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ABSTRACT

This paper applies and illustrates the
compact, complex notation introduced by Bandler and
El-Kady to the practical solution of the power flow
equations. The solution of the complex linearized
power flow equations, which is required by the
Newton-Raphson method, is obtained by a direct

method. The method, fully and exactly, incor-
porates generator buses as well as dummy load
buses.
INTRODUCTION
Bandler and El-Kady [1-4] demonstrated the

application of a compact, complex notation to power
system simulation [2-4] through solution techniques
for the ubiquitous power flow equations [5] and
sensitivities of system states w.r.t. control or
design variables, They retained the compact,
complex form of the perturbed (or linearized) load
flow equations and have derived a suitable
elimination technique, which deals directly with
the linear complex equations expressed in terms of
a set of complex variables and their complex
conjugates [3]. Departing from the conventional
approach to the Newton-Raphson method, which
employs the real mode, they invoked the formal
interpretation in terms of first-order changes of
problem complex variables [2,4].

Here, we explain the steps of the complex
elimination scheme in simple, matrix form which
exposes the sparsity structure. We introduce
generator-type buses into the tableau from the
beginning and handle dummy loads, which may be
present in the system, in an explicit manner. We
elaborate on the elimination of blocks of the
conjugate tableau which exploits its sparsity.
Finally, we illustrate the results of a computer
program [6] written to implement Newton's method in
the complex mode.
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COMPLEX FORMULATION
The power flow equations [2-3] are

Y. v S

o*
Ev It Uy QD]

M!
where Y. is the complex bus admittance matrix of
the network, V 1s a column vector of the complex
bus voltages,N% £ diag Vo S, Py + JQy and ¥
denotes the conp ex conJugé Alsd, it has been
shown that (1) can be raarranged for the generator
buses to explicitly express the known (specified)
quantities on the RHS. We write (1) as

st ot x
S = £, V), (2)
or in the perturbed form
— *
KsmSly + XsuSly = 2y (3)
where the elements of the vector by are bg z SSZ,
- o - * =
L= 1, «uu, n for load buses, bd = SSd, d = n 1o
cees Op o+ 0y for dummy buses (Sd = 0 + jO) and bg =
ng = GPg + JGIV I, g = no+ 0y + 1, ..., n-1 for
generator buses, and |V _| denoting, respec-

tively, the real pow%r and maé%ltude of bus voltage
associated with bus g. The matrices Koy and KSM

constitute the formal partial derivatives [1,2] of
S* of (2) w.r.t. !M and !ﬁ, respectively.

Newton-Raphson: jth Iteration

In the jth iteration of the complex mode
Newton-Raphson method we solve the system (3) for
6!% given

Jo_ o J
% = £ (schedureay = Lt VM ) )
using (2). We let
J+1 J J
y,M = vM + SZM (5)

and continue 1n this

%anner until an appropriate
criterion for SV and b

has been satisfied.
COMPLEX TABLEAU
While properly accounting for the equation for
the slack bus in the power flow equations (1), and

deleting it from the rest of the perturbed
equations (3) we can write
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K x + g X = b, (6)

ne>

X,

i rsvi, ie {1,2, ..., n-1} (7)

and where an equation of (3) has the form

T T %
Ki')&'}lﬁii -bi. (8)

This is equivalent to
X+ k. x =b.. (9)

We define coefficients of X to comprise the basic
tableau and coefficients of x* to comprise the
conjugate tableau. The complex tableau as it
stands at this stage in our presentation can be set
out as follows, where the conjugate coefficients
associated with the 1load buses have been
normalized.

Initial Complex Tableau
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In the tableau, 1 denotes the square unit
matrix of appropriate dimensions and Q is the null
matrix. We remark here that, in practice, n_ is
expected to be quite small in comparison with n
Obviously, retaining the complex form of these
linearized equations results in immediate savings
in computer storage. To prepare the tableau for
subsequent conjugate elimination we diagonalize the
conjugate tableau in the following way, noting that
the appropriate storage 1locations are used for
intermediate computations.

Transformation of KbD
Diagonalizing Kéo) and transferring it to the
conjugate tableau by invoking the consistent form
(9) we have

“n, > “n_ > «n > “n, > «n_-»> «n >
(L ; D ; G | L | D ; G
SRR S U A T A
: | | | | |
‘ ‘ RTEN EICPHRICH
1 1 1 1 [ l
R L R
Q0 0 20 | 2ty o) | co)
AGL | ~GD |, GG |, ~GL | ~GD | ~GG |, <G
1 1 1 1 1 1
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where superscripts 0 identify no changes in the

s *(1) *(1)
tableau from the initial form, while K R EDG

and b *(n represent appropriate changes in the

consistent tableau associated with dummy loads and

are stored in the KDL' ¥ng and QD locations.

Diagonalization of X

Reduction of K and ¥ Kss

~GD ~GL’

Note that in the forward reduction process for

&GD' rows n, +1, ..., n.+n_ of the basic tableau are
zero, there%ore the basic tableau for rows n. + _n
+ 1, ..., n=1 is unchanged. Reduclng K and EGL
in tableau (11) and diagonalizing §GG we obtain
*HL+ | 6nD+ . +nG+ ‘ +nL+ , +nD+ . +nG+
0 | (0 VL (0) \ ' (0
)/ 1 IY 1 1 1 1]
L P& R Pl P2 b2y
1 1 1 1 1 I
’ ’ RTSPY boxentoxn
1 1 1 1 1 1
R
! ' 1 ! 1 1
@ @ @ ‘ ’ )
1 1 1 1 1 1
K 1 %p 1% | 2 19 i1 ibg
1 I 1 1 1 1

Full details of the manipulation of the tableau of
(11) to reach tableau (12) are available [7].

Reduction of KDL and EDG

Using the unit matrices K, and K
carry out a simultaneous reduction process which

affects only rows nL+1, ey OpE0L. This gives

énL» . +nD+ ‘ enG+ . enL+ . +nD+ . +nG+'
1 1 1 1 1 1
S0 i %o Lo b ded oY
1 1 1
1 1 1 1 1 1
@t ’ ’ P %(2)
5o P Epp fKpgt P2 Pl Qo bRy (13
1 1 1 1 1 1
(@@ @ ’ ’ e
|K 1 K 1 O ] 0 1 1 1 b
Sou fep 1% |02 12 11tk

where we see the second change to the storage
locations for KDL and &DG and the first to EDD‘

Final Complex Tableau

The final complex tableau, in which the
conjugate tableau has been diagonalized and
exhibiting explicitly the changes by computation
necessary to achieve this is given by (13).

It is important to note that no changes have
been made in the tableau associated with the load
buses, which are usually in the majority, while
relatively few rows, namely those associated with
dummy loads and generators have undergone changes
and, in general, fill-ins in the sparseness.



We summarize the tableau at the present stage

as
tg® o1 @, (1)
Conjugate reduction combined with forward
Gaussian elimination is employed in the manner
presented by Bandler and El-Kady for a power system
consisting only of load buses [3]. The ith step of
the process is illustrated as follows. We write
the consistent form (9) for the present situation

as
T , *T(i-1) *(i-1)
where u. is a unit vector with ith element of

unity. Nhow the remaining rows i, i+1, ..., n-1 are
used from the current original tableau to first
eliminate the conjugate part of this consistent
form resulting in the ith row

[ k?(i) | b(i)

1
ki [ M B (16)
The ith row is now used in a Gaussian forward
reduction on the ith column, the result of which is
Tﬁ(n : 0 : b§1)
1 1
1 ]
ET(Z) ! 0 ! béz)
. | . i .
1 1
. 1 . 1 .
1 1
. 1 . ] .
. i ' .
EiT(l) : 0 ! bgl)
. an
1 1
T(i) | T h (1)
~i+1 ; Liv X bi+1
: E : ;' )
1 1
. 1 . 1 .
i | T i (1)
T(1) \ .
\En—1 ' Sn-1 ! bn-1d

where we have created elements

ki;) = 0, r>s, s < i, (18)

Backward substitution gives the desired solution.

Succinetly, the equations may be written as

*
Kx+Xx =D 19)
with accompanying consistent form
* % *
X+Kx =b (20)
yielding
* * *

(1-% ©x=b -Kb, 1)

which can alternatively be solved by standard
techniques,

APPLICATION TO TEST POWER SYSTEMS

We consider here two power systems: 23-bus
[7,8] and 26-bus [7,9,10] (see Fig. 1) to
illustrate general computational aspects of the

algorithm presented. The detailed data and
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solution of these systems are available [7,11].
The algorithm is programmed using rectangular
coordinates. For determining the solution of the
load flow problems of the systems, flat voltage
profiles have been used as starting points. The
computations have been performed on a CYBER 170
computer.

Tables I and II show the solutions of the load
flow problems for the 23-bus and the 26-bus power
systems, respectively. They are obtained in 5

iterations [7].
[
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Fig. 1 26-bus power system.

CONCLUSIONS

The direct solution of the complex linearized
power flow equations, required at the jth iteration
of a complex Newton-Raphson method, has been
described in this paper. By synthesis of complex
variables consisting of the adjustable variables
associated with voltage-controlled buses, we fully
incorporate generators. The practical solution of
large power systems has been emphasized. We have
presented our algorithm in a tableau form which
exposes the sparsity structure of the matrix of
coefficients, and preserves the sparsity of the
coefficients associated with the load buses until
the conjugate tableau has been diagonalized.
Subsequent elimination schemes to solve for the
perturbed complex bus voltages are described. A
computer program package called XLF1, which
implements the work described here, is available
[61.



TABLE I

TABLE II

LOAD FLOW SOLUTION OF THE 23-BUS POWER SYSTEM LOAD FLOW SOLUTION OF THE 26-BUS POWER SYSTEM
Load Buses Load Buses
V1 = 1.0314 + j0.0179 Vig = 1.0123 + jO.2473 V1 = 1.0328 + jO0.0773 V1O = 1.0370 + j0.0692
V, = 1.0059 + j0.0263 V11 = 0.9806 + j0.2486 V2 = 1.0644 + jO.0943 V11 = 0.8982 - j0.0992
V3 = 1.0040 + jO.0864 V12 = 0.9430 + j0.3873 V3 = 1.0424 + jO.0549 V12 = 0.9670 - jO.0T41
Vu = 1.0015 + j0.0670 V13 = 0.9465 + j0.3528 V4 = 0.9859 + j0.0979 V13 = 1.0463 + j0.0157
V5 = 0.9974 + jO.0546 V1u = 0.9529 + jO0.3395 V5 = 0.9741 + jO0.2598 V14 = 0.9388 - j0.1071
V5 = 1.0061 + jO.1406 V15 = 0.9477 + j0.3418 V6 = 1.0324 + jO.0554 V15 = 0.9273 + j0.0970
V7 = 0.9897 + j0.0807 V16 = 0.9408 + jo.u125 V7 = 1.0132 + j0.0181 V16 = 1.0353 - jO.0u71
VB = 0.9931 + jO.0414 V17 = 0.9455 + jO.4007 V8 = 0.9441 + jO.0403 V17 = 0.9318 + j0.0278
V9 = 1.0112 + j0.2137 V9 = 0.9614 - jO.1088
Generator Buses Generator Buses
Q18 = 0.4204 V18 = 1.0282 + j0.0615 Q18 = -0.4004 V18 = 1.0397 + j0.2528
Qg = 0.7228 Vig = 1.0475 + jo.ot22 Qg = 0.1872 Vig = 1.0455 + j0.0966
on = 0.4510 V20 = 1.0233 + j0.2351 QZO = 0.7795 VZO = 0.9706 + jO.2408
Q21 = 1.9016 V21 = 0.9301 + j0.4873 Q21 = -0.0294 V21 = 0.9938 + j0.2295
Q22 = 1.2589 V22 = 0.9340 + jO.4797 Q22 = =0.1775 V22 = 0.8856 - j0.0885
Slack Bus Q23 = -0.1144 V23 = 0.9996 - j0.0265
P23 = -0.6839 Q23 - 0.8913 Qzu = -0.1645 Vzu = 0.9989 + jO.0uss
025 = 0.1691 V25 = 0.9359 + j0.3522
REFERENCES Slack Bus
[1] M.A. El-Kady, "A unified approach to general- Pog = 0.1334 Qg = ~0.0513
ized network sensitivities with applications
to power system analysis and planning", Ph.D.
Thesis, McMaster University, Hamilton, Canada, (71 J.u. Bgndler, M.A. El—KaQy and H. Gupta,
1980 "pPractical complex solution of power flow
980. equations", Faculty of Engineering, McMaster
[2] J.W. Bandler and M.A. El-Kady, "A generalized l{g;‘;ers“y' Hamilton, Canada, Report S0C-270,
complex adjoint approach to power network .
e Y . }
:2gsgtgzzize?0ﬁi:;02. %iEE1;3$§ Symp.7$§2;g;ts [8] T.s. Dillon, "Rescheduling, constrained
anc oystems 80, ’ » PP. : participation factors and parameter
. B " R sensitivity in the optimal power flow
[31 J.u. Bandler and M.A. El-Kady, "Newton's load problem", IEEE Summer Power Meeting, 1980,
flow in complex mode", Proc. European Conf. Paper No. 80 SM 610-6
Circuit Theory and Design (Hague, Netherlands, P : e
1981), pp. 500-505. [91 J.W. Bandler and M.A. El-Kady, "A new method
for computerized solution of power flow
_ n
(4] J.w..Bgnq1er and M'A' El-Kady, quer ngtwork equations", IEEE Trans. Power Apparatus and
sensitivity analysis and formulation simpli- Systems, vol. PAS-101, 1982 110
fied", IEEE Trans. Automatic Control, vol. —_— : R » PP. =10,
AC-26, 1981, pp. T73=T75. [10] M.S. Sachdev and S.A. Ibrahim, "A fast
" : _ : approximate technique for outage studies in
[51 B. Stot:, Review of 1load-flow calculation power system planning and operation", IEEE
methods", Proc. IEEE, vol. 62, 1974, pp. 7ol
916-929 Trans. Power Apparatus and Systems, vol.,
: PAS-93, 1974, pp. 1133-1142.
1 - n
(61 J.W. Bandler, M.A. El-Kady and H. Gupta, "XLF1 [11]1 J.W. Bandler and M.A. El-Kady, "Application of

- A program for complex load flow analysis by
conjugate elimination", Faculty of
Engineering, McMaster University, Hamilton,
Canada, Report S0C-283, 1981.

320

the adjoint network approach to power flow
solution and sensitivities", U4th Int. Symp.
Large Engineering Systems (Calgary, Canada,
1982) .




