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We present a new, integrated, theoretically

justifiable approach to postproduction tuning. The
approach addresses the determination of a set of
sampling points at which measurements should be made,
the specification of the circuit response of interest,

the determination of the parameters to be tuned and the

tuning algorithm itself. It utilizes a highly
effective nonlinear programming notation which can be

applied to any circuit design problem. We present its

application in tuning a matching amplifier circuit,
utilizing highly efficient optimization algorithms,

which are available as documented computer program
packages.

Introduction

Tolerances, parasitic effects and uncertainties in

a circuit model cause deviations in the manufactured
circuit performance and violation of the design speci-
fications may result. Postproduction tuning is in-
cluded in the final stages of a production process to

readjust the network performance in an effort to meet
the specifications.

Tuning has formally been considered as an integral
part of the design process [11, the objective being to
relax the tolerances and compensate for the uncertain-

ties in the model parameters. We summarize here an

integrated approach to postproduction tuning, which
relies on least pth optimization with p.1 and pm,

subject to suitable constraints. The approach utilizes
the information gained during the design process in

specifying both tbe frequencies at which tuning should
be monitored and the tunable parameters. The required
changes in the tunable parameters are ccmputed using a

functional tuning algorithm.

Mathematical Formulation——

Selection of Nominal Design————

A network design problem can be formulated as a
minimax optimization problem as follows.

Minimize z (la)

$, z
subject to

fi(~) < z, izI
c’

(lb)

where I 4 (1, 2, . . . . m }, $ is the n-vector of design
compone~ts, f. is a designer defined error function and

z is an additional independent variable.

Selection of Worst Cases— —

The solution of problem (1) provides us ~ with
theoretically justifiable critical functions fj(~ ), j

~ I:, where I: q Ic is the index set of the critical

functions. Normally, each critical function corres-
ponds to a sample frequency. Consequently, we deter-

mine, using (l), the frequencies to be monitored during

tuning and the nominal design values $:, i e I
0’

where

I ~ {1, 2,
$

. . . . n}.
Parasitic effects are often neglected or approxi-

.——-_——-_-._—
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mated during the design problem (l). The parasitic

effects could be represented by additional variables

$ iEI
n+i’

where I Q {1, 2, . . ..p}.
P’ P

The design param-eters are subjected to tolerances
E . . The tolerances produce the region [11

1

A manufactured outcome of the circuit would be a

point of Rc. Worst-case analysis is carried out to

identify the critical points of this region. A wors;

case point is assmed to occur at one of the 2

vertices of R$ indexed by f,l, is I where I ! {1, 2,

. . . . 2n}. “
v’ v

For every function fi(,$), i c I:, one or more

vertices are selected [2]. Let Ivi c Iv be the index

set of worst-case vertices corresponding to the

function fi($) , i c I:, and let

I:!IJI

i
vi’

define the index set of critics

Selection of Tuning Variables

*
c Ic

vertices, I; ~ Iv.

(3)

To compute the tunable parameters, we solve the
following optimization problem [11.

Minimize z t, (4a)
icItJ

w.r.t. t.,
1

p;, i c It, r e I*, where
v

ti~O,iEIt, (4b)

-l<p~<l, icIt,
*

r&I
v’

(4C)

such that

for all r c I:,

$i

where

(4d)

(4e)

and

R: ~ {~ [ fi(j) f O, *1.iEIc (4f)

This problem is a least pth optimization problem

with p=l. It finds the minimum number k of tunable——
parameters required to tune all worst-case vertices.

At the solution we obtain

1: ~ {ilti *O and i s It} . (5)

Functional Tuning Algorithm

A functional tuning teohnique is applied to find
the required changes in the tunable elements. The
actual response is assumed to be given by

Fa = FO + Fcp, (6)

where a refers to the actual values, O to the nominal
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design values and .sp to the deviational effect due to -- L.. n

tolerance effects and parasitic.
Cp

iJsing the actual measurements F is modeled by a
transfer function over the frequency range of interest.

The model is used to simulate the actual response. The

tuning problem is formulated as a linearly constrained
minimax optimization problem, where the variables are

the changes in the tunable parameters, namely,

minimize z (7a)

w.r.t. $i,i e 1: and z subject to

Ti(j) < z , is I
c’

*
!Ji<$i<u. , is I

t’
; *

‘$i=’$i. ikI
t’

(7b)

(7C)

(7d)

where g and Ui define limits on the k tunable para-
i

meters, z is an additional independent variable and ~.

accounts for the modelled deviational effects.
1

The tunable elements are adjusted by the amounts
indicated by solving (7) and the process is repeated
until the circuit meets its design specifications.

Example

We have applied our approach to the amplifier
r!ircuit shown in Fig. 1.

mz
Fig. 1 The broad-band amplifier.

Using (1) the nominal parameters of the circuit

wel”e reoptimized to a 10 dB power gain over the
frequency range 150 MHz to 300 MHz. We utilized the
optimization package MMLC [3,4]. The characteristic
impedances are asswned to be not greater than 200 ohms.

The response achieved is superior over that obtained
earlier in [5]. This is partly because we relaxed the
bounds on the design parameters. The new and previous
nominal design parameters are given in Table 1. From

Table 1

Nominal Element Values and Tunable Amounts

——.——-—-— _______ __________________________

Orig. Nom. New Nom. Relat. Tunable
Element Values Values Amounts

____________________________________________

‘3

‘3

‘4

‘4
—-.—-——---

2.012

86.76

0.976

97.57

0.833

25.

0.927

32.

1.741

68.778

1.53U

200.0

1.140

181.252

1.280

105.105

0.0

0.0088

0.0

0.0

0.0

0.0

0.079

0.0

—---—____________________________

1 is the normalized length. The actual length equals
f,Ao/21r, where A is the wavelength at 230 MHz.

Z 1s the characteristic impedance in ohms.

-------------------------------------------------

Idule L

The Optimum Nominal Response and Worst-Case Response
for ~ 5% Tolerance

—----— ______________ _________________________

Frequency Power Gain Worst-Case Worst-Case

(MHz) ( dB) Vertex Response (dB)

——-—--—————-—z -———--—--—-————----——

150 10.058 * 123 11.318
16o 9.926 * 134 8.559
170 10.Oi’2 * 123 11.274
180 10.043 107 11.155
190 10.053 107 11.189
200 10.006 107 11.095
210 10.028 104 11.053
220 9.926 * 153 8.794
230 10.031 104 10.894
240 10.028 112 10.765
250 10.072 * 80 10.726

260 10.031 80 10.640
270 9.965 189 9.313
280 9.926 * 189 9.302
290 9.983 61 9.392
300 10.072 * 212 10.657

——_--———-——--—.-—___________________________

* identifies critical frequencies

———____________________________________ __________

power gain . 4 RS GL IVL1%VJ2

—--—— ________________________________________ ._

the vertex no. is given by the formula

—------ .——-——__________________________________

the response obtained, the frequencies identified in

Table 2 are candidates for the critical frequencies.
We assume that the design specifications tolerate

+ 1 dB deviation from the specified value of 10 dB.

~orst-case analysis is performed using + 5% tolerances.
Considering only the previous ident~fied critical

frequencies the set I; consists of {123, 134, 153}

(Table 2). We performed optimization problem (4) using

these three critical vertices to determine the tunable

parameters. The results of this optimization problem
is given in Table 1,

‘1
and !? are the tunable

parameters. The MFNC package, wh!ch implements the
Han-Powell algorithm [61, is utilized in solving this
nonlinear programming problem [7].

The functional tuning method of (7) is carried out

on the previous three critical vertices. The results
of tuning for these cases is given in Table 3. The
responses before and after tuning are shown in Figs. 2,

Table 3

Results of Tuning

——————————————————______________________

Case 1 Case 2 Case 3

———----—___________________________________

Vertex No. 123 134 153

No. of Iterations

of Functional

Tuning Algorithm 1 1 1

Tunable Element z, = 66.66 21 = 70.616 21 ❑ 66.66
Values

t4 . 1.209 !L4 = 1.331 fi4 ❑ 1.154

—-—--—————____________ --——— ______________
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Fig. 3 The responses for Case 2.

The solution of (7) is obtained using the

optimization package MMLC [3].

Conclusions

Our approach optimally utilizes the information

obtained at the design stage in specifying both the

minimal nwnber of tunable elements and the essential
tuning frequencies.

A functional tuning method is then applied to
determine the required tunable amounts using the

response measurements.
The approach has integrated a number of concepts

and techniques to produce an efficient postproduction
tuning procedure. It is general enough to be applied

to any type of microwave circuit and can efficiently
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Fig. 4 The responses for Case 3.

tune the response.
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