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It is shown how the adjoint-network approach to automated
design due to Director and Rohrer can be implemented in
gradient calculations for least pth and minimax response
objective functions. Their formulas, for example, for fre-
quency-domain design of networks consisting of lumped,
linear and time invariant elements may be used without
change, provided that the adjoint network is appropriately
excited.

The concept of the adjoint network and its relevance to auto-
mated network design have been recently discussed by
Director and Rohrer.1' 2 They demonstrated the possibility
of evaluating the gradient vector for a least-squares type of
response objective function with respect to all existing and
also nonexisting elements from only two analyses, one of the
given network and one of its topologically equivalent adjoint
network.

A least-squares performance criterion is only one of
several possible performance criteria that could provide
acceptable responses.3 In the frequency domain, in par-
ticular, least /?th3> * and minimax3- 5> 6 objectives are often
more desirable than least-squares objectives from the point
of view of obtaining smaller maximum deviations of network
responses from desired responses. Minimax approximation,
for example, is an approximation in the Chebyshev sense.

Hence, the question immediately arises: can the adjoint-
network approach be implemented in gradient calculations
for least pth and minimax performance criteria? This letter
shows that the answer is 'yes'. Moreover, because of the
linear relationship between the adjoint-network variables
and the network-sensitivity components, the least-squares
gradient formulas may be used without change, provided
that the adjoint network is excited in an appropriate fashion.

Since the frequency- and time-domain cases are fairly
similar, only the former will be considered here. For the
time domain, the excitations would be analogous, and the
adjoint network would have to be analysed again in backward
time.
Least pth objective: A generalised-performance error cri-
terion in the frequency domain can be defined as
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where
Cl defines the frequency range of interest

It, Vt = actual complex port responses

It, Vi = desired complex port responses

Wi = nonnegative real weight

p = positive integer

nv = number of independent voltage sources

tii = number of independent current sources

The network is excited as indicated in Fig. 1A, where some
sources may have the value zero. The elements are assumed
to be lumped, linear and time invariant, as allowed by
Director and Rohrer.2

The partial derivative of E with respect to a network
parameter x is

n

where * denotes the complex conjugate.
Tellegen's theorem can now be invoked in the manner of

Director and Rohrer.2 It follows from the relation between
the network sensitivities, and those parts of the Tellegen
sum involving the port variables, that the gradient vector
VJE as given by Director and Rohrer is applicable here,
provided that the adjoint network is excited as shown in
Fig. 1B by independent voltage sources

i = l , 2 , ...,#!„ (3a)

at the first nv ports, and by independent current sources

®i(jco) = Wt(co) \Vt(j<D)- Vi(jco)\p-2 {VSijco)- Pt*<jco)}

i = ny+\ «K + «/ Ob)
at the remaining «/ ports.

Minimax objectives: One possible way of formulating a
minimax objective function is

= max
iv, i7, a

E = max {eiv(co), eh(co)}
iv = 1, 2, ...,nv

h =

(4)

This function is characterised in general by discontinuous
derivatives.3 But suppose, for example, that the maximum
occurs uniquely at the kth voltage-excited port, at co = co0.
Then

E = W k ( c o o ) \ I k ( j e o o ) - l k ( j c o o ) \ = e k ( c o 0 ) . . . ( 5 )

so that, under circumstances usually fulfilled in practice,

dE I , h*U<Oo)-h*(Jco0) dlk(jco0)\— = Re {Wk(coo) 77——-—j——rr —z > (6)
dx \ \Ik(j(Oo)-Ik(j(o0)\ dx }

Following arguments similar to those used earlier, it can be
seen that (a) the adjoint network need be analysed only at
co = coo, and (b) at this frequency all the port sources of the
adjoint network are set to zero except the source at the &th
port, where an independent voltage source

(7)

is applied. The gradient components given by Director and
Rohrer can again be employed; the adjoint network need be
analysed at a single frequency only, namely co = co0, integra-
tion over Q. not being required. J

The implementation of an objective function of the form
of eqn. 4 does, however, pose several difficulties as discussed
by Bandler.3 One snag is the scarcity of minimisation
algorithms for dealing, in general, with such problems. An
alternative formulation can be to minimise a nonnegative
independent variable E, subject to

E>gi(cod) iv = 1,2, ..., nv )
• • (8)

E^gljd^d) U = Hy+1, ..., ny + tli J

for all cod e Qd, a given discrete set of frequencies, and where

d) \Vtl(jcod)- Vh(jcod)\
(9)

da>

^ (2)
J

t This work was carried out under grants A5277 and A7239 from the National
Research Council of Canada
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J The preceding ideas can, of course, be applied in a similar way to a current-
excited port
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Thus

- Re

- Re

(10)

The adjoint-network excitations are as given by eqn. 3 with
p = 2 and co = (od. Appropriate minimisation techniques
are available.3- 5> 6

The computational effort for obtaining gradients for the

Fig. 1A Multiport network consisting of lumped linear time-
invariant elements

Fig. 1 B Adjoint network with corresponding port excitations

least /?th and minimax objectives does not appear to be much
greater than for the least-squares case. Thus the decision as
to which formulation should be used will depend on the type
of solution required and the availability of suitable minimisa-
tion methods.
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CURRENT-MODE CIRCUITS FOR THE UNARY
FUNCTIONS OF A TERNARY VARIABLE

Indexing terms: Logic circuits, Logic design, Combinatorial
switching

The unary functions of a ternary variable other than those of
constant value are classified into three basic types. Current-
mode circuits are given for the realisation of each function
type. The circuits have high speed and large fan-out capabili-
ties and are especially suited to fabrication by i.e. methods.

A recent letter1 describing current-mode circuits for the
realisation of ternary-combinational-logic expressions in-
cluded design information for the two-valued unary operators
x°, x2, x01, x12 and x1 and the ternary inverse function.
The same circuit techniques, which are well suited for inte-
grated-circuit manufacture, can be extended to the design
of the remaining unary functions that cannot be implemented
by a d.c. level.

Table 1 lists the unary functions of a ternary variable other
than those of constant value and classifies these in groups
according to the function type; the first group comprising
two-valued ascending or descending functions, the second
group two-valued functions with an intermediate maximum or

-7V

Fig. 1 Current-mode circuits to give the unary functions of
Table 1
a From group 1
b From group 2
c From group 3
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