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ABSTRACT

We present a novel approach for direct and -

compact derivation of sensitivity expressions in
electrical power networks. Expressions for first-
order change and total derivatives of a general
real function w.r.t. control and design variables
are effectively derived by exploiting a special
complex notation. The approach employs only
complex matrix manipulations.

INTRODUCTION

Expressions for first-order changes of system
states ‘and other functions of interest and their
total derivatives w.r.t. practical control and
design variables are required in various
applications [61]. The first-order changes are
valuable in estimating the effects of transmission
system contingencies and ranking them, generation
outages, device malfunctions and other defects
expected in power systems operation which may
result in subsequent service deterioration. On
the other hand, the total derivatives (reduced
gradients) are required in different planning
problems when, for example, applying gradient-type
optimization techniques.

Several approaches to sensitivity
calculations in power systems have been described.
The class of these approaches [2-4] which exploits
elements of the Jacobian matrix, available from
the load flow solution computed by the Newton-
Raphson method, employs the power flow equations,
originally complex, in a real form. Ease of
derivation and compactness in formulation of the
required sensitivity expressions can, however, be
gained by preserving this basic complex form.

The conjugate notation [1] provides a useful
tool for direct treatment of the complex power
flow equations. In this notation sensitivity
expressions can be derived and formulated in terms
of formal [5] (or symbolic) partial derivatives of
complex functions w.r.t. general complex
variables.

In this paper we exploit the conjugate
notation to derive, using only complex matrix
manipulations, the required sensitivity
expressions in the compact complex form. First,
we introduce the notation. Then the problem
formulation in terms of complex state and control
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" independent quantities,

variables and the method  proposed for senaitivity
calculations are presented successively in ensuing
sections. - . . :

NOTATION
In the conjugate notation, a complex vgriablé-
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and its replace, as
the real and imaginary
parts of the variable. Hence, the first-order
change of a continuous function f of a set of

complex variables arranged in a column vector g,
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and their complex conjugate r® can be expressed as
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where & denotes first order change, T denotes
transposition and af/ay and af/ag* are column
vectors representing’ the formal partial
derivatives of f w.r.t. ¢ and E.’ respectively.

The formal partial derivatives are
mathematically defined as
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However, we can utilize the possibility of

obtaining them formally using the ordinary
differentiation rules [5].

It can be shown that, for a real function f,
we can write.
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COMPLEX FORMULATION OF POWER FLOW EQUATIONS

The power flow equations of an electrical
power network are represented by a set of complex
equality constraints in the form
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where SM is a vector of the bus powers,

Su = Py * 3 Qe (8)
V,, is a vector of bus voltages, Y. is the bus
égmittance matrix of dimension nxn, n denoting
number of buses in the power network and EM is a
components of in

diagonal matrix of

Y
corresponding order.

The variables in (7) are classified, in
practice, as complex state and control variables.
The complex state variables include the load-type
bus voltages arranged in the vecctor
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the gcnerator bus state variables defined as
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where §‘ and 9 are vectors of phase angles of
generator bus vgﬁtages and generator bus reactive
powers, respectively, and the slack bus power
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Also, the complex control variables include the
load bus powers
LA _ .
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the generator bus control variables defined as
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where IY | is a vector of magnitudes of generator
bus voltages and the slack bus control variable
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where |V | and & denote, respectively, the
magnitude and phase angle of the slack bus voltage
Vn' We may also consider the 1line admittances
arranged in the vector 2y which are contained in

the bus admittance matrix XT'
SENSITIVITY CALCULATIONS
When solving (7) in the conventional 1load

flow problem by the Newton-—Raphson method [7]
using cartesian coordinates, the state variables

;2 of (10) and ;2 of (11) are preferably
considered in formulating the equations, as
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and
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T, * Vn = Vn1 + J Vn2' (16)

Hence, we may write the power flow equations in
the form
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where
Ex = Ex‘] + j Exz (18)

is a vector of the state variables zi. Cg and Cz
of (9), (15) and (16), respectively, and
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is a vector of the control variables ;L. ;g and ;z
of (12), (13) and (14), respectively. ~ = ~

We write (17) in the perturbed form
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where K, E, qu and ﬁzu denote, respectively, the
ol ~ *
formal derivatives (abT/a;x)T. (ahT/acx)T.
T, t\T T, t®# T - ~ -
(3h /aEu) and (3h /agu ).

We remark that the elements of the .complex
matrices K and K constitute the well-known
Jacobian matrix of the load flow problem in the

rectangular form.

We now write (20) in the consistent form
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where gcx. fcu and f;u denote, respectively, the
formal partial derivatives of f w.r.t. Ty ;2 and
t 2 2
Cu'

Using (21) and (22), it can be shown that
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where V are complex adjoint variables obtained
from solving the adjoint equations
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The required total formal derivatives of f
‘m
w.r.t. [ and 53 are obtained directly from (23)

as follows
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In practice, gradients w.r.t. real and

imaginary parts of the defined control variables
are of direct interest. These gradients are
simply obtained from

df  _ df
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and
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where ¢ can be Eu or Eu'

For a given real function f, the ad joint
equations (24) are formulated using the elements
of the Jacobian of the load flow problem at the
solution point. The solution of (24) is then
substituted into (25)-(28) to obtain the required
total derivatives of f w.r.t. control variables.

It should be noticed that when the polar

formulation of power flow equations is used, the
defined

accordingly. In this case, the complex matrices K
and K constitute the Jacobian matrix of the load
flow problem in the polar form and the approach

described thereafter is directly applicable.

vectors Sz, and 6;; of (20) are

CONCLUSIONS

A compact complex notation has been utilized
to describe a novel approach for compact
derivation of sensitivity expressions required in
power system studies. The approach has been
described using only complex matrix manipulations.
It employs a sparse set of linear adjoint
equations formed by exploiting the Jacobian.matrix
of the original load flow problem. The approach
has been 1illustrated using the cartesian
coordinates. The approach is directly applicable
to the polar form using the corresponding
perturbed form of power flow equations.
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