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ABSTRACT

This paper presents an application of the
network
theory employs an
novel,
generalized complex branch modelling procedure
allowing the exact steady-state component models of

Tellegen's theorem approach to
sensitivity calculations, Our
adjoint network concept based

power

upon a

power networks to be considered without any
approximation. Exact formulas for first-order
change and reduced gradients are derived and
tabulated.

INTRODUCTION

A number of papers have applied the Lagrange
multiplier approach [1,2] and the Tellegen's theorem
[3]1 approach [4-7] to sensitivity calculations in

electrical power networks.

Previous work based on Tellegen's theorem
power model to permit direct
These approximations
have been successively improved from the use of the
d.c. load flow model [4] to the use of an improved
we
perturbed
complex branch modelling together with a pertinent
adjoint technique of derivation to attain general
sensitivity formulas based upon the exact a.c. power

approximates the a.c.
application of the theorem.

[51]. In this paper,
concept of generalized,

a.c. approximate model
employ a novel

model without any approximation.

POWER NETWORK STEADY-STATE ELEMENT MODELS

We denote by n and ny, respectively, the number
of buses (nodes) and the number of branches in the
to denote a
a complex
T may represent
admittance Y,
The complex conjugate
of t is written as ¥ and § will be used to denote
Bus-type branches are
1,2,...,n and line-type branches

network. We shall use b = 1,2,..., n
branch index. In general, we denote by 12
variable associated with branch b.

voltage V, current I, power S,
transformer tap ratio a, etec.

the first-order change.
denoted by b = m =
by b=t=n+1,...,n,. Furthermore, m = & =
identify load branches associated with P,
buses for which the complex power Sz = P
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to be specified, g = n, + 1,
generator branches a53001ated w1th
for which the real (active) power P_ and the voltage
magnitude |V_| are to be specified 3nd n = n, + n. +
1 1dent1f1°§ the slack generator branch for which
the bus voltage is to be specified. The line-type
branches, on the other hand, may contain the
ordinary passive elements of equivalent w-networks
representing, for example, the transmission lines
and transformers with real turns ratio as well as
the elements of equivalent mw-networks, derived [8]

. + 0 identify
% V- type buses

using the general branch modelling of Fig. 1, for
the transformers with complex turns ratio (phase
shifting transformers).
a,:1 Z,
bus p ; bus q
P + - q
* % * * % *
Iu - akI =V /(Z a ) - Vv /(Zkak)
*I* ( *)V*/(Z* )
IB -8 6 = (1—a W /(Zkakak) - (1-a a
*
IY + akIY = (a -V /(Zk k) - a (1-a )V /(Zkak)
Fig. 1 Modelling of transformers with complex

turns ratio.

In general, we deal with branch models as
* *

hb(Ib. I Vs Vo U - U ) = 0, (@D

where U_ denotes an independent branch (control)
variable, We write (1) in the perturbed form

- * — V* WS 2)

hbi 5Ib + hbi sIb = hb svb + hb sV + W, 2

where the coefficients h and h,

represent the formal [8] par%1al d%rlvaﬁaves of gg
wor.t, I, Ig, Vb and Vg respectively. These
formal derivatives may be evaluated using the
ordinary differentiation rules. Moreover, it can be
shown [8] that, for real h_, we have Esi = h¥. and
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hb = h¥ . Observe that the perturbed branch models
[9% are special cases of the general form (2). Note
also that in the perturbed branch models of typical
electronic circuits we may exclude the coefficients

and of the conjugate variables (e.g., the
constant v&itage sources are modelled by hbi = hbi =
hbv=0and hbv: 1.

THE AUGMENTED FORMS OF TELLEGEN'S THEOREM

Tellegen's theorem, based only upon Kirchhoff's
laws and topology, states in perturbed form that
I 8V, =0 and I Vy 8L, =0, (3)
b b
where the summation is taken over all branches, the
distinguishing the variables associated with the
topologically similar adjoint network.

We may consider some [10] or all [11] of the
exhaustive valid perturbed forms in terms of
variables and their complex conjugate. Such terms
are then added, subtracted or augmented via
arbitrary complex coefficients [6] together or to
other valid expressions [8] to formulate an
augmented Tellegen sum. In terms of variations in
the basic variables it is of the form

z fT sw, = 0, (4)
~b b
b
where
W, \ I ~ f .
~bv b b ~bi
Yb = ’ va = - y ybl = - ’ _f:b = A 9 (5)
“bi b b Tov

T denotes transposition, I, is a complex vector the
elements of which are, in general, linear functions
of the adjoint current and voltage variables and
their complex conjugate, gbi and tbv being
2-component vectors.

STANDARD BRANCH JACOBIAN MATRICES
The element variables as distinct from the

foregoing basic variables will be denoted by the
vector z of four components describing the

practical state x and control Uy, variables
associated with branch b,

X

b

Zb = N (6)

%o
X, and u_ being 2-component real and/or complex
vectors., See, for example, Table I,

We relate the variations of the element
variables zZ, to those of the basic variables Wy by
= 8w b (7
82p = Jp Mo
where J, contains the conventional and/or formal
derivatives of z w.r.t. w, . Of major interest is

b b

M M
(J-1)T - 1112 , (8)
~b Mb Mb

~21 .22
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whose submatrices are 2x2 Jacobian matrices which
are standard for a branch type of a network. The
branch Jacobian matrices for different branch types
of power networks are shown in Table I.

TRANSFORMED ADJOINT VARIABLES AND NETWORK

SENSITIVITIES
Let
R b b
Mox = M11 foi * Mi2 Doy 9
R b b
Mou = a1 Tpi + Moo fiy (10)

be transformed adjoint variables associated with the
bth branch, where ﬁb and % are 2-component
vectors, the elements o¥ which are linear functions
of the adjoint current and voltage variables and
their complex conjugate. Hence, using (5)-(8), the
augmented Tellegen sum (Y4) is written in terms of

variations in the element variables as

~p .
é (be sfb * Tou sgb) = 0. an

Hence,

stz 2 00C3)T axy w (30T sy, (12)
b ~b - ~b -

Assuming a possible consistent modelling [12] of the
adjoint system, we set

coo_af
Jox T axy ! (a3
hence, from (11) and (12)
T S
§f = 2 [( ) - o ] sup (1)

b Y

which expresses the first-order change of f (real or
complex) solely in terms of variations in the
control variables so that the total derivatives (the
reduced gradients) of f are obtained as

daf af "

af _af o (15)
duy, ~ 8y, ~bu

CONSISTENT MODELLING AND SOLUTION
OF ADJOINT SYSTEM

The adjoint network is defined, for a given
function, by (13) which in general requires two
complex relationships to be satisfied for each
branch. Satisfying these two relationships
simultaneously depends [12] on the form and the mode
(i.e., real or complex) of the function f as well as
on the form of the augmented Tellegen sum considered
in the analysis. For a power network represented as
in Table I, f is a general real function and the
augmented Tellegen sum used is of the real form

~ S ~ o 2N

é (Ib Vb + Ib Vb - Vb Ib - Vb Ib) = 0. (16)

The application of Kirchhoff's laws results in



TABLE I
A REPRESENTATION OF A POWER SYSTEM VIA ELEMENT VARIABLES

Element Variables

Branch Jacobian Matrices

Branch
b b b b
Type b %b ) i "12 21 22
r s * * 7 *
v, | Py [ Ve/ Vgl Vo/ IV || [ =T/ IV, =TI/ 1V, 0 0 AN AR
Load ) * * *
L 61 Qz L JV2 —JVz JIm —JIL ] 0 0 —J/Vl J/V%
(s ) (v (v v [ ot e V(v v ) (s -1t )
J =J J -J - -
Generator g g g [ g g g* g g g g g g *8 g g
gdi thJ 0 0 _-J/Vg J/Vg L 0 0 ) 1/Vg ‘I/Vg ]
r A r 7 r * r * I * I
Slack P, 1V, | 0 0 7V, VUL | Y/ IV L VIV L] | =T/ 1V =T/ 1V,
Generator n % % %
;Qn L 8, , 0 0 L-J/vn J/Vn L JVn —JVn ) JIn —JIn ]
B * * %7
. It1 Gt 1/Yt 1/Yt 1 1 -Vt/Yt _vt/Yt 0 0
Line t % % %
It2 Bt J/Yt —J/Yt J -J —JVt/Yt Jvt/Yt ) 0 0
Sy = Pp + iQ, Vo = 1vm|/ 8§ ; mcan be £, g or n I, = Igq + thZ' Y, = G + JB
a set of adjoint linear equations to be solved for T o
the unknown adjoint current and voltage variables. G _|-~L and oo ZL (19)
A generalized form of the adjoint network equations ~ ¥ I = iG '
which is common to all forms of augmented Tellegen “G

sum and for general complex functions has been
derived [8]. The solution of the adjoint system is
then substituted into (14) and (15) to obtain the
first-order change and the total derivatives of f.

L and G denoting, respectively load and generator
buses. The elements 7 and 7 of the vectors 7, and
fG are given by the fofmulas )

s _ 1 of . af
Ly ™ " 2v, Vgl N J 28, )
AN IMPORTANT SPECIAL VERSION
+ 1 y V* ( af + j'ﬁg— )
For the augmented Tellegen sum (16) 2 7an n P aQn
g SR T p SOo¥.T 1 af af
fpi = [Iy ;)" and £ =-[V V1" . an -3z [Azt t T - )] (20a)
t t1 t2
Using the expressions of Table I, the adjoint branch % A af  _ iV |2 of
modelling is obtained from (9) and (13). Observe g 3 g g 3 g
that the adjoint branch models are also of the
general form (1) in terms of the adjoint currents S ImiV. 3 [ Y. ( of j af 1}
and voltages and their complex conjugate. The g\ gt "t BIt1 3L,
application of KCL and KVL to the adjoint network of =
the branch models obtained results in [7] the *  af . of
X _ — b
following real structure of the adjoint equations. + Im{Vg ygn Vn ( aPn +J aQn 2y (200)
& g G } where A, denote elements of the bus incidence
.~ o~ . A (18) matrix o} the network and y_, m = & or g, are
AN v - ; ’ elements of the symmetric bus admittance matrix.
-~ =~ ~2 2 The submatrices in (18) are given by

where subscripts 1 and 2 denote, respectively, the
real and imaginary parts of complex quantities, { is
a vector of n-1 components representing the unknown
adjoint load and generator bus voltages and j is a
corresponding RHS vector, N

* *
Mo+ 4 jane
G+ jB= ~ . , (21a)
YoL Ooe *+ ¥)
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(€4 ) Y

~ LG
G + jB = ,
~ ~ 0 2 diag{Vg}

*
L~
(21b)

where the bus
column and row

admittance matrix Y, excluding the
corresponding to the slack bus, is

Y Y
LL G
Y=G+3jB= |~ ~ , (22)
Yoo Yoo
= = A . .
[ZGL XGG] = -j2 dlag{vg}[‘fcL EGG]' (23)
v Y _diag{s,/v%} and ¥ 2 32 diag{S./V }. (24
L [ -G g g " "

DISCUSSION OF THE SPECIAL VERSION

In practice, the 2n-2 real adjoint equations
(18) are to be solved for the adjoint bus voltages
7. Hence, the adjoint branch currents and voltages,
which constitute the vectors of (17), are easily
obtained. Using the standard expressions of Table
I, the vector 7§ of (10) is evaluated and then
substituted into F1M) and (15). The adjoint matrix
of coefficients of (18) is at least as sparse as the
bus admittance matrix of the power network. It is
simple, mostly constant, the majority of its
elements are line conductances and susceptances
representing basic data of the problem, available
and already stored in the computer memory.
Moreover, it is independent of the function f which
is represented only on the RHS of the adjoint
equations., Hence, several functions can be handled
by repeat forward and backward substitutions using
the LU factors of the adjoint matrix at a base-case
point.

NUMERICAL RESULTS

We have numerical results for a 6-bus system
[71. Full details are available [9]. We also have
results for a 26-bus system [13-15]. Details of
data and results (not shown) are available [9].
Exact changes as calculated by new load flow
solutions have been compared with those predicted by
first-order estimates.

CONCLUSIONS

Instead of approximating the a.c. power flow
model to cope with the conventional form and tech-
nique of analysis of Tellegen's theorem, we have
employed a suitable augmented form of the theorem
applicable to the generalized complex branch models
of power networks., The proper adjoint network tech-
nique followed has led to simple derivation and ele-
gant formulation of exact sensitivity formulas based
on the a.c. power model without any approximation.
Moreover, it offers the flexibility of working with
any set of real and/or complex state and control
variables of practical interest. The important spe-
cial version described provides exact sensitivity
formulas for general real functions while employing
a simple and efficient adjoint analysis.
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