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Abstract

We present a comprehensive comparison between the widely used Lagrange
multipliers and Tellegen's theorem approaches to sensitivity calculations in

electrical networks.

The two approaches are described on a unified basis, hence

different aspects of comparison can be clearly investigated.

1. INTRODUCTION

Sensitivity calculations are performed routinely
in electrical network analysis and design to
and gradients of

supply first-order changes

functions of interest w.r.t. practically defined

control or design variables.

Two approaches, namely the Lagrange multiplier
[1,2]
intensively used for

both

approach
[3,41,
calculations in

and Tellegen's theorem approach
are sensitivity
electronic and power
networks. Methods based on the two approaches
have been described and applied [1-4] on an
individual basis. A combination between the two

approaches has been proposed in [5].

The material presented in this paper aims at
investigating relationships between the two
approaches. This investigation is accomplished by

employing common bases of description and analysis
through which the required aspects of comparison

can be clearly stated.

the and the basic

In Sections 3 and 4, we

We state notation used

formulation in Section 2.
describe, on a unified basis, the application of
the Lagrange multiplier and the Tellegen's theorem

approaches to sensitivity analysis of electrical

networks. A comprehensive discussion of some
aspects of comparison is then presented in Section

5.

2. BASIC FORMULATION

We denote by f a single valued continuous real or

complex function of nx system state variables x

and nu control variables u which may be real or
complex, x and u being column vectors. We also
denote by h a set of nx real or complex equality

constraints relating x to u.

The first-order change of f is written as

§f = fT §x + fT su,
X < ~u 2

P

where 6 denotes first-order change, T denotes

transposition and fx and fu denote 3f/9x and
af/3u, respectively. Also, the first-order change

of h is written as

Sh = H_ 6x + Hu Su =0, (2)

where Hx and Hu stand for (BhT/ax)T and (ahT/au)T,

respectively.

In the case of complex variables, x and u may

contain complex conjugate pairs [4] and fx' fu' @x

and gu of (1) and (2) may represent formal [5]

partial derivatives w.r.t. the complex variables x
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and u.
When dealing with electrical networks, x and u may

be classified [4] into 2-component subvectors Xy
associated with different

and respectively,

u
b’
element (branch) types, b denoting the bth branch.

In general, x and u constitute node branch

~b ~b

variables X and u and line branch variables Xe

and u,. For node

-t
voltages in a typical linear electronic network.

example, xm may represent

In this case the components of xm are, e.g., V

* ml
and sz or [6] Vm and Vm' where Vm1 and Vm2 are,
respectively, the real and imaginary parts of Vm

and * denotes the complex conjugate.

In power networks xm and um are further classified

[4] into vectors associated with load (xl, uz),

generator (fg' ug) and slack generator (fn’ En)

branches.
In general, we write

X = {ib} = {fm' ~t

and

¢ = {Eb} = {Em' gt}' )

In the above formulation, we have assumed that the
number of state or control variables defined is
branches in the

2"8' n denoting number of

B
network. This assumption is made to simplify the
comparison between Lagrange multiplier and
Tellegen's theorem approaches performed in the

following sections.
l2,5]

Both of these approaches can
be applied for a general number of state

variables.
3. LAGRANGE MULTIPLIER APPROACH

In this approach, we use (2) to write the

first-order change 8f of (1) in the form

T T N
§f = (fu - Hu A) T 6u, (5)

where X is a vector of the nx Lagrange multipliers

obtained by solving the adjoint equations

%x é = Ex' (6)

Hence, from (5)
af L _ . (1)

In practice, we solve the nx ad joint equations (6)

for the Lagrange multipliers A which are then
substituted into (7) to obtain the required total

derivatives of f w.r.t. control variables.

For use later, we now describe the approach in a

slightly different way. We employ the
classifications of (3) and (4) to define the
change of an element-local Lagrangian term as
A T T
Sy = 7 Hp ) exy w7 B ) su, (8)
where
Ex = [E1x e ﬁn x] 9)
B
and
A .
gu - LE1u tr HnBu]’ o)

be and ﬁbu being 2an2 submatrices.

We also define

sL 4z 8L, (1)
b
b

hence, from (2) and (8)

sL = 0. (12)
Using (8), (12) and

T T

§f = é (fbx bxp * fbu ng) (13)
we may write, from (11)
T T T T

sL = af-zl(fb -\ be)éfb + (fbu"ﬁ gbu)sgb].(1u)

X ~ ~
b

Observe that when A of (14) satisfies (6), namely

T
ﬁbx 1 = be, for all b, (15)
then (14) reduces to
T T
sL = &f - s (fbu - Ebu i) ng, (16)
hence, from (12)
T T
of = : Fpu =y 2 0y, an
so that
af e g, (18)

de ~bu ~bu -
which is a form of (7).
4, TELLEGEN'S THEOREM APPROACH

In this approach, the application of Tellegen's

theorem [4] results in the identity

IS



g

§T = 0, (19)

where
st 2 3 8Ty (20)
b
the element-local Tellegen term 6Tb is defined as
A AT T
8Ty = Mpx p * Npy S 21

and the 2-component vectors ﬁbx and ﬁbu are linear
functions of the formulated adjoint network

current variables I, and voltage variables Vb (and

b
their complex conjugate). Hence, the ﬁbx and ﬁbu

are related through Kirchhoff's current and

voltage 1laws formulating 2n real network

equations, n denoting the number of nodes (or

buses) in the original network. Using (13) and

(21), we may write, from (20)

T T T
doxy + oy

T .
§T = &f - % [(fbx’ﬂbx )sgb]. (22)

b

The adjoint network is defined by setting

Moy = fbx' (23)
hence (22) reduces to
~ T
8T = 6f - z (fbu - Dbu) Gfb’ 2u4)
from which
df ~
du. ~ sbu = Mou- (25)
~b
In practice, we formulate the adjoint network

using (23) and solve the 2n adjoint network

equations to get ﬁbu which are then substituted
into (21) to obtain the required total derivatives

of f w.r.t. control variables.
5. ANALOGY AND COMPARISON

In the last two sections, we have described both

the Lagrange multiplier and Tellegen's theorem

approaches to sensitivity calculations 1in

electrical networks. In this section, we

investigate the analogous features of the two

approaches and state a general comparison between
them,

First, we remark on the resemblance between the
element-local Lagrangian term GLb of (8) and the

element-local Tellegen term &§T_ of (21). We also

b
remark on the resemblance between equation (12)

formed to satisfy (2), namely, the network

equations and equation (19) formed by applying
The 8f of (14) and (22) is

expressed solely in terms of the control variables

Tellegen's theorem.

via defining,

(15) and
network is

respectively,
(23). The
then used to obtain the

df/du from (18) and

the adjoint systems
solution of the adjoint
total

derivatives (25),

b
respectively.

In the Lagrange multiplier approach, the adjoint
system of equations to be solved for the adjoint
variables (Lagrange multipliers) A constitutes a

2n_, x 2nB matrix of coefficientsi In general,

whzn other state variables are defined [2], the
order of the matrix of coefficients is determined
by the total number of state variables defined.
On the other hand, the adjoint system of equations
in the Tellegen's theorem approach represents a
set of network equations and constitutes only a

2n x 2n matrix of coefficients.

The compactness of the adjoint system formulation
in the Tellegen's theorem approach is afforded in
essence by realizing, when formulating the adjoint
equations, Kirchhoff's relations between the
different adjoint variables which constitute a

fictitious electrical network.

Assuming that the effort required is divided into
formulation and solution parts of the adjoint
system, we immediately see that the Tellegen's
theorem approach sweeps the major effort into the
formulation part and results in only 2n adjoint
equations to be solved. 1In contrast, the Lagrange
multiplier approach requires almost nothing to
formulate the which then

adjoint system

constitutes nx adjoint equations to be solved.

Note that if we formulate the vectors I and V to
contain all branch current and voltage-Variabies.

respectively, and consider [7] the perturbed

relationships
§I = H, 6x + H, su, (26)
~ ~1X ~ ~1lu ~
8V =H 6x+H 8u-= AT 8V, @7
~ VX ~vu - M
ASI =0 (28)

and (1), where A is a form of incidence matrix and



VM contains node (bus) voltage variables, it is
straightforward to show that a vector ﬁu. which
contains all the ﬁbu of (21), is given by

a _ T T
LT Evu 51 + Eiu ﬁv'

(29)
where Ai and kv satisfy KCL and KVL, respectively,
and the relationship

HT' A, + HT

Hox M A, = f . (30)

~ix ~v ~X

6. CONCLUSIONS

The two widely used approaches to sensitivity
calculations in electrical networks, namely the
Lagrange multiplier and the Tellegen's theorem
approaches have been described and compared. The
description has been performed on a unified basis
where we have defined and employed element-local
terms in formulating the two approaches so that
different aspects of comparison are clearly
investigated. The resemblance in formulating the
adjoint systems of the two approaches has been

discussed.
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