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ABSTRACT
This paper deals with fault isolation of
linear analog circuits taking the design
tolerances on the nonfaulty elements into
consideration. A two-step algorithm is proposed.
First, an approximate method is wused where a

linear programming technique for isolating the
elements most likely to be faulty is presented.
Second, a verifying method for the faulty set is
presented where we construct the algebraic
invariants associated with the faulty set. Both
methods can also be wused individually as
independent methods for fault isolation.

INTRODUCTION

This paper addresses itself to the problem of
multi-fault location and identification in analog
circuits. A fault, in this context, means that
the change in the element value has exceeded its
assigned tolerance and caused malfunction of the
circuit under test.

Under the condition of a limited number of
measurements, different methods have been used for
locating and identifying the faulty set. Some of
these methods are based on the use of an
estimation criterion [1,2], and others are based
on constructing analytical constraints which are
invariant on the changes in the faulty set [3,4].

In this paper we present a two-step algorithm
for fault isolation with a 1limited number of
voltage measurements performed at a single
frequency and taking the tolerances on the
nonfaulty elements into consideration.

First, we consider an approximate method for
fault isolation. The change in any measurement
from its nominal value is given by a linear
combination of special error parameters. A system
of linear equations is constructed and a linear
programming formulation. is used to detect the most
likely minimum number of faulty elements.

Second, we have extended an earlier
formulation [3] for fault verification. We have
considered the more practical case when the
nonfaulty parameters are allowed to vary inside

This work was supported by the Natural
Sciences and Engineering Research Council of
Canada under Grant A7239.

the tolerance region. Normally, the verification
method is used to verify the results of the
approximate method, but it can be used as an
independent method for fault isolation as well.
In both methods the evaluation of the faulty
element values is carried out in a direct way
after identifying the faulty set.

Finally, some examples illustrating the
application of this two-step algorithm are
included.

APPROXIMATE FAULT ISOLATION

In this section we consider an approximate
method for fault isolation. The number of
measurements is assumed to be less than the total
number of elements in the faulty network.

Mainly we are looking for a solution which
satisfies the given measurements and has the
smallest number of faulty elements [2]. We define
an error parameter for every network element.
This is related to the deviation in the network
element value from nominal. The change in .any
measurement from its nominal value is a linear
function in these error parameters. The problem
can be considered as solving the resulting under-
determined system of linear equations under the
condition that the solution will have the minimum
number of error parameters different from zero.

Normally, all elements in the faulty network
deviate from nominal. A few are faulty and others
are within their tolerance intervals. The change
in any component value in linear active networks
can be represented by a current or a voltage
source as shown in Fig. 1. We apply a unit
current source to the input port of the faulty
network and m independent voltage measurements are
performed simultaneously. The change in these
measurements from their nominal values is given by
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where I* and VY provide the equivalent current
source “vector "and voltage source vector due to

changes in the circuit,elements from t?eir nominal

values. ﬂmvamM‘e=[e1e ...el defines
the error vector and n is %he togal number of
network elements.

Equation (1) represents the underdetermined
system of linear equations which should be
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Fig.1 An equivalent representation of
changes in element values.

satisfied by any solution. A linear programming
formulation is constructed. The objective
function is defined as the sum of the absolute
values of the components of e. This least one
objective function tends to sétisfy the equality
constraints, namely (1), with the minimum number
of error parameters different from zero. This is
consistent with the assumption that a few elements
are faulty.
The optimization problem can be formally
stated as follows.
n
Minimize I |e,| (2a)
i=1
subject to

™

= I:l‘m %. (2b)

In general, the error parameters are complex
and formulation (2) should be modifiied by

redefining our error parameters. Let r, = Re(e.),
g. = Im(e,), i = 1, ..., n. The optimization
problem cah then be restated as follows.
n
Minimize I (|ry| + |8;]) (3a)
i=1
subject to R
Re[ V"] = Re[H 1 r - ImlH ] g, (3b)
Im{ AV™] = Im(H ] r + RelH ] g. (3¢)

The optimization problems (2), (3) can be easily
converted to the regular linear programming form
by an appropriate transformation of the variables.
The adjoint network has been used, see [5], in a
very similar way to that proposed by Biernacki et
al. [3] to evaluate the elements of the matrix H .

From the output of the linear program we
obtain the vector e which represents the devia-
tions in the element values. We simulate the
netWork with all components held at nominal values
and the nonzero values of e are connected across
their corresponding elements. This simulation
will provide the voltage and current for each
network component. From Fig. 1, the output of the
linear program and the output of the network simu-
lation after testing, the change in every element
parameter is calculated and checked against its
assigned tolerance value. If the change exceeds
the allowed tolerance we declare the element
faulty, otherwise we consider it nonfaulty.

The presented approximate method can be used
by itself as a separate way for isolating the
faulty elements, or it can indicate which
components should be tested first using the method
of fault verification which is described in the
next section.

Weighting factors [2] can be introduced in
the objective function to reflect the previous
experience, the reliability of the circuit
elements and the sensitivities of the measurements
employed relative to the circuit elements.

FAULT VERIFICATION IN THE PRESENCE OF TOLERANCES

Biernacki and Bandler [3] proposed a method
for isolating k faulty elements based on k + 1
measurements. Here, we extend their formulation
by including the effects of tolerances on the
nonfaulty parameters.

We choose k elements in the circuit and
consider them as candidates for the faulty set.
The change in each element can be represented by
either a current or a voltage source. We extract
these sources from the network. The ports with
voltage sources are called voltage ports and
labelled by the superscript x and the ports with
curreht sources are called current ports and
labelled by the superscript y. Next we extract 2
ports for measurement, where & is greater than or
equal to k+1, and these ports are labelled by the
superseript m. Finally, we extract the excitation
port and we label it by the superscript g. The
excitation port should not coincide with any of
the assumed ports of fault, but it can be any one
of the measurement ports. The ports of measure-
ment need not be different from the ports of
fault, but we assume so for the sake of
generality. This will lead to the (+k+1)-port
network shown in Fig. 2.

The port voltages and currents are related by
the hybrid matrix which is assumed to exist. This
is usually the case when the (&+k+1)-port network
satisfies the conditions for a hybrid matrix
representation [6]
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where Ym, }m represent the & measurement port

variables, V®, I represent the input port
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Fig. 2 2 + k + 1 - port network.

variables, Yx, {x represent the n, current port

variables, Vy ;y represent the n, voltage port
variables, and K = n, +n

Taking I" = 0 1n (4%
are given by~

the measured voltages
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From the available % measurements we choose
k+1 independent measurements and H is reduced

accordingly. Eliminating ¥ and Vy variables from
the resulting equations we get

g k+1 o k+1 n
I° = ‘z vi Ai.l/A =z vy d“. (6)
i=1 i=1
where Ai is the cofactor of the element (i,1) of
the rediuced matrix and A is its determinant. Here
we assume that A # 0 which is a necessary condi-
tion for (6). Similar equations to (6) can be
constructed but with a different set of k + 1
measurements. When the nonfaulty elements are
restricted to their nominal values, the con-
structed system of equations should be satisfied
in such a way that the k chosen elements could be
considered as candidates for the exact faulty set.
Practically, the nonfaulty elements are not
restricted to their nominal values, but are
allowed to vary inside their tolerance region.
Relative to the nominal point, the tolerance
region is defined by
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where Ap. is the change in the element value from
nominal and €, is its associated tolerance.
defines the séi of nonfaulty elements and n is thg
total number of the network elements.

Taking the tolerances on the nonfaulty

elements into consideration, (6) becomes
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where § is the change in the coefficient d,, due
to thelvarlation of the nonfaulty element@ from
nominal values. The first-order approximation to
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where the summation is over the set of the
nonfaulty elements. Substituting (10) into (9)
and rearranging we get
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where I_ identifies the set of k + 1 measurements
used in constructing (6) and V is the 1ith

m
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measurement value when the elements are at their
nominal values. Let
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Equation (13) is linear in the changes of the
nonfaulty parameters from their nominal values.
To verify that the k elements are at fault, (13)
should be satisfied by a vector Ap e R
Considering different combinations of k -+p1
measurements we get a system of linear equations
in the parameters Ap., j = k+1, ..., n and we may
write (13) as J

£ C)ap,=E), eI (14)
Jel J
with P .
IA = {1, ..., A}, (15)
where A is the number of 1linear equations
constructed from the available independent
measurements. N

In general, the coefficients C;. E are

complex and each equation can be separated into
two equations with real coefficients

b Re(Cg) Apj
jeIp

Re(El). A e IA (16a)

and

:  Im(ch) Ap . Im(EA), rel. (16b)
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Linear programming is used to find a feasible
vector Ap which satisfies (16) and (7) as the
linear equality and inequality constraints,
respectively. The objective function is chosen to
enhance the physical meaning of the solution. The
problem can be posed as follows.
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where F(Ap) is a linear function of the parameters
ApeR_.7
- ep

Either the linear program is infeasible or a
feasible solution which satisfies the chosen
objective function is obtained. The sum of the
absolute values of the parameters Ap., Jj = k+1,
...y n has been taken as the objeeti&e function.
This objective function will yield a feasible
solution with the minimum number of nonfaulty
elements different from nominal. Other objective
functions can be chosen without affecting the
feasibility of the solution.

A systematic procedure for calculating the
coefficients of (14) is constructed [51]. For
certain A, C, and E are functions of the
coefficients di , 1 € I , and their sensitivities
relative to the nonfaulty parameters. Using the
adjoint network concept, (4) for the adjoint
network is constructed and for I8 = 0, I* = 0 and

Yy = 0 we get
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where I defines the adjoint currents of the k+1
measurement ports correspondigﬁ to the considered
A. Solving for the current I.,, where i e I , we
get i m
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Applying m = k+1 independent excitations to the
measurement ports of the adjoint network we get
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where the superscripts 1 to m stand for the m
independent excitations applied to the adjoint
network. Since d = d1i’ di can be computed
through solving (2%3. The sensitivities of d,

relative to the nonfaulty circuit elements a};
computed through the computation of the

sensitivities of the elements of the matrix R.

The computation of the faulty parameter
values follows the same procedure that was
described earlier in the approximate method with
the exception that the nonfaulty elements are
perturbed from their nominal value by the obtained
feasible vector Ap [51].

Remarks

Upper and lower bounds can be used to check
whether (13) is satisfied for linear resistive
networks. The upper and lower bounds are given,
respectively, by

U= 2 |IC.| €, - E (21)
jel J J
and
L=- 2 |C.] e, - E. (22)
jeIp J J

If U> 0 and L < 0 we can find a feasible vector
Ap € R which satisfies (13). To extend the
upper afil lower bounds concept to general linear
active networks, we are faced with the fact that
(13) is usually a system of linear equations. The
proposed linear programming formulation is a good
way of finding the required feasible solution in
that case.

The effect of inaccuracies in measurements
has been handled in a similar way to that of the
effect of tolerances on the nonfaulty elements,
and the method proved to be successful [5].

In applying this method as a part of our
algorithm, we first start by checking the faulty
set detected by the approximate method. If we
have not verified the faulty set, we use the
verification method as a separate method for
isolating the faulty set, and we follow the same
procedure as outlined in [3].

EXAMPLES
Example 1
Consider the simple network shown in Fig. 3
with nominal values of elements Gi = 1 and

tolerances e, = +0.05, i =1, 2, ..., 5. Assume

that the network is excited at the port 11' and
voltage measurements are taken at the ports 11',
22' and 33'.
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Fig. 3 A simple resistive network.
As an example we have taken the network
elements to be G = 1.02, 62 = 0.5, G3 = 0.98, Gu
= 0.98 and 65 = 0.95.

The approximate method gave the following




values for the changes in the elements: AG1 = 0.0,
AG, = -0,473, Ac3 = 0,0331, AG, = 0.03 and AGg =
0.0. The change in the second element exceeds its
corresponding tolerance and we consider it faulty,
which is a correct conclusion.

The verifying method was applied to check
whether or not G, is faulty. The linear program
gave a feasible solution. We have checked the
single fault hypothesis for the other 4 elements
and no feasible solution was found. This confirms
that the second element as detected by the
approximate method is really faulty. The computed
faulty element value is 62 = 0.532, which is very
close to the actual value.

Example 2

Consider the active filter shown in Fig. 4
with the nominal element values given by G1 = G2 =
1, C1 =C, = 1and K = 1, Also, we assume that
the ampliéier has an output conductance G = 1.
All elements are assumed to have design théFances
of +5 percent. The source resistance is assumed
to be fault free, R_ = 1. We have considered
ports 11', 22! afid 33" as our ports of
measurement,
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Fig. 4 RC active filter.

As an example we have taken G1 = 0.5, 62 =

1.02, C1 = 0.98, 02 = 0.5 and for the amplifier K
= 1.02 and Gout = 0.98. The following values for
the changes in the elements are given by the
approximate method: |AG,| = 0.5, |AG2| = 0.0185,
|aC,| = 0.039, |ac,| = 0.487, [4G .| = 0.081 and
[4K| = 0.0. From these results the changes in G,

and 02 Well exceeded the design tolerances so we
assume them faulty. Also, the change in Gout is

slightly larger than the assigned tolerance so we
are not quite sure whether or not it is faulty.

We have applied the verifying fmethod to check
whether or not G, and C_ are faulty. We have
considered our formulation for checking the double
fault case. The linear program gives a feasible
solution corresponding to the combination of G
and C2' This proves that they are really at fault
and we can exclude G from being faulty. We
have checked the remaining 9 combinations and no
feasible solution was detected. The calculated
element values are G, = 0.5 and 02 = 0.488, which
are very close to the exact values.

CONCLUSIONS

In this paper we have presented a two-step
algorithm for fault isolation taking into
consideration the tolerances on the nonfaulty
elements.

First, we introduced an approximate method
for fault isolation. We used an estimation
criterion for locating the faulty elements. This
estimation criterion is based on physically
realistic assumptions [2]. We formulated the
problem using linear programming. The approximate
method identifies the most likely faulty set
according to our estimation criterion. It can be
used as an independent method for fault isolation.

Second, we have extended an earlier formula-
tion by Biernacki and Bandler [3]. We compensate
for the uncertainty caused by the tolerances on
the nonzero parameters by taking more measurements
than the ones sufficient for the zero tolerance
case. We then construct a system of 1linear
equations which are invariant on the faulty
elements., We check whether these equations are
satisfied by searching for a feasible tolerance
vector using the linear programming formulation.

By combining the approximate method and the
subsequent verification method, we have, in
general, reduced the computational effort needed
substantially over that required by relying only
on the verification approach.
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