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ABSTRACT

This paper presents a new and highly efficient algorithm
for nonlinear ¢, optimization. The algorithm is similar to a
minimax algorithm originated by Hald and Madsen. [t is a com-
bination of a first-order method that approximates the solution by
successive linear programming and a quasi-Newton method using
approximate second-order information to solve the system of
nonlinear equations resulting {rom the first-order necessary con-
ditions for optimum. The new €, algorithm is particularly useful
in fault location methods using the ¢, norm. Another important
application of the algorithm is the parameter identification
problem in multi-coupled cavity narrow band-pass filters.

INTRODUCTION

Let
)
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G(x):f;(x]. Xgo o X)), ]

ji=1,...,m, (1)
be a set of m nonlinear, continuously differentiable functions. The
vector x & [x, xy - xnll is a set of n parameters to be optimized.
We consider the optimization problem

m
R 2> [ fx]
i=1

minimize

(2)

This is called the unconstrained €, optimization problem.

We present an iterative algorithm for solving (2) which
requires the user to supply function and gradient values of the
nonlinear functions f.. The algorithm also uses some second-order
information, i.c., some information about the second-order deriva
tives of the functions. This is approximated from the user supplied
gradients.

The algorithm is similar to that of Hald and Madsen in|1].
It has been reported by Hald in [2], which describes and lists a
Fortran subroutine implementing a version of the algorithm.
Hald and Madsen [3] have demonstrated that the algorithm has
sure convergence properties.

The algorithm is a two stage one. It always starts in Stage
1, which is a first-order trust region method similar to that of
Madsen [4]. Often this method has quadratic final convergence
but in some cases (called singular, sce Madsen and Schjaer-
Jacobsen [5]) the final convergence is slow. Therefore, Stage 2 is
introduced. lere a quasi-Newton method is used to solve a set of
nonlinear equations that necessarily hold at a local solution of (2).
If the Stage 2 iteration is unsuccessful, then a switch is made back
to Stage 1. Several switches between the two stages are allowed.
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The switching criteria ensure that the global convergence pro-
perties of the Stage 1 iteration are not wasted by the Stage 2
iteration. Experiments show that usually very few switches are
performed.

The algorithm presented here considers, for simplicity,
only the unconstrained €, optimization problem. The full
description and actual implementation takes full advantage of
linear equality and inequality constraints.

DESCRIPTION OF THE ALGORITHM

The Stage 1 Iteration

At the kth stage of the iteration we have an approximation
x, of the solution and a local bound A,. We wish to use the
gradient information at x, to find a better approximation x,_ .
Therefore, we find the increment h, as a solution of the linearized
¢, problem

<. . m
minimize = A N . T
ho P E D [Re) + k) h
i=1

subject to (3)
b, =aA,
14 k

where fi' is the gradient of [[ w.r.t. x. The subproblem is solved
using linear programming.
The next iterate is found by the formula

x, +h

K k if ka + hk) < l‘(xk)

(4)

xk w1
X, otherwise

Finally, the local bound, which is intended to be a measure of the
goodness of the linear approximations, is updated using
comparisons of the decrcase D, (h) = F(x) - F(x, +h) and the
predicted decrease PDy(h) = F(xy) - F(xy,h),

2/\k if[)k(hk)20.75 Pl)k(hk)
. (5)
Ak+1 =( 05 /\k 1ka(hk)SD.25 PDk(hk)
/\k otherwise

The Stage 2 Iteration
At a local solution x of (2) the following equations hold
(see, e.g., Charalambous [6]), with |5 < 1,

D sign(FI00+ D Bf 0 =0,
iez, itz (6)
(=0, i€z .

The set Z=7(x), called the active set at x, corresponds to those
functions that are 0 at x.
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The Stage 2 iteration is a quasi-Newton method for
solving (6) with Z being replaced by

Zo = illEG < e} )

Conditions for Switching to Stage 2

The Stage 2 iteration is started when it seems reasonable
to assume that the estimate (7) corresponds to a solution x.
Therefore, we require that the active set as defined in (7) has
stabilized before we start a Stage 2 iteration. It is required that

- 8

/k /k —Jl C /‘k _’iv ’ ®

i.e., the active set must have been constant for (v+ 1) consecutive

Stage 1 iterates. Secondly, we require that the first-order
multiplier estimates are in the prescribed ranges

_15(5k)j£1, j€7, . (9)

Causes for Switching Back to Stage 1

The rules of this section are set up in order to ensure that
if a Stage 2 iteration is started with an improper active set then a
switch back to Stage 1 will take place. The rules for continuing in
Stage 2 are the following.

It is required that the active set Z, remains constant and
that no inactive function changes sign. It i 1‘; required that the sign
restrictions (9) hold on every iteration. Finally it is required that
the residuals r(x,8) corresponding to equation (8) decrease in
every iteration in the sense

8

|| r(x <099 r(x,,8) I, . (10)

k+1’ k+l)||2

It has been shown in [3] that the method can converge only
to stationary points. FFurther, it has been shown that the final rate
of convergence is either quadratic or superlinear, depending on
whether the solution is regular or not. When a solution x is
regular, n functions (at least) are 0 at x. Finally, it has been
shown that when the active set is correctly chosen the Stage 2
iteration generates the same sequence of points as would be
obtained if Powell’s sequential quadratic programming method [7]
were applied to a nonlinear programming formulation of (2).

Several numerical examples, with n ranging between 2
and 8 and m ranging between 3 and 60, have been solved. In all
cases a local minimum was found to more than 10 digits and the
number of function evaluations ranged between 5 and 27.

FAULT ISOLATION USING THE ¢, NORM

Formulation of the Problem

This application of the new ¢, optimization algorithm
deals with fault isolation in linear analog circuits under an
insufficient number of independent voltage measurements. The
¢, norm is used to isolate the most likely faulty elements.
Practically, the faulty components are very few and the relative
change in their values is significantly larger than in the nonfaulty
ones [8]. The method presented here is a modification of the
method utilizing multiple test vectors to obtain the measurements
[91. For k different excitations applied to the faulty network we
consider the following optimization problem.

n
: |Axi/x:)| (11a)

X =1

Minimize

subject to

C m _
Vie-vit=o,

(11b)
Vk(‘, - Vklll =

where x 2 [\( Xy oo X, Il is a vector of network parameters, x°

represents the nommdl parameter values, Ax, 4 X; - X; 0= 1,
2, ..., n, represent the deviations in network pdrameters from
nominal values, V, "™ is a p-dimensional vector of voltage
measurements performed at the accessible nodes for the kth
excitation and V| is a p-dimensional vector of voltages at acces-
sible nodes calculated using the vector x as parameter values.

The corresponding nonlinear €, problem can be
formulated based on an exact penalty function [6] as follows.

n+kxp .
Minimize z lfj(x)l (12)
X i=1 ’
where
f(x) & Ax/x, 1,2,..,n, (13)

A d -
G0 B BVE-V L =12 ke, ()

and B; , i=1, 2, ..., kxp, are appropriate multipliers (satisfying
certain conditions stated in [6]).

Mesh Network Example [9]

Consider the resistive network shown in Fig. 1 with the
nomindl values of elements G, = 1.0 and tolerances e, = + 0.05, i
=1, ,20. All outside nodes are assumed to be accessible w1th
node 12 Laken as the reference node. Nodes 4, 5, 8 and 9 are
assumed internal, where no measurements can be performed.

Two faults are assumed in the network in elements G, and
G g For Case 1 we applied the new ¢, algorithm to optimization
problem (12) with a single excitation at node 1. For Case 2 we con
sidered two excitations applied at nodes 3 and 6 sequentially. The
results of both optimization problems are summarized in Table 1.
The nominal component values have been used as a starting point
since just a few elements change significantly from nominal.

['ig. 1 The resistive mesh network.

[n both cases the actual faulty elements have been iden-
tified, but in Case 2, the estimated changes in the faulty elements
are closer to their true values. Also some of the changes in the
nonfaulty components approach better their true values in Case 2.
The estimated changes in the faulty clements are much closer to
the actual changes as compared to the results reported in [9].
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TABLEI

RESULTS FOR THE MESH NETWORK EXAMPLE

Percentage Deviation

Element Nominal  Actual
Value Value Actual Casel  Case2

G, 1.0 0.98 -2.0 0.00 0.13
Cv2 1.0 0.50 -50.0* -48.78  -49.44
Gy 1.0 1.04 4.0 0.00 3.60
G, 1.0 0.97 -3.0 0.00 0.00
Gy 1.0 0.95 -5.0 -2.26 -1.71
GG 1.0 0.99 -1.0 0.00 0.00
G,, 1.0 1.02 2.0 0.00 0.00
Gy 1.0 1.05 5.0 0.00 0.00
Gy 1.0 1.02 2.0 2.80 0.97
Gy, 1.0 0.98 -2.0 0.00  0.00
Gy, 1.0 1.04 4.0 0.00  0.00
Gy 1.0 1.01 1.0 3.45 2.08
Gy 1.0 0.99 -1.0 0.00  -0.44
Gya 1.0 0.98 -2.0 0.00  0.00
G15 1.0 1.02 2.0 0.00 1.55
Ge 1.0 0.96 4.0 -2.42  5.71
G17 1.0 1.02 2.0 0.00 2.67
GIB 1.0 0.50 -50.0% -52.16 -48.94
C:19 1.0 0.98 -2.0 0.00 -1.95
Gy 1.0 0.96 -4.0 -367  -4.88

Number of Function

Evaluations 8 8

Execution Time (secs)

on Cyber 170/815 3.0 3.9

* Faults

PARAMETER IDENTIFICATION USING THE ¢, NORM

Formulation of the Problem

In this application we deal with multi-coupled cavity
narrow band-pass filters used in microwave communication
systems (see Fig. 2).

A narrow-band lumped model of an unterminated multi-
cavity filter has been given by Atia and Williams [10] as

721=V, (15)
where
Z=jsl+ M), (16)
()(m wo) an
s=— | —-—],
Aw w

0
1 denotes an nxn identity matrix and M an nxn coupling matrix
whose (i, j) element represents the normalized coupling between
the ith and jth cavities.

My ;’ M
j —_— i _— o
23 Micg, Mija Moot
Mz, ——
My

M

Fig. 2 Unterminated coupled-cavity filter illustrating
the coupling coefficients.

In practice it is often desired to determine the actual filter
couplings based on response (return loss or insertion loss)
measurements. The problem can be formulated as an
optimization problem with the €, objective function.

In this example we have used reflection coefficient as the
filter response. The formulation is as follows.

m

Minimize > [F(x, )|, (18)
X =1
where
f(x,wj)éwmj)m“(x, @) = F"w)), (19)

x is the vector of filter couplings to be identified, ' is the response
calculated using the current parameter values, F™ is the
measured response and w is a positive weighting factor.

The filter response and its sensitivities are calculated
using the formulas given in [11].

6th Order and 10th Order Filter Examples

A 6th order filter centered at 12000 MHz with 40 MHz
bandwidth is considered. Optimally designed filter parameters
have been perturbed and the filter has been simulated. Reflection
coefficient at 23 frequency points is used as the specification
(measured response). The optimization problem (18) has been
solved using optimal filter couplings as starting values. The
results of parameter identification are summarized in Table I1.

An optimally designed 10th order filter in the 12 GHz
region with parameters perturbed from optimal is considered as a
second example of parameter identification. Using reflection
coefficient at 38 frequency points as the specifications all filter
couplings have been identified with accuracy sufficient to produce
the same response as the perturbed system. The results of
parameter identification are shown in Fig. 3.
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Fig. 3 10th order,12 GHz filter responses with coupling
parameters identified by the €, algorithm.
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TABLE II

RESULTS FOR THE 6TH ORDER FILTER EXAMPLE

Percentage Deviation

Coupling Actual [dentified
My, 2.0 2.0
M23 -1.0 -1.0
Mg, 5.0 5.0
My 5.0 5.0
M, -4.0 4.0
My -1.0 -1.0
Mg, 2.0 2.0
Number of Function 24
Evaluations
Execution Time (secs) 6.2
on Cyber 170/815
CONCLUSIONS

We have described a new and highly efficient algorithm
for nonlinear €, optimization problems. The algorithm combines
linear programming methods with quasi-Newton methods and the
convergence is at least superlinear.

The importance of the algorithm presented stems from the
fact that in approximation problems with data containing a few
wild points or gross errors the El norm residual is superior to using
other norms €_withp>1.

We have demonstrated that the new £, algorithm is very
successful in methods for fault isolation in linear analog circuits
under an insufficient number of independent voltage measure-
ments. We have presented a formulation using the €, norm for
model parameter identification problems and illustrated it with
6th order and 10th order multi-coupled cavity narrow band-pass
filters.
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