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A One-Dimensional Minimax Algorithm Based on
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Abstract —We exploit the biquadratic behavior w.r.t. a variable ex-
hibited in the frequency domain by certain lumped, linear circuits. A
globally convergent, extremely efficient minimax algorithm is developed to
optimize the frequency response w.r.t. any circuit parameter. The algorithm
converges to the global minimax optimum and the rate of convergence is at
least of second order.
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TABLE I
INTERVALS DEFINED BY (3) AND (4)
2 s
21_ sgn[(Bi-sDi) - sgn(sigi_cini) ssn(AiEi'Ci) Intervals (points) of 4 such that
sgn(s- 7)) _ o _ _ _
E1 (Ci sEi)(lAi §)] ei(o) <§ ei(o) > 8 ei(‘) = §
1 10r 0 . * (me,r Iv(r,,=) {r.r;) rr,
1 -1 * . Lfrw.2) - -
-1 1or 0 * * _(11_,1;21 (-m,r1)v(r2,°) rr,
-1 -1 . * - (c= o) -
0 * 1 . (~w,r) (r,) r
0 ® -1 * (rw) (~w,r) r
0 ¢ 0 1 - (=) -
0 * 0 - (=) - -
hd denotes values of no interest,
Py £ r, denote the two real roots of equation (4),
r denotes single real root of equation (4) when 8§ = Ci/E:L'

I. INTRODUCTION

A number of researchers have considered properties of re-
sponse functions w.r.t. one designable variable at a time in the
context of the prediction of worst cases in design centering and
tolerance assignment [1]-[8]. The bilinear behavior of certain
linear circuits has been used to derive relationships between, e.g.,
first-order and large change sensitivities. In the tolerance prob-
lem, attempts have been made to find conditions which satisfy
the common assumption that worst cases occur at extremes of
parameter uncertainty intervals.

Here, we consider the resulting biquadratic function obtained
from the modulus squared of the bilinear function. We determine
parameter intervals which are utilized in a globally convergent
and extremely efficient one-dimensional minimax algorithm. The
algorithm is based on the linearization of some functions at the
extreme points of these intervals. Examples employing a realistic
tunable active filter demonstrate the optimization of the frequency
response w.r.t. a circuit parameter.

II. THE ONE-DIMENSIONAL MINIMAX ALGORITHM
We consider the problem
minimize max e,;(¢) §))]
¢ I<i<m
where the functions e,(¢) are biquadratic of the form
A, +2B;¢+C¢*
e(¢)=——"T"—"—. @
142D,6 + E;¢

We assume that the functions (2) have nonnegative denomina-
tors and are irreducible. Bounds on the range of ¢ can easily be
taken into account. Now, suppose we are interested in finding,
for certain 7, the values of ¢ such that

e(4)=5 3)

where 8 is a given number. Such values can be obtained from the
equation

(CI_SEi)‘bz+2(Bi—8Dr')¢+(Ai—8):0‘ ()

Table I presents all relevant cases. According to Table I we notice

that, due to the properties of biquadratic functions, it is always
possible to define a continuous interval R 5 such that either

e(¢p)<8, forall¢€ER,
ande,(¢)>8, forall¢ & R4 (5)
or
e(p)=8, forall¢€ER,
and e, (¢)<8, forall¢p &R,;. (6)

Typically, the interval R,; is unique. For particular cases, how-
ever, we can find two continuous intervals such that one of them
fits the situation of (5) and the other one satisfies (6). In such
cases we decide to consider the interval which is underlined in
Table I. (Boundary points are included in R,;.) To indicate the
type of the interval R,; we will use a logical variable #,, which is
set to “true” or “false” if R, satisfies (5) or (6), respectively.

Now, consider the set of error functions e($),i=12,--- m.
The region R defined as

RB:{¢|ei(¢)<85i:]’2""am} (7)

can be calculated as

R; ﬂ Ris—

1,5 =true

= U (RiS_Fr(RIS))

;5 =false

= (8)
where Fr (R;5) denotes the boundary of R,,.

It is to be noted that R, is not necessarily a continuous
interval. In general,
k

Rs= U [‘;’1"2’1]

=1

©)

where k is the number of separate intervals denoted [é,, 6, An
efficient algorithm is proposed in [9] to provide k and the
intervals [(L,,&»,], [=1,2,---,k, as well as the indexes of the
functions e, which actually define the extreme points of each
interval. These indexes are denoted /, and i, ; for the lower and
upper extremes, respectively. In the algorithm we first determine
the intersections which appear in (8) and then we subtract
consecutive intervals of the second term of (8).
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Fig. 1. Illustration of the behavior of the one-dimensional minimax algo-

rithm. Note that the algorithm switches from interval 1 to interval 2, based

on predictions of the decrease in the maximum.

The algorithm for solving problem (1) is illustrated in Fig. 1.
The following steps set it out in sufficient detail.
Algorithm

Step 1: Set § —min{max,e;,(¢,), max,e,(¢,)}, where ¢, and

¢, denote bounds on ¢ being con51dered
Step 2: Find valid intervals I, [é,,¢,] and corresponding

function indexes i ,,1,,1 1,2,- -+, k.
Step 3: Calculate
de; de;
g=—" &= -
d¢ (4 d¢ LY

Step 4: If k=1, set j < 1 and go to Step 6.

Step 5: Find j such that AjéA,,I=l,2,---,k, (10)
where
— glél(&l—él)/(gl_g/) (11)
0if g, = g,=0.

Comment: In this step we select the jth interval which appears
to be the most promising one in terms of the expected improve-
ment in the minimax optimum based on linearization. A, will
always be positive unless either §,=0, g,=0 or ¢, é,.

Step 6: Set ¢*<—(gj¢j gj¢j)/(gj —§;)if zj #* lj and A ; 70.

Comment: 1If the extremes of the jth interval are defined by
two different functions, the new value of ¢, denoted by ¢*, is
determined by the intersection of the linear approximation to the
two functions.

Step 7: Set ¢* to the minimizing point of the function e if
[ =1

Step 8: Set ¢* —(¢;+¢;)/2 if o* (%), ) or A;=0.

Comment: This is a default value to obviate any numerical
problem which may arise in Step 5 or Step 6, for example, g, =0.

Step 9: Find § =max; e;(¢*).

Step 10: Stop if k=1 and if (¢, —

Step 11: Go to Step 2.

In the following, superscript n will denote the index of iteration
of the algorithm. The convergence properties of the algorithm are
stated by the following theorem.

Theorem If I"= [¢",¢"]is a unique interval such that e;(¢)<
8" for i=1,2,---,m, then |&>"—-<i>"|—>0 as n —oo. The rate of
convergence is at least of second order.

Proof of the theorem is presented in [9].

Now, we will show that the algorithm is guaranteed to con-

é,) is sufficiently small.
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Fig. 2. Tunable active filter.

verge to the global minimax optimum. This is due to switching
from one interval I; to another one in Step 5. Full details are
available [10].

According to the comment after Step 5, A7 is always postive if
| ¢ — 7]>0. We can omit the cases when g,’"“O and/or g/ =0,
since g/ <0 and g; >0 almost everywhere and Step 8 secures us
against these situations. Moreover, it is easy to notice that A7 -0
if |9 — §}] 0.

Let us consider two intervals I{' and I3 which are found by the
algorithm in the nth iteration. Let us assume that ¢ €I} is a
unique global minimax optimum. According to (11) and using the
following notation:

a =min(— g7, §); b} =max(—g", &) (12)
where i =1,2 is the index of the interval, we have
n_— arb'{ “n__ n _b_'|' “n__3n
and
n — a;bg “no__ yn f_?_ “no__ Gn
Ny= iy (95 43)=5 (85— 84). (14)
Thus
AL b"
d "’,' # (15)
&y ¢ — ¢
Since ¢ €I} is a unique global minimax optimum_ |¢2 |-
const5=0 if |¢"—¢7|—~0 so that (¢"— %)/ (¢5—3)—0. The

left-hand side of (15) can converge to a value different from zero
only if a5 —0 when |<i>'{ — ¢"1|—0. But this means that there is a
local minimum of at least one of the functions e;(¢) or e;(¢) of
value equal to the local minimum value at ¢, €I so that
€ I} is not the unique global minimax optimum. Otherwise,
since A7 /A% —0, the algorithm will select the second interval
according to (10).

III. EXAMPLE

A tunable active filter [11] has been chosen to implement the
theory and algorithms. The filter is shown in Fig. 2. The specifi-
cations w.r.t. frequency on the modulus squared of the transfer
function F=|V2/Vg|2 are F<0.5 for f/f,<1—10/f, or f/fy=1
+10/fy, F<121 for 1—-10/f,<f/f,<1+10/f,, F=0.5 for
1-8/fo<f/fo<1+8/fy, F=1 for f=f, Hz, where f, is the
center frequency. The one-pole rolloff model for the operational
amplifiers described by the dc gain 4, and the 3-dB rad band-
width w, was used.

Based on two consecutive analyses a biquadratic model in R,
was obtained at each sample frequency. The normalized sample
frequencies are taken as 1 and 1+=10/f, for the relevant upper
specifications, 1 and 1 =8 /f; for the relevant lower specifications.
This leads to six error functions e;, i =1,2,- - -,6. The range of R,
for which the specifications are satisfied is that for which e; <0,
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Fig. 3. Max, <, <¢e; versus the tuning resistor R, for specifications defined

around f, =100 Hz indicating the active functions (and hence active
frequency points).
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Fig. 4. Max, ¢ <¢e; versus R, for specifications defined around f, =700 Hz
for two cases: (a) R, =12.446 kQ, (b) R, =14 kQ.

i=1,2,---,6. The maximum of the error functions e; versus R, is
shown in Fig.3 . A single run of our program indicated that the
filter is tunable for the specifications defined at a center frequency
of 100 Hz. It meets these specifications if

R,E[181.126, 187.166]

and with other circuit parameters fixed at values given in Table
II. It is also tunable around a center frequency of 700 Hz (see
Fig. 4) and meets the specifications if

R,€[3.4881, 3.5012].
To find

min maxe;
4 i
we are faced with the local minima in Fig. 3. The convergence of
other algorithms [12] to the global minimum depends upon the
starting point. For the proposed algorithm the results are shown
in Table III for different starting points and at different center
frequencies. Note how few iterations are required.

When R, was altered to the value 14 kQ the filter is not
tunable as is determined by one run of the program. The opti-
mum value of R,, however, was obtained in only two iterations
(see Table III). In fact, the algorithm converged in the first
iteration since the optimum is defined by one function, however,
the second iteration was performed to satisfy the stopping crite-
rion. :

TABLE II
CIRCUIT PARAMETERS
Rg = 50.000 g C1 = 0.728556 wF
R, = 12. 446 ke C2 = 0.728556 wF
5
R2 = 26.500 kR Ao = 2 x 10
R3 = 75.000 @ w, = 12 » rad/s
TABLE III
MINIMAX OPTIMUM OF R,
Ru(ﬂ)
Center Frequency Optimum *
(Hz) s N.O.I
Starting Optimum
100.0 184.3998 -0.0458 3
100 300.0 184.3998 -0.0458 3
Ld 184.3998 -0.0458 3
10.0 3.4946 -0.0403 3
700 200.04, 3.4946 -0.0403 3
200.0 3. 4940 0.1434 2
& N.O0.I. = number of iterations

Lid R1 was altered to 14.0 kR and the filter is not tunable since 6>0.
Step 9 of the algorithm was used to initialize 8 at starting values of

Ry. Running times per example on a CDC 6400 computer were about 0.1 s.

IV. CoNCLUSIONS

The bilinear behavior of certain linear circuits in the frequency
domain have been exploited. The explicit determination of the
points defining the boundary of the feasible region w.r.t. one
parameter leads to a simple check on the tunability of an out-
come of the manufacturing process by adjusting a single parame-
ter at a time. Convergence to the global minimax optimum from
different starting points is assured in a few iterations.

The algorithm presented, after minor modifications, can be
used for a broader class of functions than biquadratic ones of the
form of (2). Only mild assumptions on first- and second-order
derivative behavior are required to obtain the same convergence
properties. From the point of view of computational effort re-
lated to the interval finding procedure, invertibility of the func-
tions is desirable.
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