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ABSTRACT

A new and attractive theory is presented for computer
oriented simulation, sensitivity analysis and design of branched
cascaded circuits. The forward and reverse analysis approach
developed by Bandler et al. for cascaded circuit analysis is
extended and applied to general branched cascaded circuits. This
theory permits an efficient and fast analytical and numerical
investigation of responses and sensitivities of all functions of
interest w.r.t. any variable parameter, including frequency.

INTRODUCTION

The implementation of a gradient-based optimization
technique in the design of branched cascaded networks, e.g.,
contiguous or non-contiguous band multiplexers, requires a robust
and efficient algorithm for simulation and sensitivity analysis. In
this paper, we present a new and elegant approach to the simula-
tion of such responses as common port and branch output port
return losses, insertion loss and group delay between source and
branch output ports and their first-order sensitivities w.r.t. all
network parameters as well as frequency.

The basic components of the structure considered are 2-
port equivalents or 3-port junctions. The fundamental require-
ment for the approach is that the transmission matrix description
of all basic components and their derivatives, if they contain
variables, are provided. The presentation includes the evaluation
of various responses and sensitivities for an arbitrarily con-
structed illustrative example as well as the optimal design of a 12-
channel 12 GHz contiguous-band multiplexer using gradient-
based optimization techniques.

CASCADED ANALYSIS

To apply forward and reverse analysis [1], 3-port junctions
are reduced to 2-port representations so that the cascaded analysis
can be readily carried through these junctions in different desired
directions. Consider the 3-port network shown in Fig. 1. To carry
the analysis through the junction along the main cascade, we
terminate port 3 and represent the transmission matrix between
ports 1 and 2 by A. The linear combination between the voltages
and currents at ports 2 and 3 can be expressed as
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Fig. 1 A 3-port network in which ports 1 and 2 are considered

along a main cascade and port 3 represents a branch of
the main cascade.

The analysis can also be carried through the junctions into any
desired branch by terminating port 2 and denoting the
transmission matrix between ports 1 and 3 by D.

Consider a network consisting of N sections, as shown in
Fig. 2. A typical section has a junction, n(k) cascaded elements of
branch k and a subsection along the main cascade. All reference
planes in the entire network are defined uniformly and numbered
consecutively beginning from the main cascade termination,
which is designated reference plane 1. The source port is
designated reference plane 2N +2. The termination of the kth
branch is called reference plane u(k) and the branch main cascade
connection is reference plane otk), k = 1,2, ..., N, where

W1) = 2N + 3,
olk) = uk) + n(k), k=1,2,N, @
wk) = olk=1) + 1, k=23, .,N.

Two-port matrix and vector representations A, a,  and D are
calculated for each branch/junction combination and are denoted
as Ay, ag, sz and D, for the kth junction. Elements in every
branch and subsection in every section are represented by chain
matrices A., where i is the index of the reference plane at the
output of the corresponding element or subsection.

Let

[={1,2,3, ., 0N)} 3)

be the index set containing indexes of all reference planes and
I={ili€l,i=2N+2,i=0k), k=12 ..,N} (4)
be the index set containing subscripts of all A matrices which can

logically be defined using the subscript of the associated output
reference plane.
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Fig.2  Illustration of principal concepts involved in branched cascaded network
simulation showing reference planes and transmission matrices.
The forward analysis (u*)T (reverse analysis viY) is the )
result of a row (column) vector initialized at reference plane x as . (o Qo V B P, Boniad) v (9)
either (1 01,[0 111 0]T,[0 117 or a suitable linear combina- V= T,
tion and successively premultiplying (postmultiplying) each corre- B PP v

sponding chain matrix by the resulting row (column) vector until
reference plane iis reached.

The result of the analysis between reference planes i and j
is defined as

A ij Bij (5)
Q= ey 912 C. 1)..‘ '
ij ij
where
A Aij A Bii (6)
= s
Py~ ¢, l i _‘D{l

and where AJ By, Cy dnd DJ are the equivalent chain matrix
Llemcntq bet,ween roference planes i and j and are expressed in the
form u! A v to facilitate sensitivity, first-order change, and large
change analysis [1]. For example, we have

QY D
?GI{ 9P
where I is an index set whose elements identify the chain

mdtrlccs between reference planes i and j containing the variable
parameter ¢ and Q represents A, B, CorD.

VARIOUS FREQUENCY RESPONSE
AND SENSITIVITY FORMULAS

Having performed the appropriate forward and reverse
analysis, the branch output responses and their sensitivities are
readily calculated. For example, for a short-circuit main cascade
termination (at reference plane 1), we can calculate the output
voltage of the kth branch and its sensitivities as

.
a q, Vg (8)

V=

T
B p, Boyion
and

Similar response and sensitivity formulas are also
available for different excitations and terminations [2].

The branch output voltages can be utilized to compute the
insertion loss between output and common ports. Sensitivities of
insertion loss for cach branch output w r t. all variables are also
computed using the sensitivities of the corresponding branch
output voltage. In particular, the sensitivities w.r.t. frequency
can result in the exact calculation of group delay and gain slope
for each branch [3-4].

The group (leld» from the source port to the kth branch

output port, namely, T , X and the gain slope SGk are calculated as
k_ | 2
Ti= —ImK) and S = — —— Re(K), (10)
G G tn 10
where
) T T, .
K = aq’kl+l7ll ) (B pm+p<nB) B‘ZN+‘Z,1 (11)
= = — - _
aq, B p,, Bonvo
and B = B, a = a,,,0 = ok), v = uk)and Jdw is denoted as "

The common port and branch output port return loss
responses are evaluated using the Thevenin equivalent approach
originated by Bandler et al. [1]. Denoting the Thevenin equi-
valent voltages and impedances at reference planes i and j by VS‘,

ZS'. VsJ and ZSJ, we have
V! B.+7.D
) S . ‘S (12)
V{; = ——— and /Js = —_— .
’ A +A C. : Airi-Z's‘Cli
The sensmvmgsdxeobLamedds ' ‘
iy AL Lol iy o j
- (VS) - Mij + /,scij + (AS) (’ijlvs (13)
(VS) = -
) A.+7Z.C.
ij S 7ij
and
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(Zy) = .
| A +7.C.
ij S i
[f the reflection coefficient at the branch output port is to
be calculated (evaluation of branch output return loss), then we
have the special cases

B
Zit N +2,0+1 (15)
g =T
2N +2,0+1
and
! ! t+1
BZN+2,I+1_A2N+2,E+1 S (16)
(Zr.+l),_
S = .
A2N+2,L+1

Norton equivalent admittances and current sources are
calculated similar to the Thevenin equivalents. The Norton
equivalent admittance at the common port, given by

Dyxian amn

Y‘ZN+2 —

L
B‘ZN +2,1

is used in computation of common port reflection coefficient and
return loss [2]. B -

EXAMPLES

The theory discussed above has been implemented into a
computer program for simulation and sensitivity analysis of
branched cascaded networks with an arbitrary number of sections
and arbitrary number of branch elements. Exact sensitivity
analysis can be performed w.r.t. any variable, including
frequency.

Consider an arbitrary 4-branch cascaded circuit depicted
in Fig. 3. All element values are normalized. The normalized
frequency is 1 Hz. Tables [ and II show responses and some
selected sensitivities. Table III gives numerical values for the
gain slope and group delay for selected branches. The units for all
quantities are SI units except as noted.

A practical application of the theory which we have
presented, is the optimal design of contiguous-band multiplexers.
We have used our simulation and sensitivity formulas in conjunc-
tion with the powerful gradient-based minimax optimization
procedure of Hald and Madsen [5] to optimize a 12-channel, 12
GHz multiplexer without dummy channels [6]. The structure
under consideration consists of synchronously and asynchronously
tuned multi-coupled cavity filters distributed along-a waveguide
manifold. Waveguide spacings, input and output transformer
ratios, cavity resonant frequencies as well as intercavity couplings
are used as optimization variables. A lower specification of 20 dB
on return loss has been imposed. The filters are assumed lossy
and dispersive; waveguide junctions are assumed nonideal. The
results of optimization are shown in Fig. 4.

CONCLUSIONS

We have presented a new approach for simulation and
sensitivity analysis of branched cascaded networks. The approach
facilitates the evaluation of various frequency responses and their
derivatives w.r.t. network parameters as well as frequency at
arbitrarily chosen reference planes in the network. The new
theory has proved most beneficial in the design of contiguous or
non-contiguous band multiplexers.

TABLE I
NUMERICAL VALUES OF THE RESPONSES FOR
THE 4-BRANCH CASCADED NETWORK OF FIG. 3

Type of Response Branch 1} Branch 4
output 0.03624 -15.00361
voltage -j0.07487 +j1.16405
Thevenin 0.03008 -15.65346
equivalent -j0.07785 -j2.31876
voltage™
Thevenin 0.00003 0.02515
equivalent -j0.08225 +j0.23408
impedance*
insertion 55.57892 10.42942
loss (dB)
branch port
return loss 0.00055 0.41430

=Bl

common port return loss = 0.41243 dB

Branch 1 is the furthest from the common port.

Thevenin equivalents for each branch are evaluated at the
reference plane just before the load corresponding to that
branch.

TABLE 1L
SENSITIVITIES OF INSERTION LOSS W.R.T. VARIABLE
PARAMETERS FOR THE CIRCUIT OF FIG. 3

Variable Branch 2 Branch 4
(p‘ 2.09034 -0.05475
(])2 0.01270 -0.00059
bg (per Gm) -114.77168 -1.22074

TABLE I
GAIN SLOPE AND GROUP DELAY FOR
THE CIRCUIT OF IFIG. 3

Type of response Branch 3 Branch 4
gain slope (dB/I1z) 390.162 6.579
group delay (s) 0.32862 0.50006

—1581—



(11

[2]

(31

1
|
10 9 8 7

Fig. 3

Ilustration of an arbitrary 4-branch cascaded circuit with short-circuit termination

of the main cascade. Lossy elements as well as transmission lines are included.
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Fig.4  Responses of a 12-channel multiplexer without dummy channels with optimized spacings,
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input-output transformer ratios, cavity resonances and coupling parameters.
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