Proceedings of 1SCAS 85

EXACT SENSITIVITY ANALYSIS AND OPTIMIZATION
FOR MULTI-CAVITY MICROWAVE COMMUNICATION FILTERS

J.W. Bandler, S.II. Chen and S. Daijavad

Simulation Optimization Systems Research Laboratory
and Department of Electrical and Computer Engineering
McMaster University, Hamilton, Canada L8S 417

ABSTRACT

This paper describes an efficient approach to the
simulation and exact sensitivity evaluation of multi-coupled
cavity filters. A filter model which takes into account many
nonideal factors such as losses, frequency dependent coupling
parameters and stray couplings is used. The formulation also
treats synchronously or asynchronously tuned structures in a
unified manner. Explicit tables of first- and second-order
sensitivities w.r.t. all variables of interest, including frequency,
are presented.

INTRODUCTION

The application of multi-coupled cavity microwave filters
in modern communication systems has received increasing
attention. The theory originated by Atia and Williams [1] has
inspired many advances in this area. See, for example, Atia and
Williams [1,2], Chen et al. [3], Cameron (4] and Kudsia [5].

This paper describes a systematic and efficient approach to
the simulation and exact sensitivity evaluation of narrow-band
multi-coupled cavity microwave filters. The responses of interest
are reflection coefficient, return loss, insertion loss, transducer
loss, gain slope and group delay. We have used our approach to
solve three problems of current interest in manufacturing of
multi-cavity filters. A 10th order filter is considered for all three
cases. The first problem involves the simultancous optimization
of amplitude and delay responses, i.e., design of self-equalized
filters. The second problem is the prediction of responses for a
filter which takes into account a nonideal but realistic effect,
dissipation in this case, by simulation of the ideal filter. The third
problem involves parameter identification of the filter from
simulated measurements on its responses.

BASIC MODEL AND SENSITIVITIES
A narrow-band model of an unterminated filter is given by
4=V, (1)
where

JZ 2 i1+ M)+t (2)

1 denotes an nxn identity matrix and s is the normalized variable
given by
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w, and Aw being the synchronously tuned cavity resonant
frequency and the bandwidth parameter, respectively. We
assume uniform dissipation for all cavities indicated by parameter
r. In equation (2), M is the coupling matrix whose (i, j) element
represents the normalized coupling between the ith and jth
cavities and the diagonal entries M;; represent the deviations from
synchronous tuning. Element M, does not necessarily correspond
to a desirable and designable coupling. It may as well represent a
stray coupling which is excluded from the nominal electrical
equivalent circuit. Dispersion effects on the filter can be modelled
by a frequency dependent M matrix.

The ideal model, namely the non-dispersive and lossless
filter of Atia and Williams [11], is recovered by considering a
frequency independent M matrix and letting r be zero.

The unterminated filter can be reduced to a two-port
model whose parameters and sensitivity expressions can be
obtained by solving

Zp = e, (4)

Zq = 0 (5)

Zp =p (6)
and

Zq =q, @

where e a 1100 .. ()IT and ¢ é[O 0..0 llTA The two-port

. . n . .
model, including the input and output transformers, is given by
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n; and n, being the input and output transformer ratios,
respectively. Utilizing the solutions of (4)(7), first-order and
second-order sensitivity expressions of y have been derived.
Tables [ and Il summarize the first- and second-order sensitivity
expressions for variables of interest in multi-coupled cavity filters.
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The tables correspond to the case in which M is frequency
independent.

TABLE 1
FIRST-ORDER SENSITIVITY EXPRESSIONS

Variable (¢) Yy = ayladp
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anpepk nlnz(peqk pkqe)
Mek’r < )
0, 112(peqk+ pkqe) anqeqk
: ! n.n T
"IP P 1 ‘Zp q
, Aw, W, T -8, . -
nnyp o q nzq q
2T n T
nyp P nn, P9
r i
T 2T
nn,Poq n,9 q
9
2n nyn, 0 0y pn
Mty '

D0y 0

—-0.5 ife=k
d

-1 otherwise

These tables show that solving four systems of equations,
namely, (4)-(7), provides sufficient information for filter simula-
tion and sensitivity analysis. From a computational point of view,
this means one LU factorization of matrix 7, followed by four
forward and backward substitutions. For a lossless filter 7 is a
real matrix. Obviously, solving real systems of equations enjoys
significant computational advantages over the complex
caleulations.

FREQUENCY RESPONSES OF A TERMINATED FILTER

Consider a [ilter terminated by a load 7, and a normalized
voltage source I = 1V with an impedance 7. The input and
output currents, namely, [ and [, can be obtained by solving eqn.
(8) subject to the terminating conditions

V= 1-71, (10)
and
V =7 1. (1)
n L'n
Denoting
7. 0
S
g2 ‘ (12)
0 ZI
we have '
10" = I, = =it —iyttye =-iHye,, (13)
where
H2-jyn!'. (1)

Furthermore, first- and second-order sensitivities of lp can be
evaluated as

J lp/0q> = (lp)(b = JH[y'l‘p lp—ylb(el -1 lp)l (15)
and

"1 apaw) = (1), = jH{y [T, 1+ T ),
+ y«p[ rm [p + l(lp)"’l + y[ l<p(1[7)«.1 + lm([p)«p]

+y T¢>m lp =Yoo Vp} . (16)

In practice, the performance of filters is often evaluated
via some conventionally defined frequency responses such as the
reflection coefficient and corresponding return loss, transducer
loss, insertion loss, gain slope and group delay. These frequency
responses and their sensitivities can be calculated utilizing
formulas (13), (15) and (16). Table [l summarizes various
frequency responses of interest and their sensitivities.

APPLICATIONS

Three examples of significant practical value are selected
to illustrate the direct application of the approach presented. A
10th order multi-coupled cavity filter with a center frequency of 4
GHz and a bandwidth of 40 Mz is considered. The first example
describes a nonminimum-phase self-equalized design achieved by
simultaneous optimization of the amplitude and group delay
responses. For the second example, the sensitivities w.r.t. cavity
dissipation are utilized to predict the amplitude response of a lossy
filter. The parameter identification of the filter from simulated
measurements is deseribed in the third example.

A Quasi-Elliptic Self-Equalized Filter

A 10th order quasi-elliptie, self-equalized filter has been
obtained from simultancous optimization of the amplitude and
delay responses. A powerful gradient-based minimax
optimization method [6] is employed. The objective functions to be
optimized are formulated from the filter responses including the
reflection coefficient for both the passband and the stopband and
the relative group delay for the passband. Fig. 1 shows the
amplitude and group delay responses of the filter designed.

Prediction of the Iiffect of Cavity Dissipation

[deal lossless models are often used to obtain nominal
designs.  In reality, the actual devices are subject to certain
imperfections such as dissipation.  An efficient method of
predicting the non-ideal response is utilizing the sensitivities to
obtain a first-order estimation. We have used this method to
compute the response of the 10th order filter given in the first
example with Q = 10,000, Fig. 2 shows the predicted passband
insertion loss, which is indistinguishable from the exact
simulation of the lossy filter (the numerical difference is less than
0.001 dB).

Parameter Identification Using Simulated Measurements

[dentification of network parameters from external
measurements provides the necessary guidance for post-
production tuning. The objective of such identification is to obtain
by optimization an electrical equivalent circuit capable of
reproducing frequency responses which correlate accurately with
the measurements. [t is desired to identify the parameters of the
filter that deviate from their nominal values, using the amplitude
responses shown in Fig. 3 as simulated measurements.
Employing the €, optimization technique |7}, all parameters are
accurately identified. The responses alter identification are
indistinguishable from the responses of Fig. 3.
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TABLEII
SECOND-ORDER SENSITIVITY EXPRESSIONS

Yoo = 82y/8pdw)
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TABLE III

SENSITIVITY EXPRESSIONS FOR VARIOUS FREQUENCY RESPONSES

Expression For

Response
Type Formula Sensitivity w.r.t. ¢
Reflection
Coefficient 1-2 RS Il _2[R3(11)¢’ * (RS)CPIl]
Insertion Loss 920 1°g1olZTI | cRe[ (In)d) n (ZT)¢
n Z
n T
(In)w MT)w “n)qm (In)tj)“n)w (ZT)qm (ZI‘)¢(ZT)w
Gain Slope cRe| — + — cRe + 3 + - >
1 Z I I z 72
n T n . T T
(1) (Z,) (I) (I ).(a) (Z) (Z ) (Z)
Group Delay _ lm’ n'w . rL w ‘ 1 [ n’¢w __n cp9 n'w + rl dw _ L ¢‘) L'w l
n Zy L L Z, Z
20

a A 7 3 .
RS: Re(ZS) RL= Re(ZL) Z,z ZS +ZL ¢
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(a) Return loss and insertion loss response.
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(b) Group delay response.
[Yig. 1 Responses of the 10th order quasi-elliptic self-equalized

filter showing optimized amplitude and group delay.
CONCLUSIONS

An clficient and (lexible approach to the simulation and
exact sensitivity analysis ol multi-coupled cavity [ilters has been
presented.  Illustrative examples of practical engincering
problems solved by the actual implementation of our approach
have also been provided. With its computational efficiency and
structural flexibility, the approach presented provides, for the
first time, a basis for the development of more advanced CAD soft-
ware for automatic design, modelling and tuning of multi-coupled
cavity filters and multiplexing networks [8]. Such a prospect
makes this work extremely attractive.
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Return loss and insertion loss responses of a 10th order
detuned filter. The parameters capable of reproducing
such responses are identified.
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