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Abstract

This paper 4investigates direct solution zechniques for an
unfamilian fonm of Linear complex equations expressed in fexms of a

set of complex variables and their complex confugate.
form may represent Linearized power network equations.

This complex
The weld-

known Newton-Raphson method is described and applied, with the aid
0§ a novel elimination xzechnique, in a compact complex foam, to the
Load §Low problem described in power system studies.

1. INTRODUCTION

The load flow problem [1] consists of determining
power flows and voltages of a linear power network
for specified terminal or bus conditions. Leoad
flow calculations are performed in a wide variety
of applications including power system planning,
operational planning, optimal power flow analysis
and sensitivities, outage security assessment and
stability.

Unlike the analysis of typical linear electronic
circuits, in which the equations describing the
system are linear, the load flow analysis comprises
a set of nonlinear equations. The a.c. electronic
circuit analysis implies a solution of a set of
complex linear equations to be solved exploiting
the advantages realized by retaining the complex
mode of the equations [2] to reduce the required
computer memory by about 50%. The a.c. nonlinear
load flow equations, on the other hand, are usually
solved by iterative methods.

Recently, a variety of iterative numerical tech-
niques for solving the load flow problem have been
described [1]. While Gauss-Seidel and other
nonderivative-based methods [1,3] have been
described in the complex mode, the Newton-Raphson
method [1,3,4] has been basically described [4] in
the real mode. The Newton-Raphson method, however,
can be interpreted formally in terms of first-order
changes of problem variables. In this paper, we
invoke this interpretation to describe the Newton-
Raphson method in the more compact complex mode,
and we utilize some theoretical derivations given
in [5,6] to relate analytical aspects of the
resulting form of equations to those of other
familiar forms.

We set aside one section of the paper to describe,
with the aid of a suitably developed notation, an
elimination procedure which, in conjunction with
the well-known forward Gaussian elimination tech-
nique, provides a suitable method for solving the
resulting equations in complex mode, directly.
Modifications required to preserve the complex mode
in application to practical systems are also
investigated.
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In this paper, we use the cartesian coordinate
system in formulating the equations. It should be
noticed that the Taylor series expansion of the
load flow problem in cartesian coordinates involves
terms up to the second order only, and the use of
first-order variations of the complex variables is
equivalent, as stated in our paper, to eliminating
the last term of Taylor series. Our paper is
concerned mainly with the fundamental formulation
and resulting eliminating technique. All expected
subsequent improvements regarding efficient
sparsity programmed ordered elimination [71],
however, can follow.

2. PROBLEM FORMULATION

The power network performance equations [3] are

written, using the bus frame of reference, in the
admittance form
IV = Iwe )
where
Yp=tp v 3 2
is the bus admittance matrix of the network,
Y = Vgt 9 Ve (3

is a column vector of the bus voltages, and

o= Iy + 3 v b2

is a vector of bus currents. The bus 1loading
equations are also written in the matrix form

# *
E I =35

Ev In = Sw (5)

where E, is a diagonal matrix of components of YM
in corresponding order, i.e.,

(6)

v is defined as

1<
">
-

SM is a vector of the bus powers given by
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Sy =Pyt 3 Q (8)
and * denotes the complex conjugate. Substituting
(1) into (5), we get

* *
E, Y.V, =3S,. (9)

MIT M 7T

The system of nonlinear equations (9) represents
the typical load flow problem.

We write (9) in the perturbed form

S . % *
§ =6
E YM SM, (10)

S
§
K YM +

* *
where &V 8V, and &S, represent first-order
%~

MO M
changes of YM, YM and §M' respectively,

K5 = E. Y (1)

and gs is a diagonal matrix of components of IM’
i.e., -
Kv=1I,.
Cyy a2
The form (10) rigorously represents a set of linear
equations to be solved in the context of the
Newton-Raphson iterative method. The form (10) and
related forms will be used throughout the paper
while bearing in mind that the equation
corresponding to the slack bus may be eliminated.

3. NEWTON-RAPHSON ITERATION IN COMPLEX MODE

The familiar form of the Newton-Raphson iteration
in the real mode [3] is obtained by separating (10)
into real and imaginary parts and collecting the
terms, appropriately, using the perturbed forms of
(3) and (8), to get

S =S S =S
K7+ KD (K + K V1 8Py
s s s s = , (13)
—(52 + 52) (—§1 + 51) 6YM2 agM
where we have set
K° = K5 + j Kg (14)
and
[SER SRl o (15)

The 2n x 2n matrix of coefficients in (13), n
denoting the number of buses in the power network,
constitutes the Jacobian matrix of the load flow
problem.

On the other hand, equation (10) can be written in
the consistent form

K> g v st
" » ¥ 85y
_S# S* o = S . (16)
E - 6~M 5~M

It can be shown [5,6] that the matrix of coeffi-
cients of (16) has the same rank as that of (13)
and the system of equations (16) is consistent if
and only if the system (13) is consistent.

Now, the system of complex equations (16) is
equivalent to the more compact system of complex
equations

K™ sV, =d, “n
where we have defined

i SR e R (18)

and
S S# S -1 *
d = GSM - K (E ) 6§M. (19)

In the jth iteration of the Newton-Raphson method
in the complex mode, we solve the system of
equations (17) with

_ yd+l J
Sy = Y~ Y (20)
% S .j
83y = §M(scheduled) - Ky e

and the matrices ES and KS are calculated at Vﬁ.

A trade off between the direct use of forms (13)
and (17) must take into account the sparsity ogsthe
matrix of coefficients. While the matrix K~ of
(14) has the same sparsity as the bus admittance

matrix Y., the matrix of coefficients %S of (17) is
as sparse as the matrix

4
Yrp = Xp Ip (22)

In other words, the advantage of the direct use of

the compact nxn complex matrix K~ rather than the
2nx2n real matrix of coefficients of (13) may be
restricted by the relative sparsity of the matrices
YT and g T the factor which obviously depends on
the graég of the network. To illustrate this
point, we consider, in Fig. 1, three special
structures for which the sparsity coefficients [8]
of XT and XTT are compared.

We remark here that in the analysis of typical
linear electronic circuits, a system of complex
linear equations of form (1) is solved for the
unknewn node voltages YM with known excitations lM’

*
The conjugate vector of variables V, is not
involved in the set of equations. The analysis,
hence, does not imply the previous restriction and
the use of the complex mode is wundoubtedly
advantageous [2].

4. THE CONJUGATE ELIMINATION TECHNIQUE

In the previous section we have defined the matrix

KS and used it to transform the original problem
110) into the form (17). This transformation
enjoys the advantage of the compact complex-mode
analysis and, at the same time, provides a form
(17) which is suitable for ordinary methods of
solving a set of linear equations. In this section
we present an alternative approach to the problem.
Instead of applying the ordinary elimination

methods to the more dense matrix of coefficients K
of (17), we use ‘a special technique in order to
handle, directly, the original form (10).

derivations, we
First, we define

In order to facilitate the
introduce the following notation.
the term



— A — *
2K, X, . 2
{kij' kij} x5 li Xg o+ kiJ Xy (23)

3 and E;j stand, for example, for general
elements of the matrices K> and KS. We call the
set of elements a of {a,b} the basic set and the
set of elements b the conjugate set. Then we state

where k.
i

the following basic rules which can be easily
verified.
>~
©® node branch
Network Sparsity Coefficient

Y Y

T _IT
(a) simple chain 1 - (3n-2)/n2 1 - (5n-6)/n2
(b) simple star 1 - (3n—2)/n2 0
(c) simple tree 1 - (3n-2)/n2 1 - (6n—8)/n2

n = number of nodes = order of YT or XTT

Fig. 1 Sparsity coefficients of YT and YTT
for simple networks - -
Rule 1
— — *
{k. ., k..} x, = {k,., k. .} x.. 24
ij ij J { 1) 1] J @9
Rule 2

— * * *
(1K; . K 3%:) = {Ks s K s3X: ={Ks 20Ks s3Xxs.  (25)

1377137 137137 13713773
Rule 3
p{kij, Eij} xj = {p kij’ n Eij} XJ
= {kij' kij} (u xj). (26)

where u is a complex scalar.
Rule 4

{kij' kij} xj +u {klj’ klj} xj

= {(kij + klj)’ (kij+u klj)} xj. 27)

The above notation may be exploited in developing
suitable methods for solving systems of the form
(10). Here, we invoke this notation to describe a
technique which allows the forward Gaussian elimi-
nation process to be directly applied to the form
(10). The system of equations (10) is written,

using (23), as

n
'E {kij' klj} xj = bl. i=1, ..., n, (28)
J=1
where x, and b, are elements of x = &V, and b =
* J i ~ -M ~
85y~ respectively. Since
Eij =0, for i # j, (29)

equations (28) can be written as

k..} Xi + {kij' 0} xj = b.,

1

L ST -1

j=1
J#i i=1, ..., n. (30)
We assume that the order of elimination [7] has

been taken into account by applying suitable
permutations to (30).

At the first iteration, we write the first equation
of (30) as

n
{kqq k11} Xy o+ .2 {k1j' 0} xj = b1 (31)
j=2
or, using (25),
T k) T 0, K MNErS
{k11, k11 X, + -E {o, 13 xj = b1. 3
j=2
. . (1)#*
Multiplying (32) by " , where
(1) a L
Wy E - k1i/kii (33)
and adding to (31), we get, using (27),
— (1)% *
{0, k11+u1 k11} X,
n *
+ I {k1.. ug1)* k1.} X
j:2 J- J
_ (1)* #*
= b1+u1 b1 (34)
or, using (25),
—* 1)
tkyq +uy 7 kype O3 xy
n
QD]
+ I {u k <9 k .} X
j2 M 150 %13
_ L N
= b1 + uy b1. (35)
Multiplying the ith equation of (30), i = 2, ...,
n, by uil) of (33) and adding to (35), we get
n
ro D, 0n g =il (36)
j=1 J J
where
M _ o+ T
kpp =k oy T kg (372)
i=1
N SNEP! .
k1j = : uy kij' j=2, «eey n (37b)



and

(1)
by

* n
= b1 + I s (38)

Equation (36) together with equations 2, 3, ..., n
of (30) represent a set of equations ready for
applying the first iteration of a forward Gaussian

(1)

elimination to the matrix K which is obtained

by replacing the elements of the first row of K by
the elements of (37). Observe that we have
evacuated the conjugate set of the first equation.

In general, at the mth iteration, and with k(m-1)

lJ
(m-1) denoting the current elements of K and

and b
g. respectively, we replace the elements of the mth

row of KS by the elements

(m) —* n (m) . (m-1)
m = o + .Z ui kim (39a)
1l=m
and
m _ % m  (m-1)
kmj = iim uy kij , j =mel, ..., n (39b)

and we replace b(m 1)

(m) (m=1)% n (m), (m=1)
bm = by + Loy bi : (40)
i=m
where
(m) A _ (m—1)*/i 1)

i = - Kny

We shall call the special elimination process
described by (39)-(40) the conjugate elimination in
which the coefficients of the conjugate variables
are successively eliminated. A tableau representa-
tion of the combined elimination process is shown
in Table I for n = 3, and corresponding numerical
results are shown in Table II where the solution of
the arbitrary system of equations

#
Xq = JX, 2x3 + 2x1 =5

*
Xy =%y + JXg - Xy =
*
2x1 + x5 - x3 + x3 =0

is investigated. The backward substitution results

in the solution

5. COMPLEX FORMULATION FOR PRACTICAL SYSTEMS

In the system of equations of form (10), it is
assumed that all buses other than the slack bus are
of the same type, namely a load bus type for which
the active and reactive powers are known. In
practice, voltage-controlled or generator-type
buses must be considered and modelled appropri-
ately. For generator type buses, the magnitude of
the bus voltage and the active power are specified.
This situation obviously impedes the direct use of
the complex form (10). In the following, we
present a special technique of formulation which
allows the generator-type buses to be included

while preserving the complex mode of (10).

Consider the equation of (10) corresponding to a
generator bus g. We define the complex quantity

20 A .
S” = 4y
g Pg + J |Vg|, (42)
hence
<0
S” = §P i 8|V _|. 4
854 8Py + 3 | gi (43)
Since
* *
2P = V_ I +V I, (44)
g g 8 g 8
then

#* * * *
o6P =V I + I 6V + V. 6L + I 8V. (4
g = Vg 8Tg + Ty 8V + Vg 81, + I 8V, (43

Using (1), we write Ig in the form

I (46)

yT
g g Ve

where yT represents the corresponding row of the
bus admfttance matrix Y., hence
T
81 = sV, . (47
g Zg M

Also,
/2
§|V = §(V V

* *

= (V_ 8V vV sV 2 . 4
( g Vg + ¥y s g)/( IVgI) (48)
Using (U45)-(48) it is straightforward to show that

GSZ of (43) is given by

#*
5S =k &V, + Kk 5VM. (49)

S
where k 2 which replaces the row of K of (10)
correspohding to the generator bus g, has elements
defined as
0

A *
kK .2V Y ./2, ]
o g gJ/ j#sg (50a)

and

0 &
k. =
a8 jv /(ZIV 1)+ (Vg gg

Yij denoting elements of XT' and EZT,which replaces

*
+ Ig)/2' (50b)

the row of _gs of (10) corresponding to the
generator bus g,has elements defined as
0

T A * .
k. =V Y ./2,
2 ¢ ‘gj jfe (51a)

and

=0 A
k = V /(2|V v
gg - 3 Vg (BlVgD + (Vg Yoy
The above formulation results in an equation of
(30) for i = g of the form

+ Ig)/2. (51b)

n
0l L' e oz 0, B0 x, =60, (52)
gg g8 8 =1 gJ gJ J g
hEd
where b0 stands for 65 .
g g

In order to prepare the original conjugate tableau
of (10) to be suitable for applying the technique
described in the previous section, we multiply
equation i, i#g, of (30) by the factor



TABLE I
THE COMBINED ELIMINATION TECHNIQUE

Iteration No. vBasic Tableau Conjugate Tableau b Type of Elimination
K11 k12 ki3 k11 0 0 by
0 k21 k22 k23 0 k22 0 b2 Original tableau
k31 K3p o Kg3 0 0 k33 by
ki:) kgg) kﬁ;) 0 0 0 b§1)
- Conjugate
1a k k k 0 k 0 b
2 22 23 22 _ 2 elimination
k
K31 32 K33 0 0 k33 b3
kgl) kgg) kgg) 0 0 0 b§1)
N N _ Q1 Gaussian forward
b 0 k22 k23 0 ka2 0 b3 ) Liminati
6 (D k(1) . . - b(1) elimination
32 33 33 3
ki:) ki;) kﬁg) 0 0 0 b51)
@ (@ (2) Conjugate
2a 0 k k 0 0 0 b
22 23 2 i
0 k(1) o 0 . b(1) elimination
0 k
32 33 33 3
ey ktH nep 0 0 0 b(1)
1 12 13 . 1 G .
(2) (2) (2) aussian forward
2b 0 k k 0 0 0 b
22 23 2 - R
(2) o o - b(2) elimination
0 k
0 33 33 3
ey k(1) ney 0 0 0 b(1)
" 12 13 ! Conjugate
3a 0 K2 (2 0 0 0 b2
22 23 2 - .
(3 0 0 0 b(3) elimination
0 0 k
33 3
TABLE II o —o -
EXAMPLE OF ELIMINATION TABLEAU uy = - kgi/kii' (53)
The sum of the resulting equations is added to (52)
Iteration Elements of to obtai tti K = EO
No. Basic Tableau Conjugate Tableau b obtain, putting gg ~ g8’
n
. {k ,k }x + ¢ {k .0 .= b (54
1 -3 2 2 5 gs' g8 8 .., 8] bxy =g )
0 3 -1 j -1 j j;g
2 J -1 ! 0 where
A, 0O n 0
7 J5 0 0 =3 kgj Skoo+ Ioukii=1,2, .., 0, (55)
1 0 -2/7 ] -1 310/7 83 i1 J
0 -33/7 -1 1 6/7 i#g
and
7 35 0 0 -3 A0 noog
2 0 12/7 j9rs2 0 jaus7 b =b + I y, bi' (56)
0 0 -17/8 1 0 & &8 41
ifg
7 35 0 0 -3 Equation (54), hence, represents the gth equation
3 0 12/7 j9s2 0 jous/T of (30).
0 0 -225/136 0 0
Note that |Vg| of (42) could be replaced, for



example, by |Vg|2. Moreover, one could equally
*
well replace the elements of GYM and GYM' namely,

*
svi and 6“1' i = 1, n by the relative

vees
*
quantities GVi/IVil and GVi/lvil, respectively. In

this case, the elements kij and kij of the ith row

of the coefficient matrices are replaced by Ilekij

and lvjlkij’ respectively.

6. CONCLUSIONS

We have presented a suitable approach for solving,
in complex mode, the load flow problem described
for power system studies using the well known
Newton-Raphson method. The unfamiliar form of the
resulting complex equations has been directly
handled by a new elimination technique. Other
similar forms of complex equations which are
expressed in terms of conjugate pairs of variables
may be handled. We have synthesized appropriate
complex variables comprising the practical
adjustable variables associated with voltage-
controlled buses. Hence, the complex mode of the
resulting perturbed power flow equations is
preserved.
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