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ABSTRACT

This paper formulates the best alignment
problem, which arises when a manufactured system or
design does not meet its specifications or when an
operating system is under emergency conditions and
some performance or security constraints are
violated. In this case, some elements of the
system should be aligned, tuned (if possible),

curtailed or replaced to satisfy specifications. A
general, nonlinear programming notation is
employed.

INTRODUCTION

This paper employs a general notation which
facilitates the formulation of the best aligmment
problem arising in many practical situations when a
manufactured system or design does not meet the
specifications [1] or when an operating system is
under emergency conditions and some constraints
(e.g., security constraints [2]) imposed on the
system are violated. 1In this case, some elements
of the system should be aligned or tuned (if
possible) to satisfy specifications. A set of
system variables with lower and upper specifica-
tions representing an operating engineering system
is proposed. A certain class of alignment problems
is presented and an algorithm for selecting best
candidates for aligmment using the Hald and Madsen
minimax optimization method [3-6] is described.

FORMULATION OF THE PROBLEM

Preliminary Concepts

Consider an engineering system represented by

A T T T

T
X [51 Xy .- gn] ’ (GD)

where T denotes transposition. Let
I={12, #.yn} (2)
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be the index set for these variables. Each
variable can be represented by the elements of the
vector X i € I, and the corresponding index set

(3)

ceey N 1o

A
Ii_{1,2, i

If the system is designed and manufactured to
meet certain specifications, not all values for
each variable are acceptable. Therefore, we define
design variable bounds, operating limits and/or
security constraints on each variable, i.e.,

L; (1)

1 (Y%) <X

(Y2 <UL (yx)
where L.(x,z‘), gi(z,z) denote lower and upper
specifications, respectively, and y is a set of
independent variables such as frEquency, time,
temperature, etc. Let us denote the acceptable
region (or constraint region) Ri(z) as

R (y) 2 {xIL;

100X <230 < U (a0, de I (5)

System variables x.(y,x), i ¢ I, may represent
design variables a?n} functions of system variables
(performance functions, equality constraints in the
form of nonlinear equations describing the system
behaviour, etc.).

Associated System Variables

Suppose that each variable can be represented

as
x. = x9 4 x¥ + xE s xt.-‘(E’E) + XT(E'E) , (6)
~i 7 ~i ~1 " ~i 7~ ~i

where superscripts 0, ¢, E, t and T denote

associated system variables and have the following
interpretation:

0 signifies a nominal design or normal operating
conditions;

€ signifies a random outcome, small tolerances,
first-order changes, uncertainties in the
model parameters;

E signifies large manufacturing errors, faults,
large changes in the operating system
(contingencies, breakdowns) ;

t(+) signifies normal aligmment, tuning, operating
adjustments and control;

T(-) signifies large or unusual required changes,
repairs, shutdowns or replacements.
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Each associated variable may have its own
bounds, which can be defined similarly to (4). We
can define index sets which classify, in part,
associated system variables into free to change,
fixed at =zero, and fixed at constant candidate
variables.

We can call constraints (4) the operating
limits or security constraints and the set R(x)

A

R = N Ri(p

iel

(7)

the acceptable constraint set for the problem,
characterized by the corresponding set of variables
I.

The engineering system problem is

minimize C subject to R(y) # @, (8)
where C is an appropriate, generally nonlinear cost

function, for all permissible ¥ 56, £E’

t(e,E) xT(e,E)

and some

permissible x

[71.

See, for example,

A SPECIAL CLASS OF ALIGNMENT PROBLEMS

Formulation of the Problem

Suppose we have a set of variables represent-
ing a manufactured design as in (1), and the index
set I for these variables

14

1, 2, .. %, 241, ..., no. no+1, vee, m, m+1,
ceey MR, mL4+1, ..., meng, m+n0+1, ve.y, 2m, n}.(9)
Let
12,2 m}, I CI (10)
P = ’ 1 ey ’ P [

be the index set for the variables

1)

where elements of matrix A and vector b are funec-

tions of x , and X,, i € I, represents data
- ~n =i p
points.

Let

A
If = {m1, ..., 2m} , Ifc: I, (12)
be the index set for variables which are functions

of zi, ie Ip’ as

X = f. (x,)

£ (13)

, 1€ Ip .
be an independent variable. Some variables

Llet in
, may be functions of other variables 5j’

Xis ie Ip
J#i, jel . We assume that first 2-1 variables are
only funttions of independent variable x  and no
other variables are related to them. For % <iXg
ny., wWe can define the index sets which contaln

indices of variables related to the ith variable.
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We also have bounds on each variable

Li<xy <4 i=1, 2, .ooymy, (W)
J
Li(gj) <x < gi(gj) , 1e IV, (15)
where
U] 1 {n0+1 ceey, m}
J
and
PN ®-0forj, ke lg, ..., n},
J#k
X5 < Qi , i=m+1, ..., 2m , (16)

which produce constraint regions given by (5).

Let

I =1
p
be the index set for all variables which may be
considered as candidates for large change tuning
and

an

e 1! (18)

be the index set for variables which actually have
to be tuned to satisfy specifications.

The problem can be now stated as

* *
minimize n 4 card (IT )
T* IT .
w.r.t. I € 27 subject to
R4 N R 40 . (19)
1sIf
T* IT

where n* is the cardinality of I° and 2~ 1is the

family of all subsets of the set IT.

Practical Best Alignment Problem

A practical mechanical best alignment problem
has been solved [8], in which variables X ieg I,
represent transformed coordinates of a point in ap
two-dimensional space with the YOX system of coor-
dinates. The transformation corresponding to (11)
is given by

x11 cos ¢3 -sin ¢3 x11 ¢1
= + , (20)
X, sin ¢ cos ¢ X. [
12 3 3 12 2
where (X, , ;1 ) are coordinates of a point i in
the YOX ;yste% of coordinates, and (x , ) are

coordinates of a point i in the YOX systém of coor-

dinates, ¢, = [¢1 is a set of variables
relating the two sysgané(af coordinates, ¢, and ¢

represent translation parameters while ¢, is the
relative rotation. Vector QO corresponds to



independent variable x and to I;, izn, (the index
set for normally tunabfle parameters) .

For each point X5 ie Ip, there is a corres-

ponding tolerance region R., i € I_, given in the
YOX system of coordinates. ~The r‘egfons Ri' ie I,
may have different shapes (e.g., circular,
rectangular), they may be defined using polar
coordinates, rectangular coordinates or combined
polar and rectangular coordinates. Dimensions of
tolerance regions may be given either w.r.t. the
main origin of the YOX system of coordinates (for i
= 4,2, ..., n)) or w.r.t. the reference point (for
is= n0+1, veey, M) .

Now, the best alignment problem is subject to
the constraint

min max f,(9) <0, (21)
iel
2 p
where ¢ is the vector of optimization variables
T*

corresponding to the set I° . The error function
f‘i(g), indicates whether the point i is in (f‘i <0)
or out (fi > 0) of the tolerance region Ri‘

The solution to the best alignment problem
consists of two stages. The first stage corres-
ponds to a discrete (or combinatorial) minimization
of the number of points which should be deleted
from the original set of points, and the second
stage is an unconstrained minimax optimization of a
set of error functions f,, i ¢ I . The discrete
minimization of the f']ir‘st stage 1is wusually
implemented as a systematic search of the_solution
in the family of all subsets of the set I'. It is
convenient to represent this search in the form
of a multi-level tree in which the root (level 0)

T*
@, the 1level 1

corresponds to the set I =
contains all the single element subsets, the level

2 all the subsets of IT which contain two elements,
and so on. The first stage minimization traverses
the tree level after level until such a subset IT*
is encountered for which the constraint (21) is
satisfied. It can be observed, however, that the
minimax optimization of the second stage, which is
performed for each step of the first stage search,
can be used to eliminate those nodes (and their
subtrees) of the search tree which cannot influence
the solution. In fact, if the minimax constraint

*
corresponding to the subset IT at a particular

level of the search tree is not satisfied then the
next level subsets should be derived from the IT*
of the previous level by adding only the indices of
those points which correspond to the active error
functions at the solution 'Q* of the minimax
optimization since the remaining, nonactive error
functions do not affect the solution. This
observation is the basis of the implemented
combinatorial search algorithm, which dynamically
creates and traverses the reduced search tree [8].
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Illustrative Example

Suppose we have a set of points P s {p1, Py

P3. Py p5} and a set of tolerance regions, R 2

{R1, R2, R,, RH‘ R.1. Fig. 1 illustrates the
situation begfore the aligmnment. Error ?unctions at

the starting point ¢ = [0.0 0.0 0.0] are
£, = 2.0710 x 107", £, = =5.0000 x 107",
f3=5.0000 x 107", £, = =5.0000 x 107",
£, = 5.0000 x 107"

Fig. 2 shows the situation after running the
alignment program. The best aligmment was found at

9y = [-2.316 x 107 - -2t

-2.792 x 10 4.758 x 10 °]
with point 5 deleted. Remaining error functions at
the solution are

1 1

£, = -1.5400 x 107" , f,=-1.2060 x 107" ,
£, = -1.2043 x 1072, £, = -1.2043 x 1072 .
Yiy
R
O “Ps Ry
or
Ry
R, p, P2 Ry
O w [
X
X
Fig. 1 Points and regions before alignment.

Y

Y

Fig. 2 Results of running the alignment program.

For the circular tolerance region the error
function is the difference between the geometrical
distance of a point from the center of the toler-
ance region and its radius. For the rectangular
tolerance region the error function results from
lower and upper bounds on coordinates of a point.



Test Results on Practical Problems

The algorithm described in the previous
section has been tested for seven sets of data
supplied by the Woodward Governor Company [9]. The
data resulted from practical problems of part
alignment in manufactured mechanical systems and
have been collected from inspecting actual parts.
The points represent holes in one part which have
to meet certain specifications when coupled
together with another part. Test samples have
different numbers of points, varying from 5 to 13
and specified tolerance regions of different
shapes. The data as well as the results of running
the alignmment program for some samples are in [81.

LOAD SHEDDING IN POWER SYSTEMS
AS A BEST ALIGNMENT PROBLEM

Formulation of the Problem

Suppose that a power system can be represented
by the set of variables of (1) with n = 4, where x
is a set of independent (decision variables), X5 T
a set of dependent (state) variables, x, = 0
represents power flow equations and X, some etwork
variables for which security constraints are
explicitly defined.

For the system to be normal and secure in the
static sense, it must satisfy

L‘iiiiigi , ieI={1,2 3 41, (22)

where for i = 3 lower and upper bounds represent
accuracy of the solution of nonlinear equations
X (g) = 0. We define the security region for each
vgr‘iableNas in (5).

There are two types of contingencies [2], both
of which can be modeled by (6):

a) a sudden change in the power injection to the
network caused by the partial or complete loss
of a generator, load or tie;

b) a sudden network's

configuration.

change in the

If the system is insecure or in an emergency,
the control action taken may involve load shedding.
In fact, in emergencies the operator may augment
the decision vector with certain loads whose values
can then be adjusted downwards. The problem can be
formulated as an optimization problem (8) with the
objective of minimizing load shedding.

Let It be the index set for normally tunable
power system variables such as generator voLfage
magnitudes and real generator powers. Let I° be
the index set for all load real powers. Then the
load shedding problem can be formulated as

* *
minimize n 2 card (IT )
for
T
*
2t (23)

subject to

R= N&r Z0,
. i
iel
T#* . .
where I° C I  is the index set for loads which
actually have to be shed. One possible method to

*
select the subset IT is least pth optimization

with p = 1. It finds the minimum number of tunable
parameters required to satisfy all constraints.

T

CONCLUSIONS

This paper formulates the best alignment
problem for manufactured and operating systems. A
general notation is employed which allows us to
formulate this problem as an optimization problem.
A concept of a set of system variables with lower
and upper specifications representing an operating
engineering system is proposed. A special class of
alignment problems, which originated from aligning
mechanical designs is described. The formulation
of the load shedding problem in power systems as a
best alignment problem is indicated.
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