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Functional Approach to Microwave
Postproduction Tuning

JOHN W. BANDLER, FELLOW, IEEE, AND ALY E. SALAMA, MEMBER, IEEE

Mstract —This paper deafs with the postproduction tuning problem in

microwave circuits using the functional approach. The main aspects of the

problem are addressed. In particular, we consider the choice of the critical

samples of the response, the choice of the most effective tunable parame-

ters, and the description of two functional tuning algorithms. Minimax

optimization is used to iderrtif y the tuning frequencies, and least-one

optimization is employed to minimize the number of tunable parameters.

Worst-case analysis is utilized to reduce the size of the problem. The

different concepts, definitions, and techniques are illustrated on a simple

two-section transformer example. Recent, well-documented, and highly

efficient optimization packages are utilized to implement the least-one and

mininmx optimization problems.

I. INTRODUCTION

POSTPRODUCTION TUNING is often essential in

the manufacturing of electrical circuits. Tolerances on

the circuit components, parasitic effects, and uncertainties

in the circuit model cause deviations in the manufactured

circuit performance, and violation of the design specifica-

tions may result. Therefore, postproduction tuning is in-

cluded in the final stages of the production process to

readjust the network performance in an effort to meet the

specifications.

Tuning has formally been considered as an integral part

of the design process [1], the objective being to relax the

tolerances and compensate for the uncertainties in the

model parameters. We give here a unified and integrated

approach to the postproduction tuning problem. Minimax

optimization is used in the nominal design stage to provide

us with the critical frequencies. Therefore, the tuning fre-

quencies are identified. The least-one optimization is used

to minimize the number of tunable parameters needed to

tune all possible outcomes of a manufactured circuit.

Worst-case analysis is employed to reduce the size of the

problem. Two functional tuning algorithms are presented.

Both algorithms are based on measuring the response of
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the circuit at a number of critical frequencies and formulat-

ing the postproduction tuning problem as an optimization

problem, which is solved on-line for the required changes

in the tunable parameter values.

A two-section transformer example is utilized to il-

lustrate the different concepts, definitions, and techniques.

Recent, well-documented, well-tested, and highly efficient

optimization packages are utilized to implement the differ-

ent proposed optimization problems.

II. FUNDAMENTAL CONCEPTS AND DEFINITIONS

To illustrate the various definitions and results in this

paper, we consider a simple example, a two-section 10:1

quarter-wave transformer, shown in Fig. 1.

The design parameters are the normalized characteristic

impedances of the two sections, namely ZI and Zz. Let

their nominal values be given by

where superscript O refers to the nominal values. Due to

manufacturing tolerances, the actual values of the circuit

parameters are. in general, different from nominal and can

be expressed as

where c~, and t ~, are the tolerances associated with ZI

and 22, respectively. p z, and p =1 are multipliers con-

strained between – 1.0 and 1.0.

Similarly, the actual parameter values of a n+-parameter

circuit can be expressed as

4s~+0+Ep (la)

where

~Ow@’:”””@’r (lb)

E~diag{~l,cz,...,c~o} (lC)

–l<p, <l, i~l+ (Id)

and

Io4{l,2,. ... n,#,}. (le)

+0 is the nominal vector and C, is the tolerance associated

with the i th element +, [1], [2]. Therefore, in the context of
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Fig. 1. The two-section 10:1 quarter-wave transformer.
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Fig. 2. Illustration of the two-section transformer tolerance region and
feasible region in the parameter space of ZI and Z1.

the two-section transformer example, we could have con-

sidered other design parameters, e.g., II and lZ or any

other effects.

The designer has no control over p, and this leads to the

concept of the tolerance region R, defined by

R,~ {~l~j=+~+cipi, –l<pi<l, iGIO} (2)

which is a convex regular polytope of n ~ dimensions with

~ sides of length 2Ci, i = l+.

The tolerance region of the two parameters ZI and Zz of

the two-section transformer is shown in Fig. 2 with <=, /Z~

= ~z,/Z~ = 0.2. Note that it is a rectangular region.

The extreme points of R{ are defined by setting pi= ~ 1.

Thus, the set of vertices maybe defined by

RU~{+l+, =@~+tipi, p,~{–l,l}, iGI@}. (3)

The number of points in R” is 2“+. For the tolerance

region of Fig. 2, we have four vertices. A vertex number is

given according to the formula

P;={ –l,l}, iGL#,.

Consequently, the r th vertex is referred to

index set of all these vertices is defined as

l“~ {1,2,...,@}@}.

(4a)

(4b)

by 4’, and an

(5)

In Fig. 2, the four vertices are shown numbered accord-

ing to (4a).

In a

circuit

typical design problem, the output response of a

F(+, ~ ) is required to meet design specification

S(u) at a number of discrete frequency p~ints Ui. There-

fore, a number of inequality constraints given by

.L(@)Awi(F(4,0i) -s(oi))<O~ z’ G Ic (6a)

where

IcQ{l,2,. ... m} (6b)

should be satisfied [3]. Wi is a weighting function that is

positive or negative according to whether S(O, ) is an upper

or lower specification, respectively. Constraints (6a) define

a region in the parameter space. This region is usually

referred to as the feasible region and is defined as

RCA {~lfi(@) <O, iGIC}. (7)

For the two-section transformer, it is required that the

absolute value of the reflection coefficient over the

frequency band of interest, 0.5–1.5 GHz, should not exceed

0.55. Therefore, F’(+, u) is the absolute value of the reflec-

tion coefficient and S(@) = 0.55. Eleven sample points are

taken over the range of interest, namely 0.5,0 .6,...,1.5

GHz. Consequently, lC = {1, 2,. ..,11}. The feasible region

R, corresponding to constraints (6a) with Wi = 1.0, i G IC is

shown in Fig. 2.

For + 20-percent tolerances on the characteristic imped-

ances 21 and Zz, not all the tolerance region outcomes are

included in the feasible region R ~. To tune all possible

outcomes of a manufactured product to design specifica-

tions, a subset of the circuit parameters is needed to be

readjusted for postproduction tuning. Therefore, we have

to know at the design stage this subset of minimum cardi-

nality such that all possible outcomes of the tolerance

region are tunable to satisfy the design specifications. This

is usually referred to as the tuning parameter selection

problem.

This subset I,* of tunable parameters of cardinality k is

usually chosen from a larger subset Ir c 10 of all possible

tunable parameter candidates. The tunable parameter

candidates are those parameters that can be adjusted after

manufacturing.

For the two-section transformer, let us assume that the

subset 1~ corresponds to parameters ZI and Z~. Accord-

ingly, lt* will correspond to either one of them or both

of them depending on the tuning parameter selection

algorithm.

The circuit parameters (1) with tuning taken into consid-

eration are given by

where

–l<pi <l, i G 11* (8b)

for two-way tuning. In a more compact form, (8a) could be

expressed as

+=@O+Ep+Tp (8c)
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where

T~diag{tl, tz,. ... ‘n. } (8d)

and ti is the tuning amount associated with the i th ele-

ment, ti = O if i @ IZ*.

For the two-section transformer, if we assume that ZI is

the only tunable element, then the circuit parameters can

be expressed as follows:

A tuning algorithm is needed to carry out the required

adjustments of the tunable parameters of a manufactured

circuit that violates the design specifications. The com-

puter-aided postproduction tuning algorithm automates

and at the same time optimally performs the process, i.e., it

eliminates the experimental trial-and-error approach. The

problem of finding these adjustments is referred to as the

postproduction tuning assignment problem.

In the context of the two-section transformer example,

this means that for a certain production outcome repre-

sented by [p ZI p =2]‘, where T indicates the transpose,

which is out of the feasible region R ~, it is required to find

the change in the tunable element ZI represented by Pz,

such that the tuned outcome will be inside the feasible

region. A typical example is shown in Fig. 2, where point a

represents an untuned outcome and point b represents the

outcome after tuning.

HI. SELECTION OF TUNING FREQUENCIES

Over the frequency band of interest, it is required to find

a subset of critical frequency points Oi, i G lC*, where

1,* c lC, which is used in selecting the tunable parameters.
The effect of including a particular frequency point is to

emphasize the response control at that frequency. Since the

response gradients for two closely spaced frequencies will

be almost collinear, the frequencies should be reasonably

spaced and placed in areas where tight control over the

response is desired [4].

We have utilized a minimax design criterion to identify

the set of critical frequencies 1,*. In the nominal network

design problem, it is required to find the set of parameters

+0 which optimally satisfies the design constraints. Let

M-f(@o)~ fga;fi(+o). (9a)
c

Then, our nominal design problem is to

which is converted

problem as follows:

subject to

minimizeMf ( @o) (9b)
+0

to a regular nonlinear programming

minimize z (lOa)
4JJ,Z

L(+”) <z> i~Ic (lOb)

where z is an independent additional variable.

.5,

I

Fig. 3. The

frequency GHz

minimax response of the two-section transformer.

The solution of the optimization problem (10) provides

us with theoretically justifiable critical (or active) functions

~(~), ~ ~ ~~. The active functions are those approxi-
mately equal to z at the solution, i.e., the functions that

reach the maximum value at the minimax solution (equi-

ripple response).

For the two-section transformer example, we imple-

mented the minimax problem of (10), with Z! and Z: as

the only variables. The resulting minimax response is shown

in Fig. 3, which identifies the frequency points 0.5, 1.0, and

1.5 GHz as the three critical frequencies; therefore I:=

{1,6, 11}. The optimum values of Z: and Z; are 2.2361

and 4.4721, respectively, as we pointed out earlier.

IV. SELECTION OF TUNABLE ELEMENTS

It is required to find the minimum number of tunable

parameters to tune all possible manufactured outcomes of

the circuit. A manufactured outcome of the circuit would

be a point of the region R, (2). Worst-case analysis is

carried out to identify the critical points of this region [5].

A worst-case point is assumed to occur at a vertex (5) of

R,. A worst-case algorithm that utilizes first-order sensitiv-

ities is employed. The algorithm is similar to the one

proposed by Brayton et al. [5].
For every critical function ~.(~), i G I,*, one or more

vertices are selected. Let 101C Iv be the index set of the

worst-case vertices corresponding to the function ~i(~),

i G 1,?, and let

1; ~ uI”i, i G IC* (11)
i

define the index set of critical vertices I: c l..

For the two-section transformer example, we have three

critical frequencies, 0.5, 1.0, and 1.5 GHz. Vertex number 3

is the worst-case vertex for the 0.5- and 1.5-GHz critical

frequencies. Vertex number 2 is the worst-case vertex for

the 1.O-GHZ critical frequency. In terms of the notation of

(11), we have lU1 = {3}, IUG= {2}, and lV,II = {3}. Conse-

quently, 1:= {2, 3}.

The subset 1,* of the tunable parameters are obtained by

solving an optimization problem. A least-one objective
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function is utilized. In data fitting, the least-one criterion

has been extensively applied to eliminate the faulty data.

We utilized it here to force as many parameters as possible

to have a zero value of t,. This consequently reduces the

number of tunable parameters required to tune all worst-

case vertices. At the solution, we obtain lt* from the set If

using the following relation:

The least-one optimization problem is given as follows:

minimize ~ t,/+f’ (13a)
1=1,

w.r. t. t,,p;, i e 11, r ~ I“*, where

In this section, two functional tuning algorithms are

presented. Both algorithms are based on measuring the

response of the circuit at a number of critical frequencies

and formulating the postproduction tuning problem as an

optimization problem.

A. A Linear Approximation Technique for Functional

Tuning

The tuning assignment problem could be formulated in a

similar way to the nominal design problem, but with the

tunable parameters p taken as the only variables [7].

Similarly to (10), the tuning assignment problem can be

formulated as a minimax problem as follows:

minimize z (14a)
P,=

–l<p:<l, i~Ir,rEI~ (13C) subject to

such that for all r G IU* f(@+Epa+Tp) <z, i~IC (14b)

+GR: (13d) pl<p <p”. (14C)

where

and

For the two-section transformer example, we imple-

mented the optimization problem of (13) to find the possi-

ble tunable element(s) among ZI and 22, i.e., 1,= {1,2}.

ZI was found to be the only element needed to be tunable

to tune the worst-case vertices 2 and 3. Therefore, 1,*= {1}.

As was pointed out in [1] and [2], a design centering with

the identified tunable elements taken into account would

result in an increase in the tolerances and thus decrease the

manufacturing cost. In general, the resulting nominal de-

sign parameters after performing design centering will vary

from those obtained using the minimax design optimiza-

tion problem of (10).

V. FUNCTIONAL TUNING ALGORITHMS

After manufacturing and assembling, the circuit perfor-

mance specifications are checked. If tuning is necessary, a

sequence of tunable parameter adjustments is carried out

until the specifications are met. Tuning algorithms are

devised to automate the tuning assignment problem.

In practice, one of two classes of methods for postpro-

duction tuning is employed, namely the functional tuning

approach and the deterministic tuning approach [6]. In the

deterministic tuning approach, all of the parameters of the

manufactured circuit and the possible parasitic effects are

measured. Then, a matching procedure is carried out,
where it is required to match the performance functions at

specified frequency points by varying the tunable parame-

ter values. In the functional tuning approach, the actual

network element values are generally assumed unknown.

For example, it maybe difficult to measure or identify the

actual circuit element values<

The superscript a in (14b) refers to the actual values of a

certain manufactured outcome to be tuned. 0°, E, and T
are all known. pa is unknown and no control could be

exerted on it. The optimization is carried out by varying p.

p’ and p“ represent limits on the tuning amounts. In the

case of irreversible tuning, where, for example, the ele-

ments are allowed to increase, the limits are non-negative.

Since we restrict tuning amounts by (14c), a differentia-

ble approximation can be used to estimate the changes in

the functions, and the minimax optimization problem,

namely (14), can be approximated as follows:

minimize z (15a)
Ap, z

subject to

Initially, p in (15b) is equal to O; after each solution of the

optimization problem, it is updated by A p. Optimization

problem (15) is solved by a linear programing routine. The

functions f, in ‘(15b) are measured directly. The sensitivi-

ties dfi / i3p~ should be evaluated at the actual parameter

values, which are unknown. As such, we utilize a suitable

approximate model +x for simulating these sensitivities (a

good initial value could be the nominal parameter values or

the parameter values that are predicted using a least-squares

estimator).

The network sensitivities could be updated using the

Broyden rank-one updating formula [8] after every solution
(iteration) of (15). The use of the Broyden formula, sum-

marized in a more complete report [9], exploits the mea-

surements in improving the initial network model ~’. A

better approximation is obtained after each iteration.

We applied this technique to tune the worst-case vertices

of the two-section transformer with + 20-percent toler-
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ber 2 of the two-section transformer.

artces. We stop tuning when the maximum value of the

reflection coefficient over the frequency range 0.5–1.5 GHz

could not be reduced further. We have taken p~l = – p~- =

0.02. Fig. 4 illustrates the responses before and after tuning

for vertex number 3. Twenty-two adjustments of ZI were

needed to tune the worst-case outcome. Fig. 5 illustrates

the responses before and after tuning for vertex number 2.

Nineteen adjustments of 21 were needed to tune the

vertex. This is because we restricted IApz, I to be less than

or equal to 0.02 and is due also to the large deviation of the

response from nominal before tuning. The linear program-

ing problem of (15) is solved using a subroutine available

from the IMSL Library [10]. Note that we continued

tuning even after the design specification of 0.55 is satis-
fied.

B. Modeling Technique for Functional Tuning

Let F(4, Q ) represent the response function that is

monitored during the tuning process. We assume that the

actual network response is given by [11]

Fa(+a,ci))~ FO(~O, ti)+F~(@a, ti) (16)

where the superscript a refers to the actual values, super-

script O refers to the nominal values, and Fd gives the

deviational effect due to the changes in the circuit parame-

ters, including parasitic effects, from nominal.

We model the deviational effect by a rational transfer

function in u. Let

~–l+. ..+ao
Fd(u) = aA’@N+a~_l@ (17)

aD+bD_ltiD-l+ ““” +bo

where the degree of the numerator and that of the de-

nominator, namely N and D, are determined according to

the characteristics of the original function F(4, ti), to-

gether with the different known parasitic effects that affect

the performance of the network. Some of the coefficients of

(17) could be set to zero as appropriate.

The coefficients of (17) are obtained from (16) since the

nominal response F 0($0, COj)at a certain frequency tii is

simulated, and the actual response Fa(+a, Oi) is measured

directly. Measuring the response at n; different frequen-

cies such that 2 n ~ > N + D +1, we get an overdetermined

linear real system of equations in the coefficients a~,

Ik=o,l,... ,N and bj, j= O,l,. ..,l–l. We solve this

system of equations using the linear least-squares method

to get these coefficients.

Recalling (6), the inequality constraints could be ex-

pressed as

(18)

where Fi( p ) is the response function evaluated at ~i and

and where w, is an appropriate weighting function. Simi-

larly to (10), the tuning assignment problem is formulated

as follows:

minimize z (20a)
p,z

subject to

‘~fi, i~IC (20b)

The solution of the optimization problem (20) proticles

us with p. The tunable network parameters are adjusted by

the amount indicated, and the process is repeated until the

circuit meets its specifications.

We applied the modeling tuning algorithm to tune the

worst-case vertices of the two-section transformer example.

Recalling (16) and (17), we assumed that

Fd~@~ ~ ‘10°10 + a*ti8 + a~d + a~@4 + a#2 + aO

bloulo + b8ti8 + b6tiG + b1@4+ b2ti2 + b.

and the lower and upper bounds of (20c) are taken to be

+-0.1. We stop tuning when the maximum value of the

reflection coefficient over the frequency range 0.5–1.5 GHz

could not be reduced further. The responses before and

after tuning for vertex number 3 are similar to those of Fig.
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4. Optimization problem (20) was performed four times.

The responses before and after tuning for vertex number 2

are similar to those of Fig. 5. Optimization problem (20)

was performed five times. Five iterative adjustments of 21

were carried out. Note that we have continued tuning to

achieve an optimum tuned response. Also, we note the

similarity between the responses after tuning, which are

obtained using the linear approximation technique and the

modeling technique.

C. Tuning Algorithm

The two proposed tuning techniques could be applied

on-line for the tuning of a microwave circuit as follows.

Step 1: Measuxe the network response. Check whether

the design specifications are satisfied to a certain prespeci-

fied margin. If they are satisfied, stop.

Step 2: Utilize the performed measurements in con-

structing the constraint functions as well as their deriva-

tives as required by the optimization problems (15) or (20).

Step 3: Solve the optimization problems (15) or (20) for

the changes in the tunable parameters (p or Ap). The

upper and lower limits in the optimization problems are

defined to ensure the validity of the approximation em-

ployed and the type of tuning.

Step 4: If the absolute value of a tunable element is less

than the minimum amount of tuning which can be carried

out in practice, we assume that it is zero. If all the absolute

values of the tunable amounts are less than their corre-

sponding minimum allowable values, stop.

Step 5: Adjust the parameters to the extent possible by

the amounts obtained from the optimization problem. If

the maximum number of iterations has not been exceeded,

return to 1.

In our complete report [9], we discuss the convergence

properties of the linear approximation tuning algorithm

and the modeling tuning algorithm.

VI. EXAMPLE

We considered a broad-band amplifier example with a

complex antenna load as shown in Fig. 6. The object is to

match the antenna load over the frequency band 150–300

MHz. The power given at a certain frequency is given by

where R~ is the source resistance, G~ is the real part of the

admittance of the load, IV~l is the absolute value of the

voltage across the load, and IV~l is the absolute value of the

input voltage which we assumed to be unity. The response

was assumed to be measured at sixteen uniformly dis-

tributed frequencies over the given frequency band. It is
required to have a constant 10-dB power gain over the

frequency band of interest. Therefore, two inequality con-

straints are defined at each frequency. The source resis-
tance was assumed to be 50 Q. The transistor scattering

parameter values and the antenna impedances at the six-

teen frequencies were obtained from [12].

First, we applied optimization problem (10) to get the

nominal design parameters using a minimax design crite-

!1,2, I I 23!2,

Fig. 6. The broad-band microwave amplifier.

TABLE I

NOMINAL ELEMSNT VALUES AND TUNABLE AMouNTs OF THE
BROAD-BAND AMPLIFIER

onglnal Sore,n.tl \cw \om,”:,l RclcltlwTllnallk

Klcmf. nt Vc!lue. value. A!?wunts

e, 2012 I 741 (1o

z, 8676 (;8 77$3 00088

e: (197fi I 5,14 0 n

z,, 9757 2000 ()o

f,] II 833 1 14[) 00

z:, t25 181/!52 00

e4 0925 1280 0079

z. 132 105 105 00

[ is the normalized length. The actual length equals IA. /27r, where an

is the wavelength at 230 MHz. Z is the characteristic impedance in ohms.

TABLE II

THE OPTIrVfAL NOMINAL RESPONSEAND THE WORST-CASE
RESPONSE OF THE BROAD-BAND AMPLIFIER

FOR +5-PERCENT TOLERANCE

Power Ch]n W(J1.L C<lW? W(HSt.c>lw!
(clll) Vc!, Lex Re.pon.c (cII))

150
160
170
180
I 90
200
210
220
230
’240
250
260
270
280
290
300

100.58 *
9926 *

10072 *
101)43
1005:1
10006
1002s
9926 *

10031
10028
10072 *
10031
9965
9926 *
9983

10072 *

[23 **
134 **
123 **
107
107
107
104
153 **
I (14
112
so
so

189
189

(i I

212

II 318
8559

11274
II 155
II 189
1I 095
11053
s 794

10894
10765
10726
10640
9313
9 3(12
9392

I 0657

*identifies criticaf frequencies.
* *identifies critic~ vertices. Their corresponding wOrSt-c8Se resPonses

violate the specifications of + l-dB deviation from 10 dB.

rion. The nominal parameters given in [12] were used as

the initial design parameters for (10). We utilized the

optimization package MMLC [13] for linearly constrained

minimax optimization, as described in [14]. The MMLC
package is an adaptation of the MMLAIQ package [15]. In

the optimization, an upper practical bound of 200 Q was

assumed for the characteristic impedances. The reopti-

mized nominal response is superior to that obtained in [12].

This is partly because we relaxed the bounds on the design

parameters. The new and previous nominal design parame-

ters are given in Table I. The nominal response at the

sixteen chosen frequencies is listed in Table II. The re-
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Fig. 8. The results of tuning an outcome corresponding to vertex num-
ber 134 of the broad-band amplifier using the modeling technique.

sponse alternated between maxima and minima at the

critical frequency points. These frequencies, namely 150,

160, 170, 220, 250, 280, and 300 MHz, are identified by an

asterisk in Table II. This set of frequencies constitutes the

required 1=*.

Then, a worst-case analysis is performed using +-5-per-

cent tolerances and no parasitic are assumed. The number
c,f vertices is equalto 28 = 256. We assume that the design

specifications tolerate a + l-dB deviation from the speci-
fied value of 10 dB. At every critical frequency i = l:, the

worst-case vertices are obtained, as well as the correspond-

ing worst-case responses. Four worst-case responses violate

the design specifications, as is shown in “Table II. Conse-

cpently, the set 1; consists of vertices {123, 134,153}, as

indicated in Table II.

Third, we performed the optimization problem (13),

using the three critical vertices to determine the tunable

parameters. The results of this optimization problem are

given in Table I. It is clear that Z1 and 14 are the tunable

parameters. The optimization package MFNC [16], which

implements the Han–Powell algorithm described in [17], is
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Fig. 9. The results of tuning an outcome corresponding to vertex num-
ber 153 of the broad-band amplifier using the modeling technique.

TABLE 111

RESULTS OF TUNING THE WORST-CASE VERTICES OF THE
BROAD-BAND AMPLIFIER

case 1 C<lsc2 case 3

Vcrte. \,> IX I :J.! I 53

Y<, ,Iflt<, r>, t,on.

(,1’ F,,,ll’t),,,l.,1

Tur]tt)g ,Ilgorithn, I I I

‘T,,n,lhlc Elc!mcrlt Z, = 6666 Z1 = 70(;16 z, – (!(;(66
\JIL1cs eJ= I 209 e,= 1321 e, . I 154

utilized in solving this problem. The MFNC package is an

adaptation of the VF02AD subroutine of the Harwell

Subroutine Library [18].

Finally, we applied the modeling tuning algorithm to

illustrate its utilization in tuning any possible outcome. We

assumed tlhat the actual power gain is given by

F“(@)=Fo(ti)+ F~(ti)

where

The lower and upper bounds in (20c) are taken to be

+1. The results of tuning for the critical vertices lU* are
given in Table HI. We stop tuning when the relaxed

specifications are satisfied. The lower and upper bounds of

(20c) were not active at the solution and only one iteration

is needed to satisfy the specifications. The responses before

and after tuning are shown in Figs. 7, 8, and 9. The

solution of optimization problem (20) is obtained by the
optimization package MMLC [13].

VII. DISCUSSION AND CONCLUSIONS

We have presented a unified integrated approach to the

postproduction tuning problem. The approach optimally

utilizes the information obtained at the design stage in
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specifying both the tunable parameters and the essential

tuning frequencies.

Two new functional tun@g techniques are presented.

The techniques optimally use available response measure-

ments and eliminate completely the experimental trial-

and-error and one-at-a-time approach. They are quite gen-

eral and can be applied to any network for both reversible

and irreversible tuning.

The linear approximation technique will perform quite

reasonably as long as the linear approximation is valid.

Carrying out the tuning procedure in stages and updating

the sensitivity matrix by the Broyden formula will ensure

the validity of the linear approximation.

The modeling technique usually needs fewer response

measurements than the linear approximation technique,

but requires much more on-line computational capabilities.

For reasonably small deviations of the network elements

from nominal, the technique converges in one or two

iterations to the design specifications.

The techniques proposed have been implemented using

well-documented computer optimization packages.

We have not emphasized design centering after identify-

ing the tunable elements and optimally satisfying the de-

sign specifications. Such design centering would result in

an increase in the tolerances and thus decrease the manu-

facturing cost. Optimally satisfying the design specifica-

tions would result in a better tuned response. We believe,

however, that these two features are readily applicable in

any practical environment, as has been already demon-

strated in the literature [1]–[3].
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Short Papers

Higldy Stable Dielectric Resonator FET Oscillators

CHRISTOS TSIRONIS, MEMBER, IEEE

,4b.rtract —The long-term frequency drift of GaAs FET oscillators with

temperature has been analyzed theoretically and experimentally in view of

stabilization using dielectric resonators. It was found that the dielectric

material stability and quality factor should be within certain limits, and, in

addition, that the resonance frequency over the temperature characteristic

should be quite linear. Such a material has been developed on the basis of

BaT1409 and Ba2Ti90w, and ultra-stable DRO’S with frequency drifts of

around t 100 kHz for – 50 to 100”C at 11 GHz ( - +0.06 ppm/K) have

been realized.

I. INTRODUCTION

Dielectric resonator stabilized oscillators (DRO’S) are simple,

small-sized, and consequently low-priced subassemblies the per-

formances of which (concerning frequency stability, reliability,

compactness, and electrical efficiency) have reached a level suffi-

cient for several professionaf applications [1]. In work hitherto

done on the stabilization of DRO’S [2]–[4], it has, in fact, been

recognized that the temperature properties of the active oscillator

part, comprising the FET (or Gunn-diode) and the associated

circuitry, are important for the stabilization mechanism, but an

explicit investigation on this phenomenon has first been reported

by the author in 1982 [5]. Similar to the work of Komatsu e~ al.

[4], a stacked-type resonator with a temperature coefficient

Tf ( = dt. /f, dT ) constantover temperature has been reported in
[5] and been used to realize highly stable DRO’S. However, the

stacked-type resonator does not represent an industrial solution.

A new material performing the desired stability ~, linearity
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Fig. 1. Microstrip layout of GaAs FET DRO used in this work. r~ and rc

indicate the resonator and active circuit reftexion coefficients used in tem-

perature modeling [5].

(d~/dT + O), and quality factor Q,, as defined in [5], in view of

frequency stability, but also of the power degradation with tem-

perature, had to be developed. This work has been done success-

fully at Philips Research Laboratories in Aachen, West Germany.

This paper deals with the temperature behavior of FET DRO’S

using this new material, which allows even better results than

achieved with the stacked-type resonator as reported before [4],

[5].

II. MODELING OF LONG-TERM FREQUENCY STABILITY

In this context, only the main results of the theoretical analysis

presented in [5] on the temperature stabilization procedure of

GaAs FET reflexion-type DRO’S (Fig. 1) will be used. They can

be summarized in the stabilization formula (1) and the tempera-

ture-stability-power-coupling chart of Fig. 3. This chart serves to

demonstrate the stabilization limits for different resonator

materials taking into account the oscillation power.
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