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sion we have the largest bandwidth when dealing with non unity

aspect ratios and low dielectric constant. In contrast, to obtain

good wave guiding ability and low radiation from discontinuities

a higher dielectric constant is required. If only one of these

conditions is critical we can adjust the parameters of the guide to

suit that particular requirement and obtain the largest band-

width. If all the conditions are equafly important we are limited

to a small range of dielectric constants, e.g., for the constraints

discussed an image line with unit aspect ratio has the maximum

bandwidth at Cfl = 2.5

We have used for the upper limit the first higher order mode

cutoff frequency. In practice it seems that it is possible to

maintain a single mode operation slightly above this frequency

since the first higher order mode has extensive external fields at

its cutoff frequency and is unlikely to be propagated in any

circuit until a frequency is sufficiently high enough to reduce the

evanescent fields down to a manageable size,

The purpose of this paper has been to give some guidance

about the many parameters involved in the bandwidth of image

guide in order to help in the design of broad-band circuits.
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ToIerance Analysis of Cascaded StructureR
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Abstruet-’lhk+ paper presents an analysis scheme to obtain the re-

sponse of a cascadd network and its fff-order aeositivitiea wrt deaigo
varfablea at tbe vertha of the tolerance regfon in an efffdent and

systematic way. This information is needed in worst-ease search algorithms
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Fig. 1. Cascaded network with appropriate terminations.

to identify the worst vertex or fn a general tolerance assignment, A
substantial saving fo computational effort is achieved by using the new

approadI over the basic appmttcb of reanafysiog the circuit at every vertex.

I. INTRODUCTION

A recent approach for the analysis of cascaded networks

(using the chain matrix) has been used efficiently to perform

response evaluation as well as simultaneous and arbitrary large-

change sensitivity evaluation [1]. This paper presents an analysis

and sensitivity evaluation scheme using the recent approach in a

form suitable for tolerance analysis of such networks.

In tolerance assignment each parameter I#J has a tolerance

associated with it so that it can have a value lying between @o+- c

and @o—q where $0 is the nominal value and c is the tolerance.

The number of vertices of the tolerance region is 2k, where k is

the number of the tolerance parameters, which includes all

different combinations of parameter values.

The tolerances on elements as well as the nominal parameter

values are optimized, consequently the response and its first-

order sensitivity at the vertices of the tolerance region [2] are

needed by the optimization algorithms. This information is par-

ticularly useful if a worst-case search algorithm [3] has to iden-

tify the worst vertex [4], [5].

A specific algorithm designed for evaluating the response and

its sensitivities at the vertices of a tolerance region is presented.

An example is given along with a comparison between the new

approach and the conventional way (the reanalysis) for evalurtt-

ing the response and its sensitivities at the vertices.

II. NECESSARY BACKGROUND

The analysis approach is based on two types of analyses. The

first is the forward analysis which consists of initializing a rii=

row vector as either cl=, ez=, where

‘1=[:1‘2=UI
or a suitable linear combination and successively premultiplying

each constant chain matrix by the resulting row vector until an

element of interest or a termination is reached. The second is the

reverse analysis, which is similar to conventional analysis of

caacaded networks, proceeds by initializing a v column vector as

either el, ez or a suitable linear combination and successively

postmultiplying each constant matrix by the resulting column

vector, again until either an element of interest or a termination

is reached.

Consider the network in Fig. 1. Applying forward and reverse

analyses up to A, we obtain the expression

Q & ETAV (:1)

where

A transmission or chain matrix of the element of interest,

ii vector obtained from forward analysis (initiated at thle

source and ending at the input port of A),

v vector obtained from reverse analysis (initiated at the load

and ending at the output port of A).
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Fig. 2. (a) Subnetwork t cascaded with subnetworks k (at source end) andj

(at load end). (b) Thevenin voltages and impedances for subnetworks k

and i.

TABLE I

FJOTA-IIONm IMPLIED IMTIAL CONDITIONS

Initial Conditions
Initialization Factor Identification Forward Rev erse

u ..> e v ..> e
.1 -

:; (*) “1

..1 (+)11 voltage voltage

u.=> e, v =,> :2 G; (*) y2 (+)12
Voltsse current

u =,> e v ,,> e :; (9) !/l (t)2, current
-2 - ..1

voltage

“ ..> e v ,.> e :; (*) !/2 (t)22 current
..2.

current
..2

(,) deno~e~ ,i~~e~ ~, ~A/~+ O, AA
. .

(+) denotes Q, Q’ or AQ, as taken rrm (1) , (2) or (3) ,
respectively

With minimal additional effort we can obtain the partial deriva-

tive

(2)

and the large change

AQ=uTAAv (3)

where the parameter @ is contained in A. Note that Q relates

output and input variables, namely, voltage and/or currents

depending on how z ~ and u are initialized (see Table I).

Usually more than one element in the cascade is considered.

The network is divided into subnetworks by reference planes

which are chosen so that no more than one element is to be

explicitly considered between any pair of reference planes (see

Fig. 2(a) where the superscripts denote the subnetworks). For-

ward and reverse analyses are initiated at these reference planes.

Equivalent Thevenin sources of the subnetworks can be de-

termined by performing a sequence of forward analyses (equiv-

alent Norton sources can be determined by reverse analyses) [1].

The Thevenin voltage for the ith subnetwork (see Fig. 2) is given

source voltage for subnetwork i,

source impedance of subnetwork i,

open circuit voltage at the load end of subnetwork i,

equivalent Thevenin source of subnetwork i, which is

considered the source voltage for subnetwork j,

al vector obtained from forward

tialized as el,

172 vector obtained from forward

tialized as ez,
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analysis when ii is ini-

analysis when z is ini-

V, vector obta;ned from reverse analysis when v is ini-

tialized as el,

Note that we have omitted the superscript i from E and v

(initialized at reference planes bounding subnetwork i) for sim-

plicity. The output impedance of the subnetwork i is given by [1]

Zg= (Z, + Z@,)TA ‘V, = Q;,+ Z: Q;,

(z, + Z: Z,)TA k, QiI+-%Q2]
(5)

which is considered as the source impedance to subnetwork j.

The terms Q{z and Q~z are defined as

Q;2 ~ u;A %z.

A special case of (4) applicable to Fig. 1 (ZS = YL = IL = O, where

Y= is the load admittance and lL is the current source at the load

end) is

(6)

III. Tm EVALUATION OF VL AND ITS SENSITIVITIES WRT

DESIGN PAMMETERS AT ALL VERTICES OF THE TOLERANCE

REGION

Assume that we have partitioned the network by reference

planes into subnetworks such that each subnetwork contains one

chain matrix containing a variable parameter. Each reference

plane is chosen to fall immediately after a variable element.

The Thevenin voltage/itnpedance of the ith subnetwork is

considered as the source voltage/impedance of the (i+ l)th

subnetwork, given by (4) and (5), respectively, where j = i + 1.

We have to note here that the terms Q~l, Q&, Q~2, and Q~2 are

as defined previously with v, and Vz set to e, and ez, respectively,

since the appropriate reference plane immediately follows the

element ~‘. The number of pairs of terms Vj+’ and Zj+ ] to be

evaluated is 2’, since each subnetwork contains one variable

element with two extreme values (assuming that each A i con-

tains only one variable parameter).

Differentiating (4) wrt r$~, where @~does not belong to A‘, but

Vj and Z; are functions of ~~ (i.e., $~ is in a subnetwork h

before the ith subnetwork) we get

and differentiating (5) wrt +~, we get

az;+ 1 az: (Q{1Q:2– Qi2QjJ

aoh = a~h
(Q:, +ZjQ;,)2 “

(8)

On the other hand, the derivatives wrt @i which is contained in

A i (Z4 and V; are not functions of @i), are

(9)
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Fig. 4. Seven-section filter containing unit elements and stubs [61. All wc-

Step 4:

Comment:

v

{

v~,av~la+,
8SStS

av~ld+z,av~la+a Step 5:
Comment:

M denotes initialization of
Step 6:

U9,U!?

Fig. 3. Illustration of the principal stages of the algorithm. Here we are

considering a cascade of six elements, where the three variables +1, @2, and

I#V are in elements number 2, 4, and 5, respectively.

and

. .
tions are quarter-w-ave at 2.175 GHz.

If i= lm go to Step 5.
Go to Step 3.
Step 2 and Step 4 check whether or not we have

reached a chain matrix containing a variable

parameter. If we reached a variable we calculate

the Thevenin voltages and impedances and their

sensitivities, otherwise we proceed with the forward

analysis performed in Step 3.

If m = k go to Step 7,
This step checks if we have reached the last chain

matrix containing a variable or not.

Calculate VS, ZS

a lv~ a v~
——. ..—
a~l’ ‘ a~m

az~ az~

~’” ““’m

2m sets all together.
— —.—

tkpi
(Q;, +Z:Qj,)2

(10)

Table 1, T~s seris;tivity “i&formation” & carried out through the

analysis for each subnetwork. The number of variables for which

sensitivities of Vi+* and Z;+ 1 exist at the (i+ I)th subnetwork is

i so that 2i.i sensitivity calculations are performed. The expres-

sion relating ~L and the last sets of ~S and Z~, is given by (4), so
that 2k values for VL and its sensitivities can be obtained from

appropriate values of Vx, Z~, and A.

Fig. 3 shows an example of the stages involved in the follow-

ing algorithm to obtain the resvonse and its sensitivities at the

Set m+--m + 1.

iei+l.

Initialize U1 and U2 and go to Step 4.

Comment: This step is referred to at stage 3 and stage 5 in

Fig. 3.

Step 7: If n = 1~ go to Step 10.

Comment: k is the number of variables. In the example of Fig.

3, k=3 andl~=5.

Stq 8: V1:=A%l.

Set jej – 1.

Step 9: If j = Ik go to Step 10..- .
vertiees (3 variables+8 vertices) of the tolerance region. Go to Step 8.

Step IO: GIculate Q, aQ/aql,. o., aQ/aok 2k times.

Algorithm

step1:

Comment:

step 2:

Comment;

Stql 3:

Initialize aal, U2 and VI. (See Table I).

Set i+l,mel,j+n,

n is the total number of elements in the cascade,

and m is a counter for the variable elements. In the

example of Fig. 3 n =6.

If i = 1~ go to Step 6.

lm is an element of L, an index set containing
superscripts of the k matrices containing the k

variable parameters and ordered consecutively. It

is assumed that each matrix contains only one

variable. In the example of Fig. 3 k= 3 and L=

{2,4,5}.

tilTeiilTA ‘.

U2T+U2TA ‘.

Set i-i+ 1.

Stop.

Comment: T& step is referred to at stage 7 in Fig. 3.

IV. EXAMPLE

The cascaded seven-section bandpass filter shown in Fig. 4 [6]

was considered. All sections are quarter-wave at 2.175 GI+z. The

optimal minimax characteristic impedances [7] are taken as

nominal values. They are

Z,= Z7 = 0.606595

Z2 = Z6 = 0.303547

Z3= Z5 = 0.722287

Z4=0.235183.

A tolerance of k 0.03 on Z], Z4, and Z5 was chosen. The

algorithm was used to evaluate ~=, avL/azl, avL/az4, and

il VL/i3Z5 at the eight vertices of the tolerance region (23 vertices

where 3 is the number of tolerance variables). The results are
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TABLE II

Tm I@SPONSL?V= AND ITS SENSITMTISS AT THE VERTICES OF THE

TOLERANCE RSGION AT NORMALIZED FREQUENCY 0.7

Vertex aVL/az
‘L 1

1 0.49135 +j0.02351 -0. 02450+J0 .05953

2 0.48819+20.02571 -0.07761 +j0.01588

3 0,49679-JO .04862 0.03751 +JO. 15916

4 0.49677 -jO.04046 -0.03384 +jO. 11417

5 0.49209 +j0.04341 -O. 04367+ jO. 08072

6 0.48786 +J0.04670 -0.09378 +J0.03123

7 0.49889 -j0.03101 0.02608+j0. 18868

8 0.49818 -j0.02127 -0.04526 +j0.13735

Sign of
av~laz avL/az

4 5
Tolerance

Extreme

0.26004-jl .15934 0.02549 +j0.32944

0.28346- jl.05326 0.00954 +J0.34878

-0.06631 -jO.94430 0.04534 +J0.29165

-0.00426- jO.87724 0.03578 +j0.31848

0.29407-jl .19530 -0.00103 +j0.33324

0.32067 -jl.07952 -O. 02042+ jO. 35007

-0.05742 -jO.97346 0.02462+ j0.29494

0.01132 -JO.90191 0.01113 +J0.32057

+-

+

++

--

+-

+

++

+

+

+

+

tabulated in Table II. They were checked individually by re-

analyzing the circuit at each vertex. [1]

V. CONCLUSIONS

The algorithm for evaluating the response and its sensitivities P]

at the vertices of the tolerance region proved to be very efficient.

The seven-section filter example was run with tolerances on the
[3]

characteristic impedances of the stubs and transmission lines (all

seven). It took 0.269 s CPU time, on a CDC 6400 computer, to
[4]

evaluate the response (only) at the 128(27) vertices. Using the

conventional method of reanalyzing the circuit for different
[5]

component values would take 0.074 X 128=9.472 s CPU, where

one analysis is performed in approximately 0.074 s. For the case [6]

of evaluating the response and its sensitivities at vertices dis-

cussed in Section IV, it took O.118 s CPCJ time compared with 17]

8x0.074 =0.592 s for eight analyses. The savings in computa-

tional effort is substantial.
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