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I-W-Bandier 8 A Minimax Approach to the Best
m.ae-kady § Mechanical Alignment Problem’

W. Kellermann This paper provides an attempt fo formulate and to solve the best mechanical
alignment problem, which arises in many practical situations when a relatively
expensive manufactured product does not meet design specifications and a decision

W. M. Zuberek: is to be made for partial retreatment of the product. We define and use concepts of
regular points, reference points, and referenced points for a mechanical design.

Simulation Optimization Systems, These points represent impaortant features which must be reproduced subject to

Research Laboratory tolerances, which are defined with respect to (w.r.t.) various coordinate systems.
Department of Elsctrical The algorithm proposed identifies candidates for reworking using minimax op-
and Computer Engineering, timization. While the concepts introduced and the method presented resulted from a
McMaster University, variety of approaches to solving mechanical problems in two dimensions, this class
Hamilton, Canada L8S 4L7 of problem can arise in other areas and further generalization is possible.
1 Introduction
An important practical problem is optimal design subject to pa {DsP2s . o s Dm), m=1, 1)

tolerances [1]. Generally, the problem is to ensure that a . o . . .

design, when manufactured, will satisfy specifications. In and a system of coordinates YOX associated with this set. Let
many practical situations, however, due to manufacturing Ié[l 2 m) @
errors, a product may not meet the specifications [2]. There -

are two principal ways of tackling this problem: complete e the index set for these points.

rejection and replacement of the manufactured part, or align The coordinates of a point p; e P, i ¢ I, may be given either

or rework (if possible) the part. In the case of very expensive  w r.t. the main origin of the YOX system of coordinates or
materials, the latter may be justified. The problem we address 1., another point of the set P. Let

in this paper is how to efficiently perform the part alignment

process and, if reworking is needed, how to choose the best ° éu,z, e gl 1sng =m, 3)
way to do it. We provide an attempt to formulate and to solve
this problem using minimax optimization [3-5].

In Section 2, basic definitions and concepts are given and
the problem is formulated in terms of minimax optimization.
Tolerance regions, error functions and their derivatives are
described in Section 3, which also contains examples of
tolerance regions. The general structure of the computer Letl =/ = ny. Forl =i < /wehave
program is given in Section 4. Section 5 shows the test results I Ag 4)
obtained by running the program for several samples [6]. . 7 .
Conclusions and suggestions for further development are  Which means that no points are referenced top; e P, 1 < i < /.

be the index set of points which are referenced to the main
origin of the YOX system of coordinates. With each point p;
e P, 1 =i =< ng, we associate a set of indices I' such that
elements of I’ are indices of points referenced to p;. The set I,
1 =i = ny, may be an empty set or a subset of the set /.
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given in Section 6. v For!/ = i < ny, we define the following index sets
I'8¢ng+1,...,no+n},
2 Formulation of the Problem PO B g 4m 41, ... ng+n+n,l,
Preliminary Concepts. Suppose we have a set of points Pin I+? é[no +n+n o+, oL ng+nEn ),
a two-dimensional space
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Fig. 1 The set of points P and the Y O X system of coordinates
associated with it
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Fig.2 Themappingg:P -~ R

dicating its reference point. For example, p¢ (x?, %), 1 =i <
ng, is the ith point of the set P with coordinates x?, y?
referenced to the main origin, pi (%) + %/, ¢ +3), np < i <
m,l < j < ng, is the ith point of the set P with coordinates x,
¥ referenced to the p?.

Definitions of Subsets of Points. Three disjoint subsets of
points can be distinguished in the set P:

» regular points, P,
« reference points, P, and
+ referenced points, Peq-

For each of these subsets there is an associated index set.

Definition 1. A point p! € P is a regular point if its coor-
dinates are given w.r.t. the main origin of the YOX system of
coordinates and if it is not a reference point for other points.

Formally,
J=0ieleg BL1,2, . .., [=1)=pieP,,. (6)
Definition 2. A point p/ ¢ P is a reference point if its
coordinates are given w.r.t. the main origin of the YOX
system of coordinates and if it is treated as an origin for other
points. Formally,
J=0iel BULI+1, . .., ng)=piePyy. 0]
Definition 3. A point pi ¢ P is a referenced point if its
coordinates are given w.r.t. another point of the subset P,
and if it is not a reference point for other points. Formally,

Jeleryielepg é{n0+1: v m}:p{:GPrefd- ®
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Fig. 3 Transformation of coordinates relating the two systems of
coordinates

The concepts and definitions introduced are illustrated in Fig.
1.

Example. Let P & (p,, p,, ps, ps, Ps, Pe» P+ ). From Fig. 1
we can define the following index sets: /= {1, 2, 3, 4, 5, 6,
7,}, the index set for the set P; I° = {1, 2, 3}, the index set
for points referenced to the main origin of the YOX system of
coordinates: I' = @, the index set for points referenced to p?;
I* = {4, 5}, the index set for points referenced to p3; I° = {6,
7}, the index set for points referenced to p}. We can also
define the index sets for regular points /., = {1}, reference
points I = {2, 3} and referenced points I,y = {4,5,6,7}.

Tolerance Regions. Suppose we have a set R of tolerance
regions R;, i e I 2 (1, 2, ..., m}, in the two-dimensional
space

Ré{RhRZ»""Rm] (9)

and a system of coordinates YOX associated with this set. We
can define a one-to-one mapping g which assigns elements R,
¢ R to elements p ¢ P,

{g:P—R]}. (10)

The sets P, R and the mapping g are shown in Fig. 2.

The regions R; € R, i ¢ I, may have different shapes (e.g.,
circular, rectangular), they may be defined using polar
coordinates, rectangular coordinates, or combined polar and
rectangular coordinates. Dimensions of tolerance regions may
be given either w.r.t. the main origin of the YOX system of
coordinates (for R; = g(p,), i e I’ = I,;; U L) or w.r.t. the
reference point (for R; = g(;), i € L o14)-

We can use the same notation indicating the reference
points for tolerance regions as for points, e.g., R, 1 < i <
ng, is the ith tolerance region of the set R with dimensions
given w.r.t. the main origin of the YOX system of coordinates
and Ri,ny, < i <m,l <j < ng,is the ith tolerance region of
the set R with dimensions given w.r.t. the transformed
coordinates of p¢ from the YOX to the YOX system of
coordinates.

Transformation of Coordinates. The two systems of

coordinates, YOX and YOJX are related by the following
transformation of coordinates

[ X J { COS¢3 _Sin¢3 J [ 'X..i J [ ¢1 J
= + s
Vi sing;  cos¢; Vi ®2
an

where

Transactions of the ASME

2202 1990100 81 U0 Jasn AyisiaAlun 10)seoN Aq 1pd L TLE/9./918G/LE/L/90L/Pd-8loIE/UBISaPIEOIUEY0BW/BI0"BUISE UONO8]|0o[E)BIpaWSE//:dRY WOl papeojumoq



b0 Al b 6317 (12)

is a set of variables relating the two systems of coordinates
(Fig. 3).

Formulation of the Problem. The first step in the solution
of the best alignment problem is to find ¢, such that the
maximum number of points, pleP, iel, jel . or j=0, are
inside or on the boundary of the corresponding R{eR,
Ri =g(pl). However, the solution to the problem stated above
may not be unique and may not be equal to the number of
points m.

If it is not possible to find ¢, =[¢, ¢, ¢3]17 such that all m
points are inside or on the boundary of the corresponding
tolerance region, then it is necessary to delete one or more
points in the set P to ensure that all other points satisfy this
condition.

In general, the number of variables for the best alignment
problem depends on the type of the point (regular, reference,
or referenced) being a candidate for deletion. The vector of
variables ¢ may be extended with new variables, which are the
coordinates of reference points if these are the candidates for
deleting.

Introducing new variables is necessary when deleting a
reference point, because we have to determine the locations of
all tolerance regions referenced to it. The general form of the
vector of variables for the best alignment problem is

ol =[d b2 &3 X Vi) Xiy Viy - - Xy Vi 1o
il’iz’ LR ] ikeldelref’ (13)
where
Idelref éIref r-\Idel (14)

and £ is the cardinality of Jy,.;. The index set Iy, represents
deleted points. For example, if the /th point of the set P (i e
I..¢) is a candidate for deleting then ¢, reduces to the form 'Y

= [d)l ¢2 ¢3 X yi}a ie Idelref' If the ith andjth DOintS (’\) € Iref)
are candidates for deleting, then ¢ = [¢; ¢, &3 X; ¥; X; y;1, isj
€ Isarer- 1f the candidates for deleting are not reference points
then ¢, = ¢,.

The best alignment problem can be formulated as

minimize 74 2 card (I4) (15)
I e2!
subject to the constraint
fi(#i) <0, iel" BU~Tsg) U Lerers (16)

where 7 is the index set for points p; which are to be aligned,
I, is the index set for points which should be deleted, 2/ is the
family of all subsets of the set I, ny, is the cardinality of Iy
and ¢, is the vector of optimization variables corresponding
to the set I4. Variables ¢, ,¢,, and ¢, relate the YOX, and
the YOX systems of coordinates and x; o0 Vi are transformed
coordinates (from YOX to YOX) of a reference point actually
being deleted. The error function f;(¢,) is associated with the
point p/ to indicate whether the point pf is in (fi(¢x) = 0) or
out (fi(¢,) > 0) of the tolerance region R} = g(p!).

The index set I’ in (16) also contains the indices of deleted
reference points in order to ensure that the error function
corresponding to the new location of a reference point
determined by the optimization (coordinates of the reference
point considered are additional variables of the problem) will
satisfy the constraint (16). This is not required for the deleted
regular or referenced points since no other points and
tolerance regions are referenced to them.

Solution to the Problem. The solution to the best align-
ment problem consists of two stages. The first stage
corresponds to a discrete (or combinatorial) minimization of
the number of points which should be deleted from the
original set of points, and the second stage is an un-
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constrained minimax optimization of a set of error functions
Sis 1 € I', determined by the first stage. The discrete
minimization of the first stage is usually implemented as a
systematic search of the solution in the family 2/ of all subsets
of the set I. It is convenient to represent this search in the
form of a multilevel tree in which the root (level 0)
corresponds to the set I, = @ (4 denotes the empty set), the
level 1 contains all the single element subsets Iy, ; = {1}, Ik
= {2}, ..., thelevel 2 all the subsets of 7 which contain two
elements, and so on. The first stage minimization traverses the
tree level after level until the solution is found, i.e., until such
a subset Iy, is encountered for which the constraint (16) is
satisfied. It can be observed, however, that the minimax
optimization of the second stage, which is performed for each
step of the first stage search, can be used to eliminate those
nodes (and their subtrees) of the search tree which cannot
influence the solution. In fact, if the minimax constraint
corresponding to the subset Iy, at a particular level of the
search tree is not satisfied, then the next level subsets should
be derived from the I, of the previous level by adding only
the indices of those points which correspond to the active
error functions at the solution ¢} of the minimax op-
timization since the remaining, nonactive error functions do
not affect the solution. This observation is the basis of the
implemented combinatorial search algorithm which
dynamically creates and traverses the reduced search tree.

Algorithm. The algorithm always starts with the set Iy =
¢ (the root of the tree) and ¢, = ¢, = 0. If the minimax
objective function

Fl@o) = max fi(¢) a7

at the solution ¢§ is nonpositive, F(¢f) =< 0, then ¢
corresponds to the best alignment solution, and the solution is
optimally centered. If F(¢g) > 0, there is no possible align-
ment of all the points p;, i € I, and at least one of the points
has to be deleted to allow the alignment of the remaining
points. The candidates for deletion are the points for which
the corresponding error functions are active at the solution
o7, and their indices are attached to the root /I, of the search
tree, creating the level I nodes. The search is continued node
after node of the created level and the minimax optimization
with one less function (except the case of deleting a reference
point) is repeated at each node. During the traversal of the
level 1 nodes, the new nodes are attached to the search tree
creating the next level, and so on, until a subset I, is found
for which the minimax constraint is satisfied, F(¢}) < 0. It
should be noted that corresponding to each node of the search
tree there is a unique associated index, and the set [y
corresponding to the node j is determined as the set of indices
of the path from the node j to the root of the tree.

3 Tolerance Regions, Error Functions and Their
Derivatives

To form the error functions for the best alignment
problem, we have to decide in which system of coordinates
these functions will be expressed. It is convenient to choose
the system of coordinates associated with the regions, first of
all because it is easier to transform points than tolerance
regions to the new system of coordinates, and second, because
the derivatives of the error functions w.r.t. optimization
variables can be easily obtained using transformed coor-
dinates of points and the Jacobian of the transformation.

Preliminary Considerations of Derivatives. For ¢, = ¢,
(no deletions of any points or deletions only of regular or
referenced points) the error function is of the form

Sil@do) =Fi(xi(90),yi(@o)),iel — . (18)

MARCH 1984, Vol. 106 /33

2202 1990100 81 U0 Jasn AyisiaAlun 10)seoN Aq 1pd L TLE/9./918G/LE/L/90L/Pd-8loIE/UBISaPIEOIUEY0BW/BI0"BUISE UONO8]|0o[E)BIpaWSE//:dRY WOl papeojumoq



The derivative of f; w.r.t. ¢, can be written as

doq dx;  O¢g dy; 99y

where
r ~N s =
af; ox;
a¢, ae,
af; A af; ’ 0x; A 0x; ’
deyg 09, 3¢y 99,
of; ax;
0¢y Lo
N ~ (. J
1 p
ay;
il
. ay:
ay; A )
3¢ ik : (20)
ay;
efoR
“ J

The terms of the form 8f;/dx;, df;/dy; depend on the shape
of the tolerance region and usually are not very complicated
because the function f; and the coordinates x;, y; are ex-
pressed in the same system. The terms of the form dx;/d¢,,
dy,/d¢, depend only on the transformation formula and are
the same for the derivatives of all minimax functions. They
can be calculated once for the actual point ¢, and used for all
functions.

Partial derivatives dx;/3¢, and dy;/3¢, can be arranged in
a matrix called the Jacobian of the transformation

ax,‘ 3x,~ 3X,-
N
J, &2 R 21
ay; dy;
d¢, 99, 99,

which, for the transformation (11) takes the form

, { 1 0 (—X%;sing; —J; cosgs)
Ji= J (22)

01 ()2, COS¢)3 _};i Sind):;)

General Formulation of Derivatives. For ¢, # ¢, (deletion
of reference points) depending on the type of a point for
which we form the error function we have three cases:

Case 1. ieI_Idelref_Iil —I"2—— ..
reference point not deleted).

. =TIk (regular point or

The error function is of the form

Silor) =fi(xi(90),7: (o)) (23)

34/Vol. 106, MARCH 1984

The derivatives w.r.t. optimization variables ¢, are given by
(19) and derivatives w.r.t. additional variables are

i

ax;,

f;

ax;,

a,
3y, =%

=0, (24)

ﬁzo
ayik ’
where i, . ..

Case 2.

s Ik€lgerrer -
iel g (reference point deleted).

The error function is of the form
Jilo)=LiCxi i
s Xipp Vi o
and the derivatives are
af; _
ddq

af, (...) fori=i;
0 forizi;

X i) 25)

0,

ijeldelref; j=1, ey k.

o (...) fori=i;
i, 0 fori#i; (26)

Case 3.

iellt Uz U...UIN U...UJlk (referenced
point). :

The error function is of the form
Jiloy) =.fi(xi(¢0)!yi(¢0)’xil Wiy
o X Vigs e e X3V @7
and derivatives are given by (19) for ¢, and w.r.t. additional
variables by

af, (...) forieli,
dx;; 0 forigli,

'

(28)

af; {(...)forie]ij,
Wy, 0 forigli.
Tables of Error Functions and Derivatives. For the general

form of the vector of variables, given by (13), we form error
functions and derivatives for three cases:

1) regular point or reference point not deleted;
2) reference point deleted;
3) referenced point.
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Table1 Derivatives of error functions for circular tolerance region
Regular point or Reference point
reference point deleted Referenced point
not deleted
Ji=D-r; Ji=D-r; Ji=Dy—r;
af; /9x; ~A/D * —A,/D,
af; /ay; —-B/D . —B\/D,
o /o, 0 —A/D, i=i; A\/Dy, iel'i
0, iz 0, igli
of; /3y, 0 —-B/D, i=i; B,/Dy, ieli
0, i#i; 0, iglii
A=x9,i—x? Alzx',f,'l.+xg. —X;
i'
B=yn ¥} By =iy} -yi

D=(A2+BZ )1/2

D, =(A}+BH'”?

*For this case, terms dx;/3¢,8y;/d¢g are equal to zero, and consequently, df;/d¢y =0

Table2 Derivatives of error functions for rectangular tolerance region

Regular point or reference point not deleted

Vil fl=x-x} Sfi=x-xYy =y - =y -y
afi/ax? -1 1 0 0
afi/ay? 0 0 -1 1
afi/ox;, 0 0 0 0
THEI 0 0 0 0
Reference point deleted
fi fi=x ~x] fr=x)—xy =y -5 fi=y =Yy
afi/ox;; —Li=j; Li=i; 0 0
0,i%i; 0,izi;
—Li=i; Li=i;
THE 0 0 0,i%i; 0,ii;
Referenced point
i i: i i;
fi Ji=x) +xit —x f=xi-@ip+xl)  fl=yii +3] - fH=yi-0w+2)
afs/ax; —1 1 0 0
afi/dy; 0 0 —1 1
af/ox;, 1,ielii —1,ielli 0 0
0,igl’y 0,igl' ‘ .
1,iel' —1,iel'i
ofi/dyi; 0 0 0,igli 0,iel'i
The general form of derivatives of f; w.r.t. ¢, is given by
(19), where the terms of the form dx;/d¢,, dy;/d¢, may be
calculated as in (22), and the terms of the form af;/dx;,
df;/dy; are tabulated in Tables 1-3 for each type of tolerance
x5 region. The coordinates x;, y, are transformed coordinates of
points using the transformation (11). The derivatives of error
2 . e . B .
Xna\\ functions w.r.t. additional variables are also given in these
I~ tables.
For the circular tolerance region error functions and
y2 derivatives are given in Table 1. As an example, consider three
x 3 points with circular tolerance regions shown in Fig. 4. Assume
0 that x9, 9 are additional variables, so
2
o £
o Km0 'R0 =0 =9 b2 &3 X3 Y917,
o o y The error functions and derivatives for p? (regular point), p9
al / P (reference point deleted), and p} (referenced point) can be
e RO ° ° calculated using formulas given in Table 1.
! B A Yny Ve For other types of tolerance region the location of a point
yg1 Y4 w.r.t. corresponding tolerance region can be characterized by
a system of four linear or nonlinear functions. For a regular

Fig.4 Points with circular tolerance regions

Journal of Mechanisms, Transmissions, and Automation in Design

X point and rectangular tolerance region (Fig. 5), these func-

tions result from the inequalities
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and have the form

0 0 ]
XiL ..<_x,' Sx,‘U,
0 0 0
YiL =Yi=Yiy,

1_ 0 0
Ji=x} —xd,

29

30

0 0
Sr=x)-xy,
0 0
fr=y — ¥},
— 01,0
fi=y?=y,

(32)
(33
(34)

For a regular point and the X-R tolerance region (Fig. 6),

€3]

Table3 Derivatives of error functions for X-R tolerance region

the error functions result from (29) and from

Regular point or reference point not deleted

5 fh=x -x) Si=x)—xy fi=Ry-E SH=E-Ry
afs/ax? -1 1 -x/E X /E
afs/ay? 0 0 —y9/E YWE
aﬁ/ax,-j 0 0 0 0
aﬁ/ay,-j 0 0 0 0
Reference point deleted
Vil SH=x —x} fi=x)—xy fl=Ri,-E fi=E-Ry
—1,i=i; Li=i; ~x/E,i=i; xY/E, i=i
off/ox;, 0, ii; 0,ixi; 0,ii; 0, ii;
~W/Ei=i; W/E =i
THE 0 0 0, ii; 0, ixi;
Referenced point
i i .
fi f}=xg» +Xil, —X; flz—*-xr(xi{/*‘xf')j) fl=Ry-D fi=D-Ry
afi/ox; -1 1 —A/D A/D
afi/dy; 0. 0 . —-B/D | B/D .
1,iel'i —1,iel'i A/D,iel'i ~A/D,iel'i
afi/ox;, 0,i¢I'i 0,il'i 0,i¢l's 0,idl's
B/D,jel'i ~B/D,iel'i
ofi/oyi; 0 0 0,i¢l’ 0,i¢i'i
A=xj—xj,, B=y;~ ¥y}, D=(A*+B)"2, E=((x)*+0DH"?
Table4 Data for Sample 1 [6]
Point Tolerance Origin  Actual Actual Tolerances
code + code * X y
XN IN N
1 0 0 0.0000 0.0000 0.0000 0.0000 0.0010
X1 Xy L Yu
2 12 0 -0.8800 1.3682 —-0.8780 —0.8750 1.3690 1.3720
3 12 0 0.6589 0.7499 0.6610 0.6630 0.7500 0.7520
4 12 0 0.8990 -0.4414 0.8990 0.9010 —0.4410 —0.4380
5 12 0 -0.5635 —1.5254 —0.5650 —0.5620 —1.5250 —1.5220

+ The tolerance code is one of four (0, 12, 13, 23), where

0
12
13
23

i

the code for the circular tolerance region,
the code for the rectangular tolerance region,
the code for the X-R tolerance region, and
the code for the Y-R tolerance region.

*Any point with an origin code of 0 is referenced to the main origin of ¥ = 0.0, y = 0.0. Any other origin
code refers to the point by that number on the same sample. For instance, for an origin code of 4, the ac-
tual X and 7 dimensions are measured from the actual ¥ and ¥ dimensions of point number 4.

Table 5 Data for Sample 2 [6]

Point Tolerance Origin  Actual Actual Tolerances
code + code * x y
XN IN N
1 0 0 0.0000 —0.0001 0.0000 0.0000  0.0050
2 0 0 —0.6412 1.1080 —0.6405 1.1094  0.0025
3 0 0 -1.2778 —0.0052 —1.2810 0.0000 0.0025
4 0 0 —0.6295 —1.1101 —0.6405 —1.1094 0.0025
5 0 0 0.6499 —1.1055 0.6405 —1.1094 0.0025
6 0 0 1.2846 0.0083 1.2810 0.0000  0.0025
7 0 0 0.6393 1.1126 0.6405 1.1094  0.0025

+ See Table 4 for code explanations.
*See Table 4 for code explanations.

36/ Vol. 106, MARCH 1984
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Table 6 Data for Sample 6 [6]

Point Tolerance  Origin Actual Actual Tolerances
code + code * X y

XN IN 'n

1 0 0 2.3970 —0.9508 2.3950 —0.9500 0.0010

2 0 0 —1.6955 —1.9621 —1.6960 —1.9620 0.0010
XL Xy JL Yu

3 12 0 0.6620 0.7507 0.6610 0.6630 0.7500 0.7520

4 12 0 0.8998 —0.4393 0.8990 0.9010 —0.4410 —0.4380
YL Yu Ry Ry

5 23 0 -0.5629 —1.5231 -1.5260 —1.5210 1.6225 1.6260
XL, Xy YL Yu

6 12 0 -0.8773 1.3700 —0.8780 —0.8750 1.3690 1.3720
XN IN N

7 0 1 —2.8646 3.5015 —-2.8640 3,5010 0.0010
Xy, Xy Y Yu

8 12 1 ~0.8764 2.3274 —-0.8750 —0.8710 2.3250 2.3290
XN IN 'nN

9 0 4 0.6653 —0.7855 0.6650 —0.7860 0.0010
YL . Yu Ry Ry

10 23 5 —0.9642 1.0227 1.0210 1.0260 1.4053 1.4073
X Xy R, Ry
11 13 6 —0.0641 —1.1348 —0.0660 —0.0640 1.1358 1.1378

+,*See Table 4 for code explanations.

Table 7 Results of best minimax alignment for Sample 6 [6]

Values of error functions *

Error Starting point Stage 0 optimization Optimization with
function (no deletions) point 1 deleted
(translated)

1 1.1540659 x 10 > __7.8766877 x10~* —6.0836163 x 10 ~**

2 —4.9009805 % 10 ~* 7.8054088 x 10 ~* —3.1859860 x 10 ~*

3 —7.0000000 % 10 ~* —6.7451522x 10 ~* —6.0366698 x 10 ~*

4 —8.0000000 % 10 ~* —5.1145712x 10 4 —6.0460585 x 10 ~*

5 —1.2887855% 10 ~° —4.1859431 % 10 ~* —1.3816043x 10 3

6 —7.0000000x 10 ™% ~6.1087476x 10 ~* —1.9911453x10~*

7 —2.1897503 x 10 ~* 7.8766877x 10 "4 —~1.9911453x10 -4

8 1.4000000 x 10 =3 __7.8766877 x 10 ~* - 4

9 —4.1690481 x 10 ~* —2.2387620% 10 ~* —1.9911453x10"*
10 —2.5929437 x 10 ~* —2.7637365x 10 4 — 1.9911453x 104
11 ~1.0000000 x 10 ~* 6.1249301 x 10 ~* ~4.0926333x10%

*Maximum error functions are underlined.
*This error function value corresponds to the new location of point 1.

(RO =(x9?2 + (0?9 =(RY)?, (35)
and f}, f? have the form of (31), (32), respectively, while f! A M [<p<oo, forM>0, @)
and f1 can be expressed as = _m—lp 1=sp<o, forM<O,

S1=R] -~ + 07, (36)
SI =N +07) - RYy. (37) .
Finally, for a regular point and the Y-R tolerance region Sé{ S; if M <O,
] & =Us, it M>0,

(Fig. 7), the error functions result from (30) and (35), and f},

S, /3, f are given by (33), (34), (36) and (37), respectively.
For each of these tolerance regions, we represent a point S, é(s Ifi =0, seS; )

using only one error function. The four error functions may

be combined into one using the following function [7-8]

The gradient vector of the combined error function is given

; {M [E[/%]q]w for M0 g o
i seS
0 for M=0 Si(¢)7 9] Wa-t
’ ’ vi@=| 1| 5
where Les[ M ] -]1
M4 max (), 5, 2(1,2,3,4, (39) L[ 90, ormmo. @1)
seS| wes M
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Table 8 Results of running the best alignment program on data supplied by the Woodward Governor
Company [6]

CYBER
170/730
Number of points Results execution
Sample Total no. originally out (points time in
no. of points of tolerance deleted) Comments seconds
1 5 4 1 reg. point deleted 0.7
2 7 S 0 no deletions 0.4
3 11 2 1 ref. point deleted 0.9
4 11 3 2 reference and reg. 2.8
points deleted
5 11 3 2 reference and reg. 1.5
points deleted
6 11 2 1 reference point 1.2
deleted
7 13 3 3 regular points 3.6
deleted
Y
Y xp o
«© p?
1 i y?
Y 1Y Ry ¥
S 0
o Riv _
Xy y?L o
Yio
0 X 0 X
Fig.5 Regular point with the rectangular tolerance region Fig.7 Regularpoint and the Y-R tolerance region
Y X0 : BSTALN
1
*u
0
XL p?
PRSRCH p—={ SEARCH [~—={ [NSRCH
¥
MMLAIQ ﬁ SOLVER
RD
y Ry
TOLCIR | FDF  p~— TOL XY
0 X
Fig. 6 Regular point and the X-R tolerance region
TOL XR TOL YR
From (38) and (41), it can be seen that if fi(¢), s=1,2,3,4, are
continuous with continuous first partial derivatives, then, Fig.8 Structure of the program for the best alignment problem
under the stated conditions, the function f; is continuous
everywhere with continuous first partial derivatives (except .
possibly when both M = 0 and two or more maxima are The elements of the gradient vector v/, ;eS;,_ for the
equal). For p — oo, practically f; = max (ff). rectangular and the X-R tolerance regions are given in Tables
568y 2 and 3, respectively. For the Y-R tolerance region error
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Fig.9 Points and tolerance regions before alignment

Fig. 10 Results of running the alignment program

functions and their derivatives are the corresponding entries
of tables for the rectangular and the X-R tolerance regions.

4 Computer Implementation of the Algorithm [9]

In this section, the FORTRAN program for solving the best
alignment problem is briefly described. It has some
limitations, resulting from the fact that it was designed for
solving particular practical problems (e.g., the number of
different shapes of tolerance regions is limited to four). The
program employs a package for linearly constrained minimax
optimization [4] available in the form of a library of
subroutines.

The structure of the program is shown in Fig. 8. The main
segment is BSTALN. It reads the data from the input file
SAMPLE, prints the data, calls subroutine FDF at the
starting point, calls subroutine PRSRCH and prints the final
results. The subroutine PRSRCH organizes the workspace
memory for SEARCH and calls SEARCH. The subroutine
SEARCH implements the decision-tree structure described in
Section 2. It calls SOLVER and INSRCH. The subroutine
SOLVER prepares parameters and calls the minimax op-
timization routine MMLAIQ. The subroutine INSRCH
eliminates identical entries in the decision-tree structure. The
subroutine FDF performs the transformation of coordinates,
evaluates error functions, and calculates final derivatives. It
calls TOLCIR, TOLXY, TOLXR, and TOLYR. Subroutines
TOLCIR, TOLXY, TOLXR, and TOLYR calculate the
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error function and its derivatives for the circular, rectangular,
X-R, and Y-R tolerance regions, respectively, using p = o,

For the purpose of illustration an artificial simple example
has been constructed.

Example [10]. Suppose we have a set of points P a (P D2s
D3, P4, Ps ) and a set of tolerance regions, R I\ {R,,R,, R,
R,, R,}. Figure 9 illustrates the situation before the align-
ment. Error functions at the starting point ¢ = [0.0 0.0 0.0]
are the following

fi= 2.071x10"",
fo=—5.000x10"",
fi= 5.000x10"",
fi=—5.000x10"",
fs= 5.000x10"".

Figure 10 shows the situation after running the alignment
program. The best alignment was found at ¢f = [-2.316 X
1071, —2.792 x 107'; 4.758 x 10~?] with point 5 deleted.
Remaining error functions at the solution are

fi=—-1.540%10"",
fo=—1.206%x10"",
fi=—1.204%x10"2.
fi=—1.204%x10"2.

5 Test Results on Practical Problems

The program described in the previous section has been
extensively tested. It has been run for seven sets of data [6]
supplied by the Woodward Governor Company. The data
resulted from practical problems of part alignment in
manufactured mechanical systems and have been collected
from inspecting actual parts, so the order of error function
values represents the real life situation. The points represent
holes in one part which have to meet certain specifications
when coupled together with another part. Test samples have
different numbers of points, varying from 5 to 13 and
specified tolerance regions of different shapes. To give an idea
of what the samples are like, we describe briefly two simple
samples and one interesting sample in more detail.

Sample 1 (Table 4). This sample has five points, one with
circular and four with the rectangular tolerance regions. It has
no reference points. Originally, the number of points out-of-
tolerance was four. After 12 iterations of stage 0, the
minimum value of the maximum error function was 3.6078 x
104, Three points (1, 3, and 4) have been selected as
potential candidates for deleting. It turned out that deleting
point number 1 gives the solution for which the remaining
error functions are negative and the maximum error at the
solution was —6.45668 x 10~¢ (after 25 additional minimax
iterations).

Sample 2 (Table 5). This sample has seven points, all with
the circular tolerance regions and all referenced to the main
origin. Originally, the number of points out-of-tolerance was
five. After 15 iterations, the solution was found with no
deletions and the maximum error at the solution was
—7.73563 x 1074,

Sample 6 (Table 6). This sample is very interesting: It has 11
points, 4 with circular, 4 with rectangular, 1 with the X-R,
and 2 with the Y-R tolerance regions. Five points are
referenced to points other than the main origin. Previous
work on the best alignment program [6] does not permit a
reference point to be deleted (translated). In our approach,
any point can be deleted. Originally, there were two points
out-of-tolerance, and one of them is a reference point. When
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a point which is an origin for one or more points is found to
be out-of-tolerance, there is a good chance that any point
referenced to it will also appear to be off location. In this
sample, points 7 and 8 are referenced to point 1. Points 1 and
8 were both found to be out-of-tolerance. However, if point 1
was shifted by the amount specified (in other words, if hole
number 1 was plugged and redrilled in the proper location),
point 8 would be in-tolerance without any rework needed.
Thus, in a practical mechanical sense, there is only one point
out-of-tolerance, that being point 1 [2]. Results of running the
program for Sample 6 show that indeed deleting reference
point 1 (plugging and redrilling hole) implies that all other
points will be in-tolerance and the maximum error at the
solutionis —1.9911 x 10-4,

We can observe how point 1 was selected for deleting from
the details of the solution, given in Table 7. From the results
of minimax optimization at stage 0, points 1, 7, and 8 are
selected as candidates for deleting. Results of minimax op-
timization with point 1 deleted (translated) show that a
solution can be obtained with only one point deleted.

The results of running the program for all test samples are
summarized in Table 8.

6 Conclusions

This paper provides an attempt to formulate and to solve
the best mechanical alignment problem using minimax op-
timization. Results of running the best alignment program for
practical problems (Table 8) confirm the efficiency of our
approach. The concepts introduced and the algorithm
proposed are described in this paper by tackling a particular
mechanical engineering problem. However, this class of
problem may come from different sources and further
generalization is possible [10]. One natural extension of this
approach, which may be very useful from the practical point
of view, is considering alignment problems in three dimen-
sions. Another suggestion for further exploration is the in-
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vestigation of the least pth formulation to reduce the number
of minimax functions.

The problem which originated from aligning mechanical
designs is here formulated as a general optimization problem
and we feel that this approach should prove useful in many
other areas where problems of a similar nature may exist.
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