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SUMMARY

A unified study of the class of adjoint network approaches to power system sensitivity analysis which exploits the
Jacobian matrix of the load flow solution is presented. Generalized sensitivity expressions which are easily derived,
compactly described and effectively used for calculating first-order changes and gradients of functions of interest are
obtained. These generalized sensitivity expressions are common to all modes of formulating the power flow equations,
e.g. polar and Cartesian. The approach exploits a special complex notation and complex matrix manipulations to
define the adjoint system and to derive the sensitivity formulae. The approach is applicable to both real and complex
function sensitivities.

INTRODUCTION

Two kinds of analysis can be distinguished in power system operation and planning studies. In the first
kind, which implies the load flow solution"* of the power network, the system states are obtained with
the control (independent) variables fixed at particular values. The solution obtained describes the power
system steady state behaviour associated with these particular values of the control variables. The second
kind of analysis deals with variations in control variables and the resulting effect on either system states
or, in general, on a particular function of interest.>” This analysis is usually referred to as sensitivity
analysis. The importance of sensitivity analysis has been recognized®’ in power system operation and
planning studies to supply first-order changes of functions of interest and their gradients required for
effective optimization techniques.

The class of adjoint network approaches®®™'? incorporating the method of Lagrange multipliers provides
the advantage of using the transpose of the Jacobian of the load flow problem as an adjoint matrix of
coefficients. When describing adjoint network approaches which exploit the Jacobian of the load flow
problem, the sensitivity expressions for different elements are derived according to the mode of formulation
used, e.g. polar or Cartesian. Different forms of sensitivity expressions have been presented for different
studies. A unified sensitivity study for this class of adjoint network approaches has not, however, been
previously described.

The impact of the conjugate notation, which describes the first-order changes of general complex
functions in terms of formal derivatives w.r.t. complex system variables, provides a useful tool for describing
a generalized adjoint network sensitivity approach, as presented in this paper, where generalized sensitivity
expressions are easily derived, compactly described and effectively used subject to any mode of formulation.
The adjoint matrix of coefficients is always the transpose of the Jacobian of the original load flow problem
and, regardless of the formulation, these generalized sensitivity expressions can be used.

In the first few sections, we briefly describe the notation used and illustrate the problem formulation.
For the detailed analytical aspects of the conjugate notation, the reader is referred to References 10 and
11. We then derive the complex transformation matrices relating different modes of formulating the
power flow equations to a standard complex form. This standard complex form is employed in the
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subsequent sections to define and analyse the adjoint system and to derive the generalized sensitivity
formulae. In order to illustrate the novel concepts, two examples of the simplest 2-bus sample power
system are employed throughout the paper. Numerical results for a 6-bus sample power system are also
presented. The formulae derived, however, are general and can be directly programmed for a general
power system of practical size.

NOTATION

10,11

In the conjugate notation a complex variable

Gi=lntilin (1)

and its complex conjugate (¥ replace, as independent quantities, the real and imaginary parts of the
variable. Hence, we may express the first-order change of a continuous function of a set of complex
variables arranged in a column vector {,

{=4,+Jg (2)
and their complex conjugate {* in the form
_(Y EL)T *
7= <a§> 6“(6{* % )

where & denotes first-order change, T denotes transposition and af/a¢ and af/oL* are column vectors
representing the formal'” partial derivatives of f w.r.t. { and ¥, respectively.
It can be shown'® that, for a real function f, we may write

of _(af\*
a@*‘<ag) “)

BASIC FORMULATION
Load flow equations
The electric power network can be represented by a system of node equations in the form
Y Vyu=Iu (5)
where
Y=Y +/Yr (6)
is the bus admittance matrix of the power network,
Vum=Vvi+iVa2 (7
is a column vector of the bus voltages, and
Iv = Iny kv (8)

is a vector of bus currents.
We write the bus loading equations in the matrix form

Elilv=8% 9)
where Ey; is a diagonal matrix of components of Vy, in corresponding order, i.e.
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where v is given by

1
va ! (11)
1
and Sy is a vector of the injected bus powers given by
Su2 Py+jQu (12)
Substituting (5) into (9), we get
Ef Y Vy=8% (13)

The system of non-linear equations (13) represents the typical load flow problem, whose solution is
required.

Complex perturbed form

The system (13) may be written in the perturbed form

K56V, + K36V =688 ~EX8Y Vy (14)
where 8Vy;, V5, 8S%; and 6Y represent first-order changes of Vy;, Vi, S and Y, respectively,
K 2EL Y+ (15)
and K® is a diagonal matrix of components of I, i.e.
KSv=1,, (16)
We write (14) in the form
K38V, +K°6Vi =d° (17)
where we have defined
d°258H —EH8YVy (18)

Note that for constant Y+, d° of (18) is simply S}, and (17) rigorously represents a set of linear equations
to be solved by the well-known Newton-Raphson iterative method.

Slack bus
The equation of (17) corresponding to the slack bus of specified voltage is replaced by
Kk 8V, +k V¥ =58V} (19)
where we have assigned the last bus, namely the nth bus, as a slack bus,
k,=0 (20)
and
0
k=" 1)
1

Observe that in the special application to the load flow solution, the equation corresponding to the slack
bus may be eliminated.
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Generator buses

Consider the equation of (17) corresponding to a voltage-controlled or generator bus g. Let

S 2P, +]1Vy (22)
hence
8S*=5P,—j8| V| (23)
Since
2P, =V, IF+ Vi, (24)
then
28P, = V8l + 158V, + VESL, +[5V¥ (25)
Using (5), we write I, as
L=yi;Vy (26)
where yg represents the corresponding row of the bus admittance matrix Y+, hence
8I, =yi8Vy+V3ydy, (27)
Also, ' :
S|Vl =8(V,VH'?=(V,8V¥+ VEsV,)/ (2| V,)) (28)

Using (25)-(28), it is straightforward to show that 85;" of (23) is given by

88 =k oV +kioVE+ VIiVESy,/2+ V,Vilsyt/2 (29)
where
k, 2 (VE/2)y, +yFVi/2=jVE/ 21V, DIk (30)
and
Ko 2 (Ve/2)yE+1ysVin/ 2= jVe/ (21 V) g (31)

and where p, is a column vector of unity gth element and zero other elements. Using (29), the equation
of (17) corresponding to the gth bus is replaced by

kidVy+kioVE=d, (32)
where

dy = 8P, — 8| V|~ VEVL8y,/2— V, Vi oy¥/2 (33)

Standard complex form

We write (17), including (19) for slack bus and (33) for generator buses, in the form
K6V, +KoVE=d (34)

Note that the elements of 6Vy and V5, namely, 8V, and 8V}, i=1,..., n can be replaced by the
relative quantities 6V;/|V;| and 8V¥/| V||, respectively. In this case the elements k; and E,—,» of the ith row
of the coefficient matrices K and K are replaced by |Vj|k; and | V;|k;, respectively. Note also that we
could equally well specify | V,|* instead of | V,| for a generator bus. In this case | V,|* replaces | V| in (22)
as a control variable and the required modifications for subsequent derivation can be performed in a
straightforward manner.
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MODES OF FORMULATION

In the previous section, we have considered the complex formulation of power system equations. We
shall exploit this formulation to derive compact forms of sensitivity expressions. In this section, we
investigate, via suitable transformations, the relationship between the complex formulation and other
formulations. This investigation provides the possibility of formulating the adjoint equations to be solved
in the same mode as the original load flow problem. Hence, the available Jacobian of the load flow may
be used in solving the adjoint system.

Transformation for rectangular formulation
We define the transformation matrix
3
Laa [Ll Lx] :1[ 1 %] (35)
L, LIl 20— j

where 1 is the identity matrix of order n and

i1 | (36)
hence
qy—1 _ 1 j
(LY) ~[1 _j] (37)

n denoting the number of buses in the power network. It follows, using

[2] "%[—2 ﬂ [gg*] (38)

and (7), that

VMI- rLl L>Ik_ -VM]
- 39
[VMZ- L ilv (39)
hence
[5VM1':FL, L;'"’(SVM] (40)
8Vamal LL, LE¥JL8VE

Using the perturbed form (40), it is straightforward to show that (34) can be written in the form

[(Klﬂ“(,) (—K2+K2)][6VMI]_[«L] (41)
_(Kz“"Kz) (“K1+K1) 5VM2 - “dz

where we have set

K=K, +jK, (42)

K=K, +jK, (43)
and ‘

d=d, +jd, - (44)

The 2n X 2n matrix of coefficients in (41), denoted by K, constitutes the well-known Jacobian matrix
of the flow problem in rectangular form. Moreover, writing (34) in the form

K K] [g“;g] =d (45)
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it follows that
_ _ L, LT]
K K]=[K? K¢ 46
(K R]=[K ][L2 Lt (46)
where K9 and K are formed from the Jacobian of (41) as
K'= (K, +K,)+j(K,+K)) (47)
(48)

and
Ki=(-K,+K,) —j(-K, +K,)

Observe that (46) relates the Jacobian of the complex formulation (34) to the Jacobian of the rectangular

formulation (41).

Transformation for polar formulation
For polar formulation, we set
V,=|V,‘L§,, l=1,,n (49)
where V, are elements of V,,, and we define the vectors
Vil
V£ . (50)
[V,
and
3y
o2 | (51)
On
Then, we define the transformation matrix
S
Ls LS] (52)

L [
L, L}
where L;, L}, L, and L} are diagonal matrices whose elements represent the formal partial derivatives
(53)

38;/9V,, 88;/0V¥, 8| Vil/oV, and 9| V;|/a V¥, respectively, hence
L;£ diag{Ls;}

and
L,# diag{L,} (54)
where
Lsi=—j/(2V}) (55)
and
L,=V¥/ 2V (56)
The inverse of L is given by
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where Ls, L*, L, and L* are diagonal matrices whose elements are the partial derivatives 9 V;/38;, dV¥/35,,
aV,;/d| Vi and aV¥/a| V|, respectively, hence

L, 2 diag {Ls} (58)
and
L, 2diag{L,} (59)
where
Ly=jvi (60)
and
Li=Vy/IV| (61)
Similarly to (40), we may write
.
I sl | % @
Using the perturbed form (62), it is straightforward to show that (34) can also be written in the form
o op -
Lo L) @
where we have set
KP =K+ /K3 (64)
and
K°=K?+/K? (65)

and where the matrices K” and KP” are related to K and K through the relationship

L, Ls*ji (66)

[K K]=[K°K"] [L L#

The 2n X 2n matrix of coefficients in (63), denoted by KP", constitutes the well-known Jacobian matrix
of the load flow problem in polar form. Observe that (66) relates the Jacobian of the complex formulation
(34) to the Jacobian of the polar formulation (63), where K” and KP are formed directly from the Jacobian

of (63).
At the end of this section, we illustrate the foregoing concepts by two simple examples.

Example 1
Consider first the 2-bus sample power system of Figure 1 which consists of a load bus and a slack bus.
The solution of the load flow equations (13) is given by

V,=0-7352-j0-2041
and
S,=5-6705+;j1-0706
Note that S, is the injected power at bus 2. The matrices K and K of (45) are given by
Ko [(8-0852—j 12:0097) (—8-4934+j 13~4802)]
0 0



198 J. W. BANDLER AND M. A. EL-KADY

bus 2 —a—i bus 1
— 5=-5-i3
V,=10/0
¥20"i3 Y1072
7 /7

Figure 1. Two-bus load-slack sample power system

and

K_[(—5‘2623+j5-5411) 0]
0 1

Hence, using Cartesian co-ordinates, the matrix of coefficients of (41) has, using (42) and (43), the form

2-8229  —8-4934  17-5508 —13-4802

cne| O 1 0 0
7| 64686 —13-4802 —13-3475  8-4934
0 0 0 1

which is the Jacobian of the load flow problem in Cartesian co-ordinates when the slack bus equations
are included. . 5
For the polar formulation, the matrices L; and L, of (57) are given by
. [(0-2041+0-7352) 0]
L 0 J
and
. [(0-9636-70-2675) 0]
0 1

Hence, using (52), (57) and (66), the matrices K” and K® are given by
Kp_[(13'4802+j8-4934) (—13-4802—;8-4934)
0 —J J

and

Kv:[(—1-9745—j9-8031) (—8:4934+/13-4802) |
0 1

from which the matrix of coefficients of (63) has the form

13-4802 —13-4802 -1-9745 —8-4934

Kplr — O O 0 1
—8:4934  8-4934 9-8031 —13-4802
0 1 0 0

which is the Jacobian of the load flow problem in polar co-ordinates when the slack bus equations are
included.
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- Example 2

Now, consider the 2-bus sample power system of Figure 2 which consists of a generator bus and a slack
bus. The solution of the load flow equations (13) is given by

8, =—0-1995 rad

Q,=1-9929
R=-4
bus 2 - busl —=—
¥,26-j20
S &
V,=10/0 1V,1=0.9
y20=j3 Y1o=j2

Figure 2. Two-bus generator-slack sample power system

and
S$,=4-2742—-j1-7131
The matrices K and K of (45) are given by

[(2-3920—;‘9-4199) (—4~4300+j8-2864)]
K= 0 0

and

& [(2~1938+ j 8:4398) (—4-4300-j 8-2864)]
0 1 )

Hence, using Cartesian co-ordinates, the matrix of coefficients of (41) has, using (42) and (43), the form

4-5858 —8-8600 17-8597 —16-5729

k| 0 1 0 0
09802 0  —01982 0
0 0 0 1

which is the Jacobian of the load flow problem in Cartesian co-ordinates when the slack bus equations
are included. 5 5
For the polar formulation, the matrices L; and L, of (57) are given by

. [(0-1784+j0-8822) 0©
L 0 Jd

and

. [(0-9802-j0-1982) 0
0 1
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Hence, using (52), (57) and (66), the matrices K” and K" are given by
Ko [16-5729 —16-5729]
0 =J
and
Kp=[0-9556—j1-0 —8-8600]
0 1
from which the matrix of coefficients of (63) has the form
16:5729 —16-5729 0-9556 —8-8600

— 0 0 0 1
B 0 0 1 0
0 1 0 0

which is the Jacobian of the load flow problem in polar co-ordinates when the slack bus equations are
included.

COMPLEX ADJOINT ANALYSIS

In this section, we derive the required sensitivity expressions using the compact complex form (34). We
exploit the relationships derived in the previous section to provide flexibility in solving the resulting
adjoint system of equations in other modes of formulation. We have shown that, using Cartesian
co-ordinates, (34) has the form

8V d
<[5
6VM2 _d2
where the 2n X 2n matrix of coefficients K which constitutes the Jacobian matrix of the load flow problem
in rectangular form is given from (41). Also, using polar co-ordinates, (34) has the form

olr 58 _ d,
K [alw]“[—dz] (68)

where the 2nX2n matrix of coefficients KP* which constitutes the Jacobian matrix of the load flow
problem in polar form is given from (63).
Standard complex form

We write (34) in the form

K Kl[sVy]| [4d
[K* K*][«SV;*J - [d*] (69)
It can be shown® that the matrix of coefficients of (69), denoted by K°?, has the same rank as that of

(67) and the system of equations (69) is consistent if and only if the system (67) is consistent.
For a real function f, we may write, using (3) and (4)

A%
SF=[nT n*T [ M]+ 7
f=[ p*] 5V 8f, (70)
where we have defined
. s Of
& —— 71
A=V (71)
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and used
d af \*
_f = (___]_t_) (72)
aVy \oV§

df, denoting the change in f due to changes in other variables in terms of which f may be explicitly
expressed. Hence, from (69)

.| K K]'[d
et a5 KT[4]ess o
or
T Xr*T d
of =LV ¥ ][d*]wfp (74)
where
K R V] 4
& Lo =[] 09
or, simply
rzsr| V]

Hence, the first-order change of the real function f and corresponding gradients can be evaluated by
solving (75) and substituting into (74).

Cartesian co-ordinates

Similarly to (70), we may write, using the rectangular formulation

8V
Sf=[Ar AT [ M1]+6
f =[id: f] 5V 1o (77)
where we have defined
. a Of
TV (78)
and
. a2 Of
S — 79
- (79)
Hence, from (41)
PN d
of =[V7 V;f][ ‘;]+6fp (80)
-G
where
[(K1+K,)T —(K2+K2>T][Vr]=[ﬁr] (81)
(“K2+K2)T (‘Kl'*”r(l)T Vs '15

Observe that the matrix of coefficients of (81) is the transpose of the Jacobian matrix of the load flow
problem in rectangular form (67).
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Theorem 1
(a) The solution vectors V, and V, of the adjoint system of equations (81) are given by
V.=2Re{V}

and ) )
V.=2Im{V}

where V is given from (75).
(b) The RHS vectors fi, and fi; of the adjoint system of equations (81) are given by

f=LlA+ LI,
where {i is given by (71) and L, and L, are given by (35).
Proof. Comparing (74) and (80), and using (66), we get
V=V, +¥)/2 (82)

From (82), the first part of the theorem is proved. Now, multiplying (81) from the left by the transpose
of L? of (35) and using the relation

[(KIH‘Q)T —<K2+K2)T]_[K‘“ K"*T'[l i} (83)
(K. +K)T (K, +K,)"] LK K]

it follows from (46) and (82) that

[KT K*T][ A% ] _ [ LT L} ][ﬁ. (84)
KT K*T V* L>lkT L>2k'l ﬁ's_
hence, from (75)
A T T A
ol e L (85)
a*]  LLFT L3TILA,
or, simply
A=[LT LY ["] 0 (86)

The relationship (86) could also be derived by applying, formally, the chain rule of differentiation using
the definitions (71), (78) and (79).

Observe that equation (82) relates the solution of the adjoint system (81) to that of (76), and equation
(86) relates the RHS of (81) to that of (76).

Polar co-ordinates

Using the polar formulation, we may write

83
Sf=[pr a7 [ ]+5 7
f =187 11| gy |+ (87)
where we have defined
~ 2 9f
o= oo (88)
and
R d
i, oL (89)
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Hence, from (68)

A A d
of =[V3 V1] [ d‘] +2f, (90)
2
where
< e[
& &ell]-LE oy

The matrix of coefficients of (91) is the transpose of the Jacobian matrix of the load flow problem in
polar form.

Theorem 2
(a) The solution vectors V; and V, of the adjoint system of equations (91) are given by
Vs =2Re{V}
and
V,=2Im{V}

where V is given from (75).
(b) The RHS vectors fi; and ji, of the adjoint system of equations (91) are given by

A=Li,+Lij,
where ji is given by (71) and L, and L, are given by (53) and (54).
Proof. Comparing (74) and (90), and using (44), we get
V=V;+jV,)/2 (92)

From (92), the first part of the theorem is proved. Now, multiplying (90) from the left by the transpose
of L? of (52) and using the relation

K:T —KQT] [KPT KP*T][I j]
_ _ = _ _ 93

[ el -lier e -j >
it follows from (64) and (92) that

KT K*¥T [ V* LT L¥T |4,
hence, from (85)
-l L) ©3
T LiT L¥ LA,
or, simply
p=[L] LZ]['?] O (96)
o

Again, the relationship (96) could also be derived by applying, formally, the chain rule of differentiation
using the definitions (71), (88) and (89).

Equation (92) relates the solution of the adjoint system (91) to that of (76), and equation (96) relates
the RHS of (91) to that of (76).
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Remarks

We remark that using (82) or (92), the adjoint system can be formulated and solved in a convenient
mode, preferably the same formulation as the original load flow problem, and the first- order change of
f and corresponding gradients may be derived compactly using the adjoint variables V. On the other
hand, the relations (86) and (96) allow the use of more elegant formal derivatives which, in many cases,
facilitate the formulation. For example, consider the function

f=0alVi= V|’ =a(V,(= V))(Vi-V}) 97

where V; and V; are the ith and jth components of Vy, respectively, and o is a real scalar or variable.
Note that f of (97) may represent, for example, the power loss in line ij. For the polar formulation, ji,
and ji; of (91) are calculated as follows. The ith and jth components of fi; and j, are given by

fisi = o[—2(| Vi| cos 8, —| V| cos 8;)| V| sin &; +2(| Vi| sin §;—| V| sin 8,)| V| cos §;]
s = a[2(| Vi cos 8,—| V| cos 8,)| V}| sin 8;—2(| V| sin &;—| V| sin ;)| V| cos §;]
L = a[2(]Vi| cos 8;—| V| cos §;) cos 8; +2(| V| sin 8;—| V)| sin &) sin &;]

and
Ay =0[2(| Vi] cos 8;—| V| cos §;) cos 8, —2(| Vi| sin 8;—| V| sin §)) sin §;]

All other components are zero. On the other hand, one may calculate

— 0 q

(V* Vi)

=
Il
q

—wvi-vp

0
and use (95) to calculate ji, and fis; where (LPT)™' is the transpose of (L?)™' of (57). In this example,
the derivation of the formal derivatives is clearly easier.

We also remark that other forms of power flow equations can be handled in a similar way. The previous
theorems can be easily generalized for other formulations provided that transformations similar to (35)
and (52) are defined.

We illustrate the foregoing concepts by the two simple examples considered before.

Example 3
For the first system, as shown in Figure 1, consider the function
f:|V1]2= Vi VY
From (71),

. [V’f] B [o~7352+;0-2041]
1o 0

and (76) has the solution

o [0-0562+ j0-0892]
1-6788+j0-0

Also, for the polar formulation, we have from (88) and (89)

=0
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- [2|;/1[] _ [1-50261]

and

and (91) has the solution

. [0-1123]
V‘*__3-3577_
and
. [0-1783]
v, =
- O -l

Note that the Vs and VO obtained for the polar formulation and v satisfy (92).

Example 4
For the second system, as shown in Figure 2, consider the function
V- V¥
= 8 =t -1 71 1 J
f=o=tan [j(v;"+ )
From (71)
. [—j/(z vl)] 3 [0-1101 - o~5445]
a 0 0
and (76) has the solution
o [0-0302—j0-0288]
0-2673+j0-5

Also, for the polar formulation, we have from (88) and (89)

and

and (91) has the solution

. 0-0603
Vs [0-5346]

and

N —-0-0577
Vo ‘[ 1-0 }

Observe that the V,s and Vu obtained for the polar formulation and v satisfy (92).

GRADIENT CALCULATIONS

205

In the previous section, we have derived the adjoint systems in different modes of formulation and
investigated the relationships between the corresponding excitation and solution vectors. In power system
studies such as contingency analysis, the first-order change of f is of prime interest. The first-order change
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8f can be calculated from (74), (80) and (90). On the other hand, the derivatives of f w.r.t. control
variables are required to be calculated, for example, in planning studies.

In the following, we consider the buses to be ordered such that subscripts [ =1, 2, ..., n, identify load
buses, g=n; . +1,..., n_+ng identify generator buses and n = n; + ng +1 identifies the slack bus.

The vector d of (34) is now partitioned into subvectors associated with the sets of load, generator and
slack buses of appropriate dimension in the form

d.
d=|dg (98)
d,
where d; has elements d; given from (18) by

y! representing the corresponding row of the bus admittance matrix Y, dg has elements d, given by
(33) and d,, is 8V* from (19). Also, the vector V of (74) is partitioned correspondingly in the form

\a
‘' V(, (100)
v,

Note that the above formulation leads to expressing the vector d solely in terms of variations in control
variables, the gradients in terms of which can be obtained by writing (74) in the form

/T T %% 8f T T $rxT 9, 6f T
§f=Vid +Vsdg+V,d,+ % Sp+VHAFX+VEdE+ VidE+ P sp* (101)
P
The first term of (101) is given, using (99), by
VLdL Z Vldl
=2 V,aS:k)—lz Y (VViV,8Y,,) (102)
=1 =1m=1

where Y, is an element of Yr, which is assumed, for simplicity, to be a symmetric admittance matrix
(the case of an unsymmetric admittance matrix can be analysed in a similar straightforward way), or

n

Vid = ,Z (Vlas*>+,zl E ViVE(Vi= V)dyin = 3 (ViVVidyo) (103)
m#l

where y,,, denotes the admittance of line /m connecting load bus ! with bus m (=1, g or n), and y is
the shunt admittance at bus [ The second term of (101) is given, using (33) by

n—1

Vide= Y V.d,

g=n;+1

n—1 n—1 n ”
= Y V,6P,—js|V.)— ¥ ¥ V,Re{V#V,8Y,,} (104)
g=ny+1 g=n +1 m=1

or

n—1 n n—1 N
Vids = Z V(SP — 8| Vg|) + ZH 21 V, Re{Vg‘(Vm—Vg)éygm}—g ZH V., Re {VEV,8y,0}
g=n_+ g=ng m= =ny
m#g

(105)



POWER NETWORK SENSITIVITIES 207

where y,,. denotes the admittance of line gm connecting generator bus g with bus m (=1, g or n), and
Ygo is the shunt admittance at bus g. The third term of (101) is given, using (19), by

V.d,=VsV* ' (106)

The fourth term of (101) is simply the first-order change of f due to changes in other variables p in terms
of which the function f may be explicitly expressed.

Equations (103)-(106) provide useful information for gradient evaluation since they provide direct
expressions w.r.t. the control variables of interest. The derivatives of the function f w.r.t. the control
variables are obtained as follows, where we temporarily assume that p does not contain such control
variables. !

Load bus control variables

From (103) and its complex conjugate, the derivatives of f w.r.t. the demand S; and S¥ at load bus /
is given by

d A
aff= \% (107)
1
and
d ,.
_dsff =, (108)

Generator bus control variables

From (105) and its complex conjugate, the derivatives of f w.r.t. the real generated power P, and the
voltage magnitude | V,| at generator bus g are given by

%=\7;" (109)
t4
and
d A
d§]:‘= g (110)
8

where §g is given by (22).

Slack bus control variables

From (106) and its complex conjugate, the derivatives of f w.r.t. the slack bus voltage V, and V¥ are
given by

d‘g =V (111)
and

d A

d‘f*= V., (112)

In practice, the phase angle of the slack bus voltage is set to zero as a reference angle. Hence, the slack
bus has only one effective real control variable.
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Line control variables

The derivatives of f w.r.t. line control variables y; can be obtained from (103) and (105) and their
complex conjugate as follows. For yj, between load buses [ and !’, we have from (103) and its complex
conjugate '

df

ayr = ViVi= V. VIV = V) (113)
w
and
df (7% X (7% * *
dy?;’:(vt Vi—VEVIXVE=VT) (114)

For y,, between load bus [ and ground, we have from (103) and its complex conjugate

df

ay—=—“/,v;kv, (115)
10
and
d N
dy]:k =—V¥V,V} (116)
10

For y,, between generator buses g and g, we have from (105) and its complex conjugate

df

= (Ve VE= Vet VIV = V) (117)
dYger
and
df _ A _ A % *
x Vgl Vg Vg’lvg’)(vg' Vg) (1]8)
dygy
where
Vo=V +jVs (119)

and m is a bus index. For y,, between generator bus g and ground, we have from (105)

df _ df

=——=-V, V¥V, 120
dyeo dY;gko sthe e ( )
For y,, between load bus [ and generator bus g, we have from (103) and (105) and their complex conjugate
d A A
L= (0 VE= VYDV V) (121)
g
and
df (VU % * *
dyi =(Va Vo= VIV(VE=VE) (122)
8
For y,, between load bus / and the slack bus s, we have from (103) and its complex conjugate
d A
dyf =ViVi(V,— V) (123)
In
and
- vrvivi-vp (124)

dyf,
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Finally, for y,, between generator bus g and the slack bus n, we have from (105) and its complex conjugate

af _

= VA V* V,,—-— V 125
i!gn gl g( g) ( )
and
_——= VA V(Vi-V? 126
dy* g1 g( n g) ( )
ygn

Special considerations

If p of (101) contains some of the above control variables, the partial derivatives of f w.r.t. appropriate
control variables must be added to the expressions obtained.
When any of the control variables u, is a function of some real design variables we write

u
Sue =Y — Al (127)
7 0k
where {,; is the ith design variable associated with u, and A{,; denotes the change in {. Hence,
d df 9
df _ df o (128)
A duy 98w

The control variables associated with other power system components, e.g. transformers, which are
represented in the bus admittance matrix Y, can be easily considered. The corresponding sensitivity
expressions may be derived in a similar straightforward manner.

Equations (107)—(118) and (120)-(126) compactly define the required formal derivatives of the real
function f w.r.t. complex control variables. In practice, gradients w.r.t. real and imaginary parts of the
defined control variables are of direct interest. These gradients are simply obtained from

df { df }
——=2Re{— 129
dukl ¢ duk ( )
and
df df }
—_— .._2 —_—
dug 0" {duk (130
where the complex control variable u, is given by
Uy = Uy + JUis (131)

Table I summarizes the derived expressions of function gradients w.r.t. real control variables of practical
interest.

Example 5
Using the values of V obtained, we have for the first system
df A
——=2V.. =0
aP; 2V;,=0-1123
df A
=2V,,=0-1783
dol 12
df A
= V —1 .
av,, 2V, =3-3577
df 20
=2|V{|*V12,=0-103
dB10 2| l| 12 O 0 8
df

=2Re{V,V¥V,- V)}=-0.0192
dGi,
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Table 1. Derivatives of a real function f w.r.t. control variables

Control Description Derivative

variable
P, demand real power 2‘7,1
Q demand reactive power 2V,
P, generator real power 2 Vg,
|V, generator bus voltage magnitude 2 ng
Va1 real component of slack bus voltage 2V,
Gy conductance between two load buses 2Re{(V,VF—V, V) V.= V)}
By susceptance between two load buses —2Im{( \7,V’,"— ‘A/,r VE(V,— V)}
Gy shunt conductance of a load bus =2|V|*V,
By shunt susceptance of a load bus 2lV,2V,
Gy conductance between two generator buses 2 Re{( Vgl Vi- Vgrl VEN Ve =V}
B, susceptance between two generator buses —2 Im {( Vgl Vi- ngl Vi Ve =V}
Gyo shunt conductance of a generator bus 2|V, ]*V,,
Bgo shunt susceptance of a generator bus 0
Gy conductance between load and generator buses 2Re{( Vgl \%h VVENV, - Vet
By, susceptance between load and generator buses —21Im{( Vgl Vi- V,VEN(V,— V.)}
G, conductance between load and slack buses 2 Re {V,V’,"( V,—~V)}
B, susceptance between load and slack buses —2Im{V,V¥( V,.—V)}
G, conductance between generator and slack buses ZVg, Re{Vi(V,—V,)}
B, susceptance between generator and slack buses -2 \731 Im{V%V,}

and

df

=—2Im{V, V¥ V,— V,)}=-0-0502

where G, and B,,, denote, respectively, the conductance and susceptance of line mm’ connecting
buses m and m’, m’ =0 denotes the ground.

Example 6

For the second system, we have

and

f
——— V = .
aF, 2V,,=0-0603
df
=2V,,=-0-0577
dv, ~ "
df .
— V b-— .
v, 2V,,=0-5346
af _
dBlO_OO
df _ 2V,  Re {V¥(V,— V,)}=0.0044
dG,
d N
dB’;:—sz Im{V}V,}=-0-0108

The gradients obtained can be easily checked by small perturbations about the base case values.
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SENSITIVITY OF COMPLEX FUNCTIONS

In the previous sections, we have derived the required sensitivity expressions and gradients for a general
real function. The relationships between different modes of formulation have been investigated and
expressions relating the RHS and solution vector of corresponding adjoint systems have been derived.

The sensitivities of a general complex function can be obtained using the previous formulae derived
simply by considering the real and imaginary parts separately. In this case, only the RHS of the adjoint
system of equations has to be changed. In other words, only one forward and one backward substitution
are required for each real function, provided that the LU factors of the formed matrix of coefficients are
stored and that the base case point remains unchanged.

In this section, we show how the compact complex formulation can be exploited to formulate the adjoint
system corresponding to a general complex function and to derive the required sensitivities. The relation-
ships between different modes of formulation are again investigated for the complex function case.

For a complex function f, we may write, using (3)

A 8V
=raT 2T M +
of =[8" & ][av:;] of, (132)
where we have defined
A A af
AL 133
il (133)
and
2 A af
& 134
T AV, ( )

5f, being the change in f due to changes in other variables in terms of which f may be explicitly expressed.
Hence, from (69)

2| K K][d
or
ar &1 d
5f=[V' V ][d*]+6fp (136)
where
KT RV _[4
& wel3]-[2] 137

which represents the adjoint system of equations to be solved. The first-order change of the complex
function f can be evaluated by solving (137) and substituting into (136).

The relationships between the adjoint solutions of different modes of formulation are derived as follows.
Let

f=hH+if (138)
hence
of = of1 + jéf, (139)

and let \A’ﬁ and \A’sl be the solutiAon vector of the adjoint system (81) using Cartesian co-ordinates for the
real function f;. Similarly, let V2 and V2 be the solution vector of (81) for the real function f>. Hence,
using (80) and (136), one may write

VTd+VTa* = (V17d, - V17d,) + j(V 7, — V>7d,) (140)
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hence, from (44),
V=V -V2)/2+j(Vi+ VD)2 (141)
and
V=V1+¥2)/24j(-V1+V2)/2 (142)
Equations (141) and (142) relate the solutions of the adjoint system (81) for both f; and £, to the solution
of (137) for the complex function f.
Similarly, let Viand V! be the solution vector of the adjoint system (91) using polar co-ordinates for

the real function f;. Also, let V2 and V2 be the solution vector of (91) for the real function f,. Hence,
using (90) and (136), one may write

VTd+Via* = (V1Td, —¥V1Td,) + j(V 27, — V 27d,) (143)
hence, from (44)
V=(V;=Vi)/2+j(V,+V3)/2 (144)
and
=(Vi+V)/2+j(=V,+V3)/2 (145)

Equations (144) and (145) relate the solutions of the adjoint system (91) for both f, and f, to the
solution of (137) for the complex function f.
For gradient calculations, we proceed as before and use the partitioned forms (98), (100) and

.|
V=1Vg (146)
and we write (74) in the form
T a T Ay ETak, O g% af T
§f = Vid, +V&ide+ V. d, + P Sp+ Vi df+Vadd+ V,di+ o Sp (147)
p p

The first, second and third terms of (147) are given by (103), (105) and (106), respectively. The fifth
term of (147) is given, using (99), by

Viay = z (V6s)+ % 3 VVAVi-VDoyh— 3 VViVieyh (148)
Ry =
Also, the sixth term of (147) is given, using (33) by
A n—1 A . n—1 n A n—1 A
VédE = P 1 Ve8P +j8| Ve + X 1 z_l VeRe{VE(Vii=Ve)dygm}— L Vi Re{ViVidy.o}
g=ng g=n.+ x;g g=n;+1
(149)
and the seventh term of (147) is given, using (19) by
V.di=V,5V, (150)

Equations (103), (105), (106), (148), (149) and (150) provide useful information for gradient evaluation
of the complex function f w.r.t. the control variables of interest. Under the assumption that p does not
contain such control variables, the derivatives of the complex function f are obtained as follows.
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Load bus control variables
From (103) and (148), the derivatives of f w.r.t. the demand S, and S§ at load bus [ is given by

df
ds,

»

(151)

~

and

>

&
<%~

(152)

-

Generator bus control variables

From (105) and (149), the derivatives of f w.r.t. the generator control variables are given by

df
ds,

»

= (153)

o

and

o
~
>

(154)

o
(7]
o0 %

oq

where §, is given by (22).

Slack bus control variables

From (106) and (150), the derivatives of f w.r.i. the slack bus voltage V, and V¥ are given by

df =&
=V
v, (155)
and
df =«
dV’,',‘— ' (156)

Line control variables

The derivatives of f w.r.t. line control variables y; can be obtained from (103), (105), (148) and (149)
as follows. For y, between load buses [ and I’, we have from (103) and (148)

df

——=(VVi=-V.VE(Vi— V) (157)
dyy
and
df A A "
—5=(V\V=V, V\)(V§-=VF) (158)
dyi
For y,o between load bus / and ground, we have from (103) and (148)
I vy, (159)
dyio
and
v __ 1A% (160)

dyf,
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For y,, between generator buses g and g’, we have from (105) and (149)

d A a N a
L (V4 D) VE= (D + V) VIV, = V)
dyge
and
df TN 2 0 A I
dy* _2[(Vg+ Vg) Vg (Vg’+vg')vg’](vg' Vg)
g8’

For y,o between generator bus g and ground, we have from (105) and (149)

df df 1Y S
——= =—3(V,+V,)V*V
Qo dyfa et YIVEVs

For y,, between load bus [ and generator bus g, we have from (103), (105), (148) and (149)

d Y5 ?
5;’%[%( U+ V) VE— VVH(Vi- V)
24

and
T A A A IR T
dyf, e e TR

For y,, between load bus / and the slack bus n, we have from (103) and (148)

df

o ViVE(V,~ V)
In
and
d a
dy]:‘ =V\Vi(VE-VT)
In

Finally, for y,, between generator bus g and the slack bus n, we have from (105) and (149)

df | & 2
=3 +V)V¥V,—-V,
dygn 2( g g) g( g)
and
d A 2
Yyt T Vevi- v
dyzn
Remarks

(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)

(169)

If p of (147) contains any of the above control variables, the partial derivatives of f w.r.t. appropriate

control variables must be added to the expressions (151)-(169).

Equations (151)-(169) compactly define the required formal derivatives of the complex function f w.r.t.
complex control variables. The gradients of f w.r.t. real and imaginary parts of the control variables are

obtained using

df _df df
= e ——
due, du, duf

(170)
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and

(4 o) a7

duy, du, du¥
where u; is given by (131).
Expressions of forms (170) and (171) can be directly obtained from (151)-(169).
Example 7
Now, we consider the first 2-bus system and the complex function
f=V,=Vi+jVi,

Using Cartesian co-ordinates, the adjoint system solutions for V,; and V;, are given, respectively, by

o- oo

o= 0n)

vi-[oos
and

vi-[ o)

hence, from (141) and (142)
[0-0535+/0-0794

V=
| 0-7896+j 0-1579 ]
and
S [0-0348—70-0366 ]
| 1-5248—70-0462

The derivatives of f w.r.t. control variables are calculated, using the derived expressions, as follows.
For S,

d A
d——f—= 1=0-0348—;0-0366
1
and
df . .
— = (). + .
st V;=0-0535+j0-0794
hence, from (170) and (171)
daf _ .
aP, =0-0883—,0-0428
and
df

S _01161-/0-0187
do, !
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For V,,
df A .
—=V,=1-5248—j0-0462
.=V 5248
and
df .
—_=V,=0- +j0-1579
v V,=0-7896+ 0
hence, from (170)
df )
=2-3144+j0-1117
av,, ]
For yjo,
df =—|V,|?V,=-0-0311—j0-0462
d)’10
and
d’; = |V, 2V, =—0-0203+0-0213
dyTo
hence, from (170) and (171)
df ,
=—0-0514—j0-0249
dGio I
and
df )
=0-0676—0-0109
dByo J
For yy5,
9 _ V,V¥(V,~ V,)=—0-0080+j 0-0231
dy»
and
d—‘;f?-—. V.,V (VE— V¥)==0-0022— 0-0127
12

hence, from (170) and (171)

df .
——=-—0-0102+70-0104
4G, J

and

df .
=-—0-0358—;0-0059
dB., 0-03 ]

APPLICATIONS TO A 6-BUS SAMPLE POWER SYSTEM

In this section, we present some of the numerical results obtained for a 6-bus power system'” using the
sensitivity formulae derived in the paper.
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The system consists of three specified load buses (I =1, 2, 3), two generator buses (g =4, 5), the slack
bus (n=6) and eight transmission lines (1=7,...,14). The single line diagram for this system is shown
in Figure 3. The line and bus data are shown, respectively, in Tables II and III. All values shown are in
per units. The application of the adjoint network approach results in the load flow solution shown in

Table IV.

bus 4

Figure 3. Six-bus sample power system

Examples of sensitivities of bus states, namely |V,|, Q,, 8; and 8, w.r.t. system bus and line control
variables are shown in Tables V-VIII. The estimated effects of the line and circuit outages on the different
states, based on first-order changes, are also shown.

Observe that the sensitivities w.r.t. non-existing elements, e.g. the shunt parameters in Tables V-VIII
can be evaluated as well.

Although the sensitivities of a general function can be evaluated using the same adjoint matrix of
coefficients at the load flow solution and by defining the RHS of the adjoint equations corresponding to
the function considered, these sensitivities can also be obtained, directly, using the results of Tables
V-VIII. For example, consider the function

f=|114lz=|V1" V4|2| le2 (172)

which may denote the loading of line 1, 4. The sensitivity of this function w.r.t. a control variable u, is
given by

_d_f_=_6_f_+2| Vl_ V4” Y14|2 6|V1_—W

17
duk Uy Uy ( 3)
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Table II. Line data for 6-bus power system

Line No. Terminal Resistance Reactance Number of
buses R, (pu) X, (pu) lines
1 1,4 0-05 0-20 1
2 1,5 0-025 0-10 2
3 2,3 0-10 0-40 1
4 2,4 0-10 0-40 1
5 2,5 0-05 0-20 1
6 2,6 0-01875 0-075 4
7 3,4 0-15 0-60 1
8 3,6 0-0375 0-15 2

Table III. Bus data for 6-bus power system

Bus index, Bus type P, Q. [ Vinl [ 80
m (pu) (pu) (pu)
1 load —-2:40 0 — [=
2 load —2-40 0 — [=
3 load -1-60 —0-40 — /=
4 generator -0-30 — 1-02 /=
5 generator 1-25 — 1-04 /=
6 slack — —_ 1-04 /0

Table IV. Load flow solution of 6-bus power system

Load buses Generator buses Slack buses
V,=0-9787 /—0-6602 Q,=0-7866, 8,=-0-5566 P,=6-1298, Qg=1-3546
V,=0-9633 /—0-2978 Qs=0-9780, 85=-0-4740

V3=0-9032 /—0-3036

which, when substituting values at the load flow solution and noting that | V,| is constant, reduces to

d V 38
A g1 Vil 4858820 448588 20
du,  ouy Ay, Uy ouy,

Now, let u, denote the conductance of line 2, 4. Hence, from Tables V, VII and VIII, we get

df
dGa4

=-0-0324
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Table V. Six-bus system: sensitivities of | V]

Line quantities

Total derivatives

Contingency effect

Line Outage of Outage of
Conductance Susceptance one line circuit
1,4 —0-006326 —0-005283 0-017421 0-017421
1,5 —0-011838 —0-008884 0-027880 0-055760
2,3 0-000027 —0-000012 0-000044 0-000044
2,4 —0-000207 —0-000597 —0-001282 0-001282
2,5 0-000163 0-000294 —0-001192 —0-001192
2,6 —0-000002 0-000039 —0-000123 —0-000494
3,4 —0-000265 —0-000443 0-000591 0-000591
3,6 —0-000017 —0-000120 0-000362 0-000724
Load bus quantities—total derivatives
Bus Real Reactive Shunt Shunt
power power conductance susceptance
1 0-029522 0-070273 —0-028275 —0-067306
2 —0-000131 —0-000005 0-000122 0-000005
3 0-000378 0-000169 —0-000308 —0-000138
Generator bus quantities—total derivatives
Bus Voltage Real Shunt Shunt
magnitude power conductance susceptance
4 0-357365 0-002243 —0-002334 0-0
5 0-732004 —0-001804 0-001951 0-0

Similarly, if u, denotes the susceptance of line 2, 4, we get

df
dB,

=-0-0932

The effect of line 2, 4 outage on the function considered can be estimated using the relation

df df
§f = — Y
f G, G dB,, B4

(174)

where we have set the changes in line conductance and susceptance, respectively, to —G,, and —B,,.
Substituting the values of G,, (=0-5882) and B,, (=—2-3529) in (174), we get

8f=0-019-0-219=0-200

which is identical to the result presented in the Tellegen’s theorem approach of'® where the function
f=|I,4* was considered, directly, in the adjoint simulation without state transformations.
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CONCLUSIONS

A unified study for the class of adjoint network approaches to power system sensitivity analysis which
exploits the Jacobian matrix of the load flow solution has been presented. Generalized sensitivity
expressions which are easily derived, compactly described and effectively used for calculating first-order
changes and gradients of functions of interest have been obtained. These generalized sensitivity expressions
are common to all modes of formulation, e.g. polar and Cartesian.

Table V1. Six-bus system: sensitivities of Q4

Line quantities

Total derivatives Contingency effect
Line Outage of Outage of
Conductance Susceptance one line circuit
1,4 —0-056140 —0-044515 0-143437 0-143437
1,5 0-065943 0-060168 —0-205565 —0-411130
2,3 0-000236 0-004289 —0-009954 —0-009954
2,4 0-256340 0-022413 0-098051 0-098051
2,5 —0-015503 0-028010 —0-150048 —0-150048
2,6 0-046139 0-039093 —0-086459 —0-345835
3,4 0-243148 —-0-031249 0-144371 0-144371
3,6 0-062174 0-056610 —0-128837 -0-257674

Load bus quantities—total derivatives

Bus Real Reactive Shunt Shunt
power power conductance susceptance
1 —0-457852 -0-358531 0-438519 0-343391
2 -0-115872 —0-168723 0-107512 0-156551
3 —0-127525 —-0-258052 0-104029 0-210506

Generator bus quantities—total derivatives

Bus Voltage Real Shunt Shunt
magnitude power conductance susceptance
4 7-51274 —0-550625 0-572870 0-0
5 —4-66462 -0-219233 0-237122 0-0

A first step towards deriving these generalized sensitivity expressions has been performed where we
have used a special complex notation to compactly describe the transformations relating different ways
of formulating power network equations to a standard complex form. This special notation and the derived
transformations have been used to effectively derive the required sensitivity expressions only by matrix
manipulations.

The use of these generalized sensitivity expressions requires only the solution of an adjoint system of
linear equations, the matrix of coefficients of which is simply the transpose of the J acobian matrix of the
load flow solution in any mode of formulation. These generalized sensitivity expressions are applicable
to both real and complex modes of performance functions as well as the control variables defined ina
particular study.
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Table VII. Six-bus system: sensitivities of 8,

Line quantities

Total derivatives

Contingency effect

Line Outage of Outage of
Conductance Susceptance one line circuit
1,4 0-001197 —0-010358 0-050152 0-050152
1,5 —0-004594 —0-016180 0-070737 0-141473
2,3 —0-001609 0-000178 —0-001366 —0-001366
2,4 —0-010354 —0-031650 0-068981 0-068981
2,5 —0-011653 —0-025839 0-107885 0-107885
2,6 —0-005283 —0-025867 0-077008 0-308030
3,4 —0-020029 —0-036084 0-054530 0-054530
3,6 —0-002723 —0-019449 0-058881 0-117762
Load bus quantities—total derivatives
Bus Real Reactive Shunt Shunt
power power conductance susceptance
1 0-309969 —0-002339 —0-296880 0-002240
2 0-085296 0-026631 —0-079143 —0-024709
3 0-061420 0-027332 —0-050104 —0-022297
Generator bus quantities—total derivatives
Bus Voltage Real Shunt Shunt
magnitude power conductance susceptance
4 0-192793 0-208858 —0-217296 0-0
5 0-271949 0-223549 —0-241790 0-0

Table VIII. Six-bus system: sensitivities of 84

Line quantities

Total derivatives

Contingency effect

Line Outage of Outage of
Conductance Susceptance one-line circuit
1,4 -0-006119 0-005953 —0-035213 —0-035213
1,5 —0-004959 —0-011033 0-046087 0-092174
2,3 —0-000725 —0-000212 0-000073 0-000073
2,4 —0-017094 —0-051045 0-110050 0-110050
2,5 —-0-006343 —0-016282 0-069157 0-069157
2,6 —0-005360 —0-024608 0-072997 0-291989
3,4 —0-028650 —0-050482 0-067952 0-067952
3,6 —0-003276 —0-023336 0-017661 0-035321
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Table VIII (cont.)

Load bus quantities—total derivatives

Bus Real Reactive Shunt Shunt

power power conductance susceptance
1 0-222333 0-005176 —0-212945 —0-004957
2 0-081031 0-026460 —0-075185 —0-024551
3 0-073688 0-032826 —0-060111 —0-026778

Generator bus quantities—total derivatives

Bus Voltage Real Shunt Shunt
magnitude power conductance susceptance
: 4 —0-047087 0-281747 —0-293130 0-0
‘ 5 0-272518 0-164929 —0-178387 0-0
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