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ABSTRACT

An interactive postproduction tuning technique is presented. The technique uses linear programming
tterativel~ for estimating necessary tunin2 amounts. It is completely general and is applicable to reversible and
irreversible tuning processes. By eliminating completely the common trial and error approach it oPtimall Y

exploits network response measurements.

Introduction

This paper addresses itself to the automation of
postproduction tuning processes in microwave networks.
Postproduction tuning is often essential in the
manufacturing of electrical circuits. i3andler et
al . [11 have already considered tuning as an integral
part of the design process. Their results verified the

importance of tuning in increasing the tolerances on
the design parameters and in compensating for the
uncertainties in the model parameters.

Here, we propose an interactive postproduction
tuning technique which is based mainly on the
formulation of tuning as a minimax optimization

problem. By measuring the actual response and
exploiting the availability of a g~od approximate model

simulating the actual network under consideration,
tuning can be carried out in a highly efficient
iterative procedure. Each step requires one set of
response measurements. A linear approximation of the

minimax optimization problem is solved providing the
amounts of tuning to be implemented experimentally.

The tunable parameters are adjusted to the extent
possible and the process is repeated until an optimum

is achieved.

In what follows we present the mathematical

formulation, the tuning algorithm and a microwave

example which demonstrates how few adjustments appear

to be necessary in practice.

Mathematical Formulation

A network design problem can b? formulated as a
minimax optimization problem as follows.

Minimize On+l (la)

subject to
fi($) < on+,, i= 1, . . ..m. (lb)

.—

where fi is a designer d~~,??d function, m is the
number of these functions, t s the n-vector of tiesign
components and jn+l is a; additional independent
variable.

Taking t.tne tuning process into a:count w? separate

the design components into tunable elements and
nontunable elements [2]. Let
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define the tunable design elements and

r

1 ‘k+l 1

(2b)

,.
$n

-. I
define the nontunable elements. Manufacturing
tolerances are associated with all elements. The

deviations of the design parameters from their nominal
values, the effect of parasitic and other
uncertainties may cause violation of the design
specifications . Tuning is carried out to force the
response within its specified values. Mathematically
the tuning problem can be formulated as a minimax

optimization problem as follows.

Minimize z (3a)

subject to

fi($ + Aft, ~;) < Z, i = 1, . . ..m.— (Sb)

a<h+
-— -t<!?’ (3C)

where the superscript a denotes the actual manufactured

values (not known exactly in practice) and the minimi-
zation is carried out by varying &+t. The linear

constraints (3c) represent limits on- the tuning
amounts. For irreversible tuning where, for example,
the elements are only permitted to increase, the limits
are nonnegative.

Since we restrict the tuning amounts by equation

(3c) a differentiable approximation can be used to
estimate tbe change in the functions and the minimax

optimization problem, namely (3), can be approximated
as follows.

Minimize Xk+l (4a)

subject to

k afi

fi(~:, f;)+ z ‘$x-x.
j=l J a$j J

where

‘j

< Xk+l$ i = 1, . . ..m. (4b)

j= 1, .... k, (UC)

(4d)

independent variable. The
evaluated at the actual
In our implementation we



utilize a suitable approximate network model $x for

simulating these sensitivities, since the actual

manufactured values are usually unknown. The functions
fi are evaluated by directly measuring the response.

Linear minimax optimization has been considered by

Madsen et al. [31, and by Hachtel et al. [41. Their
reported success in solving different circuit design

problems motivated us to employ similar concepts in the
tuning problem.

The Tuning Process

The tuning procedure can be summarized by the
following steps.

Step 1

Step 2

Step 3

Step 4

Measure the network response. Check whether the

design specifications are satisfied. If they
are satisfied stop.

Construct the linear program defined in (4).

Use sensitivities which are derived from a
suitable network model with the design

parameters assumed at certain reasonable values
~ ‘e. g., their no~inal values) . The upper and

lower limits =i,,~i, i=l,2, . . ..k are defined to

ensure the valldlty of linear approximation and

the type of tuning (reversible or irreversible).

Check the output of the linear program. If the

absolute value of the tunable amount of any
tunable element is less than the minimum amount

of tuning which can be carried out in practice
we assume that it is zero. If all the absolute

values of the tunable amounts are less than
their corresponding minimum allowable values

stop .

Adjust the parameters to the extent possible by

the amounts obtained from the linear program.
If the maximum number of iterations specified

has not been exceeded return to Step 1.

The network sensitivities can be updated using the

Broyden rank one updating formula [51. This will
utilize the measurements in improving the assumed

initial network model, and a better approximation of
the actual sensitivities is obtained after each

iteration.

Example

As an example we consider a broadband amplifier
with a complex antenna load as shown in Fig. 1. The

object is to match the antenna load over the frequency
band 150 MHz to 300 MHz.

Fig. 1 The broad-band amplifier.

We considered the design given by Sanchez-
Sinencio [61 as the nominal design for simulation
purposes. The power gain at a certain frequency is

given by 4RSGLlVLlz/lVS12, where RS is the source

resistance, GL is the real part of the admittance of

the load, IVLI is the absolute value of the voltage

across the load and lVSl is tbe absolute value of the
input voltage which we assumed to be unity. The
response was assumed to be measured at sixteen

uniformly distributed frequencies over the given

frequency band. At each frequency an error function
was defined as the absolute difference between the
measured response and the 10 dB specified power gain
value. The source resistance was assumed to be 50

ohms . The transistor scattering parameter values and
the antenna impedances at the sixteen frequencies were

obtained from Sanchez-Sinencio [61.
A nwnber of different cases are considered here.

In all of them, the tuning process is stopped when the
response is within + 0.7 dB of the specification.

Also, we have assumed-that the minimum tuning amount to
be implemented is + 0.1 percent of the nominal element

value for all tuna~le elements. Any amount less than

that is neglected. For Case 1 and Case 2 the four
characteristic impedances are considered as the tunable
elements . In Case 1 we have taken ~j, . -~i . 0.1,

i=l, ...,4. In Case 2 we have taken >i . ->; . 0.05,
i=l, ..., 4. The four transmission-line lengths are

considered to be the tunable elements in Case 3 with
“bi = -=i = 0.1, i=l, ...,4.

The network sensitivities have been calculated

using the network model with the components assuned at
their nominal values. Tables 1 and 2 summarize the

results for the three cases. A plot of the response

before and after tuning for the three cases is given in

Figs. 2, 3 and 4, respectively. It should be noted that
the elements used in Case s are closer to nominal than

in the first two cases, manifesting itself by tuning

converging in one step. The Broyden updating formula

has also been used. Quite similar results were

obtained.

Table 1

Element Values

Percentage
Nominal Actual Value Deviation

Element Value Case l&2 Case 3 Case l&2 Case 3

‘1
2.012 2.25 1.9 11.82 -5.56

‘1
86.76 74.07 93.4 -14.62 7.65

‘2
0.976 0.85 0.982 -12.90 0.60

Z2 97.57 83.33 93.45 -14.59 -4.25

‘3
0.833 0.72 0.85 -13.56 2.04

‘3
125. 111.11 129.87 -11.11 3.89

14 0.927 1.07 0.91 15.42 -1.83

Z4 132. 113.63 128.2 -13.91 -2.87

9, is the normalized length. The actual length equals
!2 ln12x, where in :IS the wavelength at 230 MHz.

Z is the characteristic impedance in ohms.

Table 2
Results of Tuning

Case 1 Case 2 Case 3

No. of Iterations 6 8 1

21 = 112.35 21 = 109.89 t, ❑ 2.090

Tuned Element Z2 ❑ 102.04 Z - 106.38 12 ❑ 0.9762-

Values 23 = 121.21 Z3 = 117.64 L3 ❑ 0.788

Z4 = 169.4~ Z4 = 147.70 .L4 = 1.001
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Fig. 3 The responses for Case 2.

Conclusions

In this paper we have presented an optimal

postproduction tuning technique. The formulation of
the tuning problem as a minimax problem allowsd us to

use the fast and efficient linear programming

OPtimiZ.atiOn technique for estirnat,ing the tuning

amounts. In each step the tunable parameters are

simultaneously allowed to change. The technique
optimally uses available response measurements and
eliminates completely the experimental trial and error

and one–at–a–time approaches. The technique is quite

general and can be applied to any microwave network for
both reversible and irreversible tuning.

The formulation of the postprocluction tuning
problem as a linear programming problem facilitates the

inclusion of many physical constraints such as the
direction of tuning, the tuning amount,s and the

constraints on other functions obtained by simulation.

A good approximate model for th? network for

evaluating the sensitivities usually exists and these
sensitivies Can be updated using the measured data
during the tuning process.
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