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Analysis and Sensitivity Evaluation of
2p-Port Cascaded Networks

JOHN W. BANDLER, FELLOW, IEEE, AND MOHAMED R. M. RIZK, MEMBER, IEEE

.4 bstract— An exact anafysis approach for efficiently evaluating the ties of the response with respect to
response and its sensitivities with respect to all design parameters for

cascaded 2p-port networks is presented for any vafue of p. Itis illustrated
in two of the 2p-port elements,

via a quasi-opticaf bandpass filter. elements, have been evaluated.

1. INTRODUCTION

A GENERALIZATION of an analysis approach for

2-port cascaded networks [1] to handle 2p-port net-

works is presented. The generalized approach has the same

advantages- as those for 2-port networks. These advantages

include efficient and fast analytical and numerical investi-

gations of response, first-order sensitivities of the response

with respect to variable parameters, and. large-change

sensitivities. The need for this generalization evolved from

the fact that many microwave networks are represented as

a cascade of 2p-port elements.

Thevenin and Norton equivalents for these cascaded

networks can be obtained systematically using this ap-

proach. These in turn are very useful for worst case analy-

sis [2]. As an example, a quasi-optical bandpass filter has

been analyzed using this approach and the exact sensitivi-
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a parameter appearing

representing the filter

II. THEORY

The analysis approach consists of two principal types.

The first, which we call the forward analysis, consists of

initializing a ~= matrix as ET or E;, which are defined as

where 1P is the unit matrix of order p, OPis the null matrix

of order p, and successively premultiplying each constant

chain matrix by the resulting matrix until an element of

interest (which contains a variable parameter), a reference

plane, or a termination is reached. The second type of

analysis is the reverse analysis which consists of initializing

a V matrix as either El or E, and successively postmultiply-

ing each constant matrix by the resulting matrix until an

element of interest, a reference plane, or a termination is

reached.

Consider the 2p-port element shown in Fig. 1, possess-

ing p input ports and p output ports. Its transmission

matrix is given by

[1A,,~gAll

A,, .4,2

where A ~,, A ,2, A ~1, and A ~, are p Xp matrices. The input
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Fig. 1. A 2p-port element.
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Fig. 2. Equivalent Thevenin voltages and impedance matrix for a sub-

network consisting of 2p-port elements. Note that V~~ = V~ and Z ~~

= Z~, which is not necessarily diagonal.

quantities in this case are where the elements with subscripts 1 to p denote voltages.

I 1
and from p + 1 to 2p denote currents.

71 For the forward and reverse analyses,

Y2 U2, V,, and V2 are initialized such that

El* VI or VI

the matrices .U1,

‘H
Yp E2*U20r V2.

‘= Jp+l
We can now derive in an analogous manner to the deriva-

7P+2
tion of [ 1, eq. (9)]

v~=(u:+zJ:)A(v, vL+vJYLvL-lL)) (1)

Y2P

where ~1, ~2, V,, and V2 are the matrices obtained from

and the output quantities are forward and reverse analyses. V~ is the vector containing

the p source voltages, VL is the vector of load voltages, 1~ is

Y1 the vector of current sources at the loads (if any), Z~ is a

Y2 diagonal matrix containing the source impedances, Y~ is

the diagonal matrix containing the load admittances.

Yp
To evaluate the unknowns VL, having obtained numeri-

cal values for (1), a system of p linear equations is solved.
J’= Yp+l To obtain the Thevenin voltages of the subnetwork on

Yp+2 the left-hand side of the element A, we let 1~ = O and

Y~ = O in (l), which gives

~2p V~=(~:+Z~~2T)A VIVL =(Q1l +Z~Q21)VLA (2)
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where As a special case when Z~ and Y~ are O or when they are

Qll = ~:’ V{ (3)
considered as the first and last elements, respectively, (1)

becomes

and
V~ = U~A VIV~ ‘Q~l~~ (11)

Qzl = @zA VI (4)
so that the load voltages are given by

and from (2)
VL=Q1;’V~. (12)

VTH=VL=(Q1l +Z~Qzl)-’V~. (5)
When A is ~erturbed to A + AA, the new values for the

We assume that the inverse of the matrix (Qll +Z~Qzl )

exists. This is true when the network possesses a voltage-to-

voltage transfer function. Consequently, this analysis fails

(the matrix will be singular) if we have, for example, an

element composed of current-controlled current sources.

The output impedance matrix or the Thevenin impedance

is obtained one column at a time by letting V~= O, YL = O,
and IL= O except 1~, (which is the current source at the

load end for the ith port) which leads to

[.1
o

load voltage: (V’ + AVL) can be obtained by six p3 addi-

tional multiplications and the solution of a p-system of

linear equations. Alternatively, the generalized Sherman–

Morrison formula (Woodbury formula) [3] can be used to

find (Qll +AQII) – 1. Note that the reanalysis of the

cascaded network is not performed, We use the results of

only one analysis.

Differentiating (11) with respect to a parameter@ which

appears in the matrix A only we get

(13)

1:1O=(Q1l +Z~Q21)VL –(Q12 +Z~Q22) IL,
so that the sensitivity of the load voltages can be obtained

(6) from

av- _ -l~QI1 v
—–– Q,, ~ L

o a+
(14)

where Q, ~ and Qzl are as defined in (3) and (4), respec- ‘here

tively, and

(7)

and III. NUMERICAL EXAMPLE

Q=, = @A V2. (8) The analysis and sensitivity evaluation of the response of

Equation (6) can be written as
a quasi-optical bandpass filter have been performed using

the analysis approach described. The filter consists of three

11

metallic (copper) wire grids in space with separations of
o 12.5 mm (5A/4). The equivalent circuit of the filter is

shown in Fig. 3 [4]. The first and third gratings (in the x–y

(Q,, +%Q,,)L = (Qn +-%Qu) I., ‘G Li (9) plane) have their wires parallel to the x axis, while the

nuddle grating has the wires oriented at an angle I#Jwith

respect to the x axis. The circuits R(@) and R( – $) are

o used to connect the middle grating with the adjacent local

coordinates (the equivalent circuit of the filter is based on

where Cl is the i th column of the matrix (Qlz + Z~Q22 ). the local coordinate concept [4]). The free space between

From (9) we get the gratings is represented by the uncoupled transmission

11

z
lines (with lengths equal to the separation between the

TH, , gratings) as shown in Fig. 3. The parameters B., Bb, X.,
zTH2, and X~ can be found in [5] and RP and XP are from [4]. The

V~/l~l =( Q11+zSQ21)-’ci= . (10) dimensions of the gratings are given in Fig. 4. The dielec-

tric sheets supporting the metal gratings were not consid-
ZTH

P,
ered in our analysis. The filter is excited by a source

representing an incident wave linearly polarized in the

which is the i th column of the p Xp ZTH matrix. Fig. 2 direction perpendicular to the first grating (i.e., polarized

shows the ZTH and VT~ of the subnetwork preceding the in they direction). The transmitted wave is represented by

element A. Similar formulas can be derived (analogous to the output voltage at port 3.

[1, eqs. (13) and (14)]) for the input admittance matrix and The insertion loss of the filter (the center frequency ~0 is

the Norton current equivalent matrix. equal to 30 GHz) is shown in Fig. 5 for various angles +.
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Fig. 7. Imaginary part of aV3\&$ at $=45° and 0=60”.

The exact sensitivity of the voltage at port 3 with respect to

@is plotted in Figs. 6–8 for different values of q.

IV. CONCLUSIONS

The use of t~s analysis approach avoids the need for
,.

reanalyzing the cascaded networks to evaluate large change

sensitivities. It also facilitates the evaluation of first-order

sensitivities of the response with respect to variable design

parameters without defining and analy@g any additional

network (adjoint network). These advantages lead to a

considerable saving in computational time and effort.
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Fig. 8. Reaf and imaginary parts of t3V3/a$ at @= 75°.
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