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ABSTRACT

This paper presents practical engineering design problems which have been solved using concepts and techniques developed for design
centering, tolerancing and tuning (DCTT). A brief review of the mathematical concepts involved in optimal DCTT is given. This includes the
formulation of some important special cases such as the zero tolerance problem (centering), the fixed tolerance problem, the variable tolerance
problem and the tuning problem. Formulations are fully supported by implementations of new and highly efficient algorithms for nonlinear
minimax and €, optimization due to Hald and Madsen. An important practical extension of the problems discussed is the best alignment
problem for which a mathematical formulation is given and an algorithm using minimax optimization is proposed. The presentation is
complemented by descriptions of software for implementation in a high technology environment.

INTRODUCTION

The increasing size and complexity of physical man-made
engineering systems necessitate the use of computers in all aspects of
the design, production and maintenance processes. A corresponding
need has developed for efficient and powerful computer-aided tech-
niques for thorough study and optimal realization of the above
mentioned processes.

Computer-aided design (CAD) techniques are now well
established for design centering, tolerance optimization, post-
production tuning, yield maximization, cost minimization and the
rapidly increasing range of applications includes electronic circuits,
power systems, microwave systems and mechanical systems.

Computer-aided design is often treated together with
computer-aided manufacturing (CAM). We are not including CAM
in this paper, since CAM starts from data, preferably machine-
readable data, produced in the design process, but CAM is not part of
the design process itself.

An important practical problem is optimal design subject to
tolerances. Generally, the problem is to ensure that a design, when
manufactured, will satisfy specifications. Over the past 15 years this
has been a problem of significant interest amongst both electrical
and mechanical engineers. A general mathematical theory of the
DCTT problem with electronic circuit applications has been given by
Bandler et al. (1] in 1976. This approach was implemented in the
area of mechanical design by Michael and Siddail (2,3].

The development of new design procedures and techniques
can be, in general, characterized as an attempt to include in the
design process as many factors which may influence the performance
of a manufactured design as possible. With readily available and
ever increasing computing power at hand, computer-aided designers
are dealing with more realistic problems.

In the classical design problem we are interested in finding
one single point in the design parameter space which satisfies the

1 This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada under Grant AT7239.
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design specifications. This kind of solution is impractical from the

manufacturing point of view since there are factors which influence

the performance of a manufactured design.
Phenomena associated with the design of circuits, for

example, and which can be considered are [4]

(a) manufacturing tolerances (i.e., the actual value of the design
variable outcome may be within an interval with a certain
probability density function);

(b) model uncertainties; equivalent circuits are used to model
actual circuits and the parameters of equivalent circuits
usually have uncertainties associated with them;

(c) parasitic effects; these parasitics can substantially alter the
ideal circuit performance and should be taken into con-
sideration where possible; they are marked in many analog
electrical circuits (active, high frequency, etc.);

(d) environmental uncertainties: some circuits have to meet
stringent specifications for a variety of different environ-
mental conditions, military and telephone equipment, for
example, often has to be designed for extreme temperatures;

(e) mismatched terminations; network terminations or loads
may be substantially different from ideal:
f material uncertainty: uncertainties exist in the materials

used to fabricate the circuits.

Taking into account in the design process the above
mentioned factors, if at all possible, is usually in conflict with the
feasible or acceptable computational effort involved. Therefore, a
successful design procedure is usually a compromise between the
complexity of the model and the computational cost to produce a
design satisfying all specifications.

In the next section we consider the relevant fundamental
concepts and definitions commonly used in the DCTT literature.

FUNDAMENTAL CONCEPTS AND DEFINITIONS (1]

A design consists of design data of the nominal point (bo, the
tolerance vector € and the tuning vector t where, for n parameters,
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and p € R,. R, is a set of multipliers determined from realistic
situations of the tolerance spread. We consider

Rpé{pl—lSpisl,iélo}, (4)
,2{1,2,...,n}. ()

The tolerance region R, is a set of points described by (2) for
allp€ Ry, Inthecaseof ~1 s ;< 1,i¢€ [y,

Red{dld =0 +em, —1spsLicl}, 6
which is a convex regular polytope of n dimensions with sides of
length 2 g, i€l " and centered at ¢°.

The extreme points of R, are obtained by setting =1L
Thus, the set of vertices may be defined as

Re2 (bl =0+, 1 €{-L1hi€l}. M

The number of points in R is 2. Let each of these points be indexed
by ¢, i€ [,, where

L2(1,2,.,2%. (8)

The tuning region R,(p) is defined as the set of points

d=¢"+Ep+Tp 9
forallp € Rp, where r -
tl
ty
TS , (10)
th
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The constraint region R is given by

R.2{dlgi(d) = 0, forall i€ Ly}, 12)

where
4{1,2,..,m}. (13)

See Fig. 1 for an illustration of the concepts and definitions.
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Fig. 1 [llustration of concepts in design centering, tolerancing and
tuning.

TWO FORMULATIONS OF THE OPTIMAL DCTT PROBLEM

The first general formulation of the optimal DCTT problem
was given by Bandler, Liu and Tromp [1]. The problem was stated as
follows: obtain a set of optimal design values {99, &, t} such that any
outcome {¢°, &, p}, & € R, may be tuned into R  forsomep € R .

It was formulated as the nonlinear programming problem:

minimize C(¢?, e, t)
subject to : (14)
ER (org(dp) =0,

where ¢ is defined by (9), and constraints ¢°, ¢, t = 0, for all BER
and some p € R . C is an appropriate function chosen to represent a
reasonable approximation to known component cost data.

Stated in an abstract sense, the worst-case solution of the
problem must satisfy

RWNR, =@, (15

forallp € R,“, where & denotes an empty set.

They also discussed the geometrical structure of the problem
and introduced some important special cases obtained by separating
the components into effectively tuned and effectively toleranced
parameters. They proved that the solution of the reduced problem is
the solution of the original one under certain conditions.

Polak and Sangiovanni-Vincentelli (5] formulated the DCTT
problem as a mathematical programming problem in the form

minimize C( ¢°, €, t)
subject to
min min  max

g =0 (16)
i€ lc BRE€ Ru pGRp

and the constraints ¢°, ¢, t = 0, where ¢ is given by (9). They
demonstrated that their formulation is equivalent to the one of
Bandler et al. [1]. They suggested a new algorithm which deals with
the nondifferentiable constraints (16). The algorithm soives_the
problem as a sequence of approximating problems with R | C R asa
discrete set. They showed that, under certain conditions, the
accumulation points of the sequence of stationary points of the
approximating problems are stationary points of the original
problem.

SPECIAL CASES AND THE OBJECTIVE FUNCTIONS

Several objective functions (or cost functions) have been
proposed [6]-{10]. In practice, a suitable modeling problem would
have to be solved to determine the cost-tolerance relationship. We
assume that the nominal parameter values, tolerances and tuning
ranges (either absolute or relative) are the main variables and that
the cost of the design is the sum of the cost of the individual
components.



Suitable objective functions will be, for example, of the form

n ¢t
c@’e,t) = Z(ci—w- c.“a) an
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where the ¢; and c'; are nonnegative constants. These may be set to
zero if the corresponding element is not to be toleranced or tuned,
respectively.

The special cases considered may be defined mathematically
as a zero tolerance problem (ZTP), a fixed tolerance problem (FTP)
and a variable tolerance problem (VTP) (see [10}). Schjaer-Jacobsen
and Madsen [10] define the problems in terms of a set of m nonlinear
differentiable functions of n real variables. [n this presentation we
define those problems using notation and concepts directly related to
the design problem.

Centering Problem (Zero Tolerance Probiem)

[n this problem we have ¢ = 0 and t = 0. We want to find the
nominal design ¢0 satisfying the design specifications g(d) = 0,
where ¢ = 0. The problem is a pure centering problem in which a
feasible, centered nominal design is found if Re = @. The solution
may be useful at the initial stage of a design process when the
designer has no prior experience with the problem and an initial
rough approximation gives some insight (e.g., the order of magnitude
of the elements).

The problem can be conveniently formulated in minimax
formas

(18)

minimize F($?),
¢0
where
F(@% = max (~g &%, (a9
i€l
subject to
$0=0. (20)

Fixed Tolerance Problem

Here we have & = const = 0, t = 0. We want to find &9, the
center of the tolerance region R , when the manufacturing tolerances
on the components are fixed. The problem is basically a centering

problem and can be formulated in minimax form as

minimize F(¢0), 21
9
subject to
$0=0, (22)
where
¢=¢°+ Ep forallp¢ R“,and (23)
F($0) = ma;c( -gild)). (24)
i€

c

Under certain assumptions (one-dimensional convexity of R )
it is sufficient to choose only the vertices of R, to form appropriate
minimax functions.

Variable Tolerance Problem

In this problem we have ¢ = const, t = 0. The
manufacturing tolerances are considered as variables instead of
fixed.

The design problem can be formulated as

minimize C(¢9, &) (25)
0,2

subject to

0 =0, A (26)
e=0, 27
g(d =0, i€l (28)

where ¢ is given by (23).
The objective function C is directly related to the component
cost, and generally possesses the properties

C(¢°, &) — const. as e — , (29)

C¢% e) > ase, —0. (30)

A common form of this objective is

-0
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i=1 i
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where the ¢;'s are positive constant weights.

Tuning Problem

It is often necessary to introduce tuning parameters in order
to obtain a feasible design. Usually this is the case when tolerances
are fixed and there is no solution to the FTP satisfying all design
specifications.

We can distinguish two cases depending on the nominal
design being fixed or variable.

Case 1: Pure tuning problem.

Here we have ¢” = const, & = const = Oand t = const. If the
tolerances are fixed the suitable objective function minimizing the
weighted sum of tuning ranges could be for 20

c=S¢ t, (32)
i=1
The problem is then
minimize C(t) (33)
t.pr
subject to
g2(d) =20, (34)
t=0, (35)
-ISpi'sl, i€l¢, rel, (36)
where

&, = o0 +e "+t pf  forallpte R,. (37

Case 2: Centering-tuning problem.

In this case we have $°= const., & = const = 0, t = const.
and we want to find ¢° and necessary tuning parameters (and their
ranges) with the objective of minimizing the cost of introducing
tunable parameters. [deally we would like to find the minimum
number of tunable parameters which are necessary to satisfy the
specifications.

The suitable objective could be of the form (32). The problem
statement, however, is slightly different, namely,

minimize C(t) (38)
t. ¢, pr
subject to
gp =0, (39)
t=0, (40)

0 =0, (41)



-1sp" =1, i€l, rel, (42)
where
=40
&=, +eu +t.p" forallpTe R‘l (43)

and some p© € Rp.

SOFTWARE FOR OPTIMAL DESIGN CENTERING,
TOLERANCING AND TUNING

This section reviews the practical implementation of recent
optimization techniques for optimal design centering, tolerancing
and tuning. The discussion is focused on four nonlinear
programming codes including linearly constrained minimax
optimization, linearly constrained €; optimization and optimization
with general constraints.

Linearly Constrained Minimax Qptimization
(the MMLC Package[11])

Given a set of nonlinear differentiable residual functions
fi(x), i=1,2,...,m, of n variables x 2{x) x ... X,]T, it is the purpose of
the package to find a local minimum of the minimax objective
function

(44
F@ ¢ max fx )
l1=sism
subject to linear constraints
elx+ b =0, i=1,2,.¢ ,
i i eq
(45)

c’x+ b =0, i=€ +1,..,¢,
i i eq

where ¢;and b;, i=1,2,...,¢, are constants.

The MMLC package [11] is based on the method described by
Hald and Madsen [12]. It is an extension and modification of the
MMLA1Q package due to Hald [13]. First derivatives of all functions
with respect to all variables are assumed to be known. The solution
is found by an iteration that uses either linear programming applied
in connection with first-order derivatives or a quasi-Newton method
applied in connection with first-order and approximate second-order
derivatives.

Han-Powell Algorithm (the MFNC Package [14])

The purpose of the package is to minimize the objective
function F(x) of n variables, x = [x, X2 ... Xo|T, subject to general
equality and inequality constraints

fj(x)=0, j=1,...,£’eq,
(46)

fx)=z0, j=€ +1,...¢,
i eq

where the objective and the constraint functions are differentiable.

The MFNC package [14] is an extension and modification of a
set of subroutines from the Harwell Subroutine Library [15]. The
method implemented was presented by Han [16] and Powell [17].
First derivatives of all functions with respect to all variables are
assumed to be available. The solution is found by an iteration that
minimizes a quadratic approximation of the objective function
subject to linearized constraints.

Augmented Lagrangian (the MINOS/AUGMENTED System [18])

The MINOS/AUGMENTED system [18] is a general purpose
programming system to solve large-scale optimization problems
involving sparse linear and nonlinear constraints. Any nonlinear
functions appearing in the objective or the constraints must be
continuous and smooth. MINOS/AUGMENTED employs a projected
augmented Lagrangian algorithm to solve problems with nonlinear
constraints presented by Murtagh and Saunders [19]. This involves

a sequence of sparse, linearly constrained subproblems, which are
solved by a reduced-gradient algorithm.

The problem to be solved must be expressed in the following
standard form [18]

minimize fo(x) + ¢Tx + dTy 47
subject to
flx) + Ay = by, (48)
Agx + Agy = by, (49)
s [ | su, (50
y
where
f l(x)
fix) = (51)
fm(x)

and the functions fi(x) are smooth and have known gradients. The
components of x are called the nonlinear variables, and they must be
the first set of unknowns. Similarly constraints (48) are called the
nonlinear constraints and they must appear before the linear
constraints (49).

Linearly Constrained ¢; Optimization (the LINONL Package [20

Let fi(x) = fi(x, X2, ..., Xn), j=1,2,...,m, be a set of m nonlinear,
continuously differentiable functions. The vector x s [xg X2 ... x,|T is
a set of n parameters to be optimized. The linearly constrained €
optimization problem is

m
minimize F(o 2 Z Ifi(x)l (52)
x i=1
subject to N
a'x+b =0, i=12 ¢,
i i eq
(53)

a'x+b 20, i=¢€ +1,. ¢,
d i eq

The algorithm is similar to the minimax algorithm of Hald
and Madsen [12]. It has been reported by Hald in [20], which
describes and lists a Fortran subroutine implementing a version of
the algorithm. Hald and Madsen [21] have demonstrated that the
algorithm has sure convergence properties. The algorithm is a
combination of a first-order method that approximates the solution
by successive linear programming and a quasi-Newton method using
approximate second-order information to solve a system of nonlinear
equations resulting from the first-order necessary conditions for
optimum.

APPLICATIONS
Contiguous Band Microwave Multiplexer

We formulate the design of a contiguous band microwave
multiplexer structure for satellite communications as a centering
problem [22].

The objective function to be minimized is given by

54
F(x) £ max fj(x) G4

jed



where x is a vector of optimization variables (e.g., section or spacing
lengths, channel input and output couplings and filter coupling

parameters) and J & {1,2,.,m} is an index set.

functions fi(x), j€J, can be of the form

The minimax

wuk @) (Fil(x,07) - Sy t(ay), (55)
= wiil()(Fil(x,0;) - S (@), (56)
wy2(w0i)(F2(x,w;) - Sy2(w;)), (57)

- wi2(@)(F2x,0;) - Sp.2(wy), (58)

where Fyl(x,w;) is the insertion loss for the kth channel at the ith
frequency, F2(x,w;) is the return loss at the common port at the ith
frequency, Suk!(w;i)(SLxl(wy) is the upper (lower) specification on
insertion loss of the kth channel at the ith frequency, Sy2(w;)
(Sp.2(wy)) is the upper (lower) specification on return loss at the ith
frequency, and wyy!, wii!, wy2, wi2 are the arbitrary user-chosen
non- negative weighting factors.

A 12-channel, 12 GHz multiplexer without dummy channels
has been optimized using spacings, input-output transformer ratios,
cavity resonant frequencies as well as intercavity couplings as
optimization variables. The filters are assumed lossy and dispersive;
waveguide functions are assumed nonideal. The results of
optimization are shown in Fig. 2. The problem has been solved using
the MMLC package (11].
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Fig.2 Responses of a 12-channel multiplexer without dummy
channels with optimized spacings, input-output transformer
ratios, cavity resonances and coupling parameters.

The results presented in this paper have been obtained in
close cooperation with members of ComDev Ltd. of Cambridge,
Ontario, directly involved in multiplexer design and manufacture.

Low-Pass Filter

The LC low-pass filter shown in Fig. 3 is considered [1]. The
problem is the optimal worst-case design embodying centering,
tolerancing and tuning at the design stage. If-the designer has no
prior knowledge of the choice of the tuning components, we consider
an objective function of the form

3 ¢ t.
A i i (59)
C= Z [e—+ci-3], R
i ‘Pi

i=1

where ¢, £; and t; represent nominal values, tolerances and tuning
parameters of components L;, C and Lo, respectively. The
performance constraints may be written in the form

gi = w(wy) [S(wy) -F(d, ), i=1,2,...,m,, (60)

where w(w;) denotes the weighting factor corresponding to frequency
@i, S(w;) is the specification and F(¢, w;) is the circuit response
function evaluated at sample frequency w;. Table [ summarizes the
specifications for the filter. The critical vertices used can be obtained
from published vertex selection schemes [23].

Fig. 3 The LC low-pass filter.

TABLE [
SPECIFICATIONS FOR LC LOW-PASS FILTER
Frequency Sample Insertion Loss Type Weight
Range Points Specification w
(rad/s) (rad/s) (dB)
0-1 0.45, 0.50, 1.5 upper +1
0.55,1.0
2.5 2.5 25 lower .=l

Table II summarizes the data for the filter including worst
vertices, frequency points and weighting factors.

TABLEII
DATA FOR LOW-PASS FILTER

r 6 6 6 8 1 3 3 3 3 3
#1 +1 +1 +1 -1 -1 -1 -1 -1 -1

B -1 =l -1 #1 =1 +1 +1 +1 +1 +1
#1 +#1 +1 #1 -1 -1 -1 -1 -1 -l
045 050 055 1.0 25 045 050 055 10 25
15 15 15 15 25 15 15 15 15 25
1 1 1 1 <t 1 1 1 1 -

wn ¢

There are 21 variables including nominal values, tolerances
and tuning parameters as well as slack variables p which represent
the settings of tuning components and 43 constraints including
performance constraints and additional constraints on variables.

Table [II summarizes the results for the LC low-pass filter
problem. For this problem the choice of the cost coefficient ¢; in (59)
for tuning is very important. The most appropriate choice is the one
for which both terms in the objective function (59) have the same
order of magnitude. The advantage gained in the formulation using
the ¢; type of objective function is that the optimization will
automatically choose the most appropriate component for tuning,
which is the capacitor here. The results have been obtained using
the MFNC package [14].

Best Mechanical Alignment Problem

An important practical extension of the problems discussed is
the best alignment problem {24,25]. The problem arises in many
practical situations when a relatively expensive manufactured
product does not meet the design specifications and a decision is to be
made for partial retreatment of the product. The problem is how to
perform efficiently the part alignment process and, if reworking is
needed, how to choose the best way to do it.

Suppose we have a set of points P in a two-dimensional space

P4{p1,p2, ... pmbm =1, (61)



TABLE III
OPTIMAL TUNING DESIGN OF THE LC LOW-PASS FILTER

Parameters Solution

L0 = Ly0 2.06696

Cco 0.90758
100&1/L\0=100 eg/Ly0 18.01%
100 £5/CO 14.14%
100 t1/L,0=100 t3/L30 0.00%
100 to/CO 16.43%

P1(6) -1.00000

p2(6) 1.00000

03(6) ~1.00000

P8 -0.99935

p2(8) -1.00000

p3(8) -0.99935

p1(1) 1.00000

p2(1) 1.00000

pa(1) 1.00000

p1(3) 0.99885

p2(3) -0.06969

p3(3) 0.99885

Cost Function 26.39285

and a system of coordinates YOX associated with this set.
Let

18(1,2,...m} (62)

be the index set for these points.
Suppose we have a set R of tolerance regions R, i € [
{1,2,...,m}, in a two-dimensional space,

R2{R, Ry, .. R_} (63)

and a system of coordinates YOX associated with this set. We can
define a one-to-one mapping g which assigns elements Ri € Rto
elements p; € P,

gP—-R. (64)

The regions R; € R, i € I, may have different shapes (e.g.,
circular, rectangular), they may be defmed using polar coordinates,
rectangular coordinates or combined polar and rectangular
coordinates. —_—

The two systems of coordinates, YOX and YOX are related by
the following transformation of coordinates

% ( cosdy —sing, [ ;i [ ¢, J (65)
= ~ |+ ,
¥ sing;  cosd, 1y, b,
where
o209, by d,lT (66)

is the set of variables relating the two systems of coordinates.

The first step in the solution of the best alignment problem is
to find ¢ such that the maximum number of points p; € P, i€l, are
inside or on the boundary of the corresponding R; = g(pi). However,
the solution to the problem stated above may not be unique and may
not be equal to the number of points m.

If it is not possible to find ¢ = [®; b3 $3]T such that all m
points are inside or on the boundary of the corresponding tolerance
region then it is necessary to delete one or more points in the set P to
ensure that all other points satisfy this condition.

The best alignment problem can be formulated as

P A 67)
minimize n, S ca.ni(lw) (
I
I et € 2
subject to constraint
min max f($) =0, (68)
¢ i

where [ is the index set for points p; which are to be aligned, I4q) is the
index set {or points which should be deleted, 2! is the family of all
subsets of the set [ and ngg is the cardinality of Lgel.

The error function () is associated with the point p; to
indicate whether the point p; is in (f;() = 0) or out (fi(d) > 0) of the
tolerance region R; = g(p).

Ilustrative Example: Suppose we have a set of points P =
{P1, P2, P3, P4, Ps} and a set of tolerance regions, R = {Ry, Ry, R3, Ry,
Rs}. Fig. 4 illustrates the situation before the alignment. Error
functions at the starting point ¢g = [0.0 0.0 0.0|T are

fy = 2.0710x 10-1
fa = -5.0000 x 10-t,
f3 = 5.0000x 10-1 ,
f4 = -5.0000 x 10-1 ,
fs = 5.0000x 10~ .

Fig. 5 shows the situation after running the alignment program. The
best alignment was found at ¢g = [-2.316 x 10-1 -2.792 x 10-1 4.758
x 10~2]T with point 5 deleted. Remaining error functions at the
solution are

fy = -1.5400x 10-1,
fa = -1.2060x 10-! ,
f3 = -1.2043 x 10-2,
fg = =1.2043 x 10-2.

On
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Fig. 4 Points and regions before alignment.

For the circular tolerance region the error function is the
difference between the geometrical distance of a point from the
center of the tolerance region and its radius. For the rectangular
tolerance region the error function results from lower and upper
bounds on coordinates of a point.

Test Results on Practical Problems: The algorithm described
in [25] has been tested for seven sets of data supplied by the
Woodward Governor Company. The data resulted from practical
problems of part alignment in manufactured mechanical systems



and have been collected from inspecting actual parts. The points
represent holes in one part which have to meet certain specifications
when coupled together with another part. Test samples have
different numbers of points, varying from 5 to 13 and specified
tolerance regions of different shapes. The data as well as the results
of running the alignment program for some samples are in [25].
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Fig.5 Results of running the alignment program.
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Parameter [dentification Using the £y Norm

[n this application we deal with multi-coupled cavity narrow
band-pass filters used in microwave communication systems (see
Fig. 6).
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Fig.6 Unterminated coupled-cavity filter illustrating the coupling
coefficients.

A narrow-band lumped model of an unterminated multi-
cavity filter has been given by Atia and Williams [26] as

Zl=V, (69)
where
Z=jsl + M), (70
.= i"g( @ ﬂ) ()
Aw @, w/’

I denotes an nxn identity matrix, M an nxn coupling matrix whose
(i,j) element represents the normalized coupling between the ith and
jth cavities, wg is the center frequency and Aw is the bandwidth
parameter.

In practice it is often desired to determine the actual filter
couplings based on response (return loss or insertion loss)
measurements. The problem can be formulated as an optimization
problem with the £; objective function.

In this example we have used reflection coefficient as the
filter response. The formulation is as follows.

m

Minimize < (72)

x < Ifx, “)j)l ,
i=1

where

flx,) 2 wl@(F(x,0,)-FMw), (73)

x is the vector of filter couplings to be identified, F® is the response
calculated using the current parameter values and F™ is the
measured response. :

The filter response and its sensitivities are calculated using
the formulas given in [22].

A 6th order filter centered at 12000 MHz with 40 MHz
bandwidth is considered. Optimally designed filter parameters have
been perturbed and the filter has been simulated. Reflection
coefficient at 23 frequency points is used as the specification
(measured response). The optimization problem (72) has been solved
using optimal filter couplings as starting values. The results of
parameter identification using the LINONL package [20] are
summarized in Table [V.

. TABLEIV
RESULTS FOR THE 6TH ORDER FILTER EXAMPLE

Percentage Deviation

Coupling Actual Identified
Mj2 2.0 2.0
Moz -1.0 -1.0
M3y 5.0 5.0
Mg 5.0 5.0
Mas -4.0 —4.0
Mgs -1.0 -1.0
Msg 2.0 2.0

Number of Function 24

Evaluations

Execution Time (secs) 6.2

on Cyber 170/815 T

CONCLUSIONS

We have described concepts and formulations developed for
design centering, tolerancing and tuning of engineering systems.
Formulations are fully supported by implementations of new and
highly efficient algorithms for linearly constrained minimax and €,
optimization and for optimization with general constraints. We do
not presume to be able to solve all problems associated with any
overall engineering system. Applications of the approach proposed
will be immediately apparent in many cases. Often it will also occur
that familiarity with the concepts and techniques presented will
itself clarify certain problem aspects which have been obscured or
unrecognized. Examples have been described using electrical and
mechanical systems. We feel that the formulations and techniques
presented are powerful tools for solving difficult engineering design
problems.
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