strategy de-

scribed by Bandler and Macdonald [8], the following pro-

grams were required:

1) The Main Program: This reads all the data which de-

fines the problem, and the constants and scale factors for the

optimization process. A logical variable is set true if junction

discontinuities are to be considered, and false otherwise. The

decision as to which parameters are to be allowed to vary is

made in this program prior to calling RAZOR. This program

also instructs the printing out of the results.

2) A Function Subprogram for Calculating I p(f)l : Equa-

tions (3~6) and (17)-(20) appear in this function subpro-
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gram. I pu)l is the objective function which is called by the
Ripple Search package. The logical variable of 1) controls

the inclusion of discontinuity effects by calling or not call-

ing 3).
3) A Function Subprogram for Calculating B~: This func-

tion subprogram implements the rules laid out in Table I for

orienting the various junction configurations that are de-

picted in Fig. 3. Having called 4) or 5) as appropriate, Bk is

calculated as in (21).

4) A Function Subprogram for Calculating b~: The nor-

malized discontinuity susceptance due to small symmetrical

H-plane steps is calculated hereby (27),

5) A Function Subprogram for Calculating b.: The nor-

malized discontinuity susceptance due to small symmetrical

II-plane steps is calculated hereby (28).

6) A Logical Function Subprogram for Testing Constraints:

The constraints in (10}(16) which are most likely to be vio-

lated are tested here, and on the basis of any violation a

design can be rejected or a penalty can be imposed on the

objective function during optimization.

The program was written in FORTRAN w for use on the

IBM 360/65. Further details on how these programs tie Up

with the razor search and ripple search programs need not

be given here since they are essentially the same as for the

homogeneous transmission-line transformer examples dis-

cussed by Bandler and Macdonald [8]. The reader may also

wish to refer to the description of a program [18] which cal-

culates the response of an inhomogeneous cascade of rec-

tangular waveguides with or without junction discontinuity

effects in accordance with the theory presented in this paper.
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