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Abstract -A new and highfy efficient algorithm for nonlinear minimax

optimization is presented. The algorithm, based on the work of Hald and

Madsen, combines linear programming methods with quasi-Newton meth-

ods and has sure convergence properties. A critical review of the existing

minimax algorithms is given, and the relation of the qnasi-Newton iteration

of the algorithm to the Powell method for rstssdinear programming is

dkeussed. To demonstrate the superiority of this algorithm over the ,

existing ones, the classical three-section transmission-line transformer

problem is used. A novel approach to worst-case design of microwave

circnits using the present algorithm is proposed. The robustness of the

algorithm is proved by using it for practicaf design of contiguous and

noncontiguous-band multiplexer, involving np to 75 design variables.

1. INTRODUCTION

A WIDE CLASS OF microwave circuit and system

design problems can be formulated as minimax opti-

mization problems. Most commonly, the minimax func-

tions result from lower and/or upper specifications on a

performance function of interest. In practice; we form error

functions at a finite discrete set of frequencies and assume

that a sufficient number of sample points have been chosen

so that the discrete approximation problem adequately

approximates the continuous problem. This may result in a

large number of minimax functions to be minimized.

Therefore, a highly efficient and fast ~lgorithm for mini:

max optimization is of great importance to many micro-

wave circuit designers and engineers. It is the purpose of

this paper to present such an algorithm.

The plan of the paper is as follows. In Section II,

previous work in the area of nonlinear minimax optimiza-

tion is briefly reviewed. The algorithm of this paper is

described in more detail in Section III, where the two

methods, namely, the first-order method and the ap-

proximate second-order method, are presented and the

switching conditions. between the two methods are given.

Our attention is focused on explaining the ideas behind the

algorithm and illustrating them with microwave circuit

examples. A detailed discussion on the relation of the

quasi-Newton iteration of the algorithm to the Powell
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method for nonlinear programming is given in Appendix

A. Section IV contains the comparison of the present

algorithm with the existing minimax algorithms using a

three-section transmission-line transformer problem.
A novel approach to worst-case tolerance design of

microwave circuits taking full advantage of the present

algorithm is described in Section V. Previous work in this

area has been concentrated on worst-case design tech-

niques disregarding the source of the minimax functions,

i.e., the discretization of a continuous problem. Our ap-

proach, which is believed to be new to the microwave

tolerance design area, integrates a search technique for

maxima of the response (a technique based on cubic inter-

polation) with the worst-case search using linearly con-

strained optimization.

In Section VI, an optimization procedure for practical

design of contiguous- and noncontiguous-band microwave

multiplexer using the present algorithm is described and

illustrated by a five-channel, 11 -GHz multiplexer design.

We conclude in Section VII with an assessment of the

current applicability and potential impact of the algorithm

in the area of microwave circuit design.

II. REVIEW OF MINIMAX ALGORITHMS

A. Formulation of the Problem

The mathematical formulation of the linearly con-

strained rninimax problem is the following. Let

~(~)= j(%”””!x n),
j=l,. ... m

be a set of m nonlinear, continuously differentiable func-

tions. The vector x ~ [xl Xz. ” . x.]~ is the set of n

parameters to be optimized.

We consider the optimization problem

min~tizeF(x) ~ mjix{~(x)}

subject to

a~x+ b, = O, i=l . . . 1
7 eq

a~x+b, >O, i=le~+l,. ... l (1)

where at and bi, i =1,. “ o, 1, arti cbnstants.

B. ~Methods Based on Linearization

Over the past 15 years, this type of problem has been

considered by many researchers. Usually, only the uncon-

strained rninimax problem is treated, however. But, in the
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type of methods to be described in the present paper, it is

no complication and computationally costless to add the

linear constraints.

Many of the minimax papers use the objective function

instead of F. There is no significant difference between

these two optimization problems. We prefer (1) since it is

notationally easier and more general.

One of the earliest methods for solving the minimax

problem was that of Osborne and Watson [1]. At the k th
iterate Xk, their method uses a linear approximation of the

nonlinear minimax problem, namely,

where &‘( x~ ) denotes the gradient vector of & w.r.t. x at

the point x~. ‘The minimizer h ~ of (2) is found using linear

programming and it is used in a line search. This method

may be efficient but often it is inefficient. No convergence

can be guaranteed and the method can even provide con-

vergence to a nonstationary point. Madsen [2] incorporated

trust regions in the Osborne and Watson method. The

linearized problem (2) is solved subject to a local bound on

the variable k, the bound being adjusted during the itera-

tion. No line search is used. This method has been proved

to provide convergence to the set of stationary points and

has a quadratic final rate of convergence when the solution

is regular (Madsen and Schj aer-Jacobsen [3]). However, the

rate of convergence may be very slow on singular prob-

lems.

The method of Anderson and Osborne [4] is very similar

to that of Madsen. The main difference lies in the way of

bounding the step length llh~ll. A different approach was

used by Bandler and Charalambous [5]. They presented an

approach utilizing efficient unconstrained gradient minimiz-

ation techniques in conjunction with least p th objective

functions employing extremely large values of p. Char-

alambous and Corm [6] apply an active set strategy to

obtain a direction for a line search.

All of these methods are first-order methods, i.e., the

search is based on first-order derivatives only. Therefore,

all of these methods have problems with singular solutions

and the rate of convergence may be very slow.

C. Methods Using Second-Order Information

In order to overcome this problem, some second-order

(or approximate second-order) information must be used.

Hettich [7] was the first who proposed doing this. He used

a Newton iteration for solving a set of equations which

expresses the necessary condition for an optimum (see (6)

below). However, Hettich’s method is only local. It is

required that the initial point is close to the solution and

that the set of active functions (and constraints) is known.

Han [8] suggested using nonlinear programming techniques

for solving the rninimax problem. He uses a nonlinear

programming formulation of the minimax problem which

is solved via successive quadratic programming (Powell

[9]). A line search is incorporated using the minimax objec-

tive function as merit function. Overton [10] uses an ap-

proach similar to Han’s but solves equality constrained

quadratic problems and uses a specialized line search.

The method of Watson [11] is very similar to the method

of this paper. It switches between a first- and a second-order

method. The main differences between our and Watson’s

method are the following. Watson requires the user to

provide exact first- and second-order derivatives, whereas

we only require first-order derivatives. Furthermore,

Watson fails to define a suitable set of criteria for switch-

ing between the first- and the second-order method. Our

method has guaranteed convergence to the set of stationary

points, whereas Watson’s method has no such property. It

can even provide convergence to a nonstationary point.

The algorithm of this paper is based on the work of Hald

and Madsen [12]. It is a combination of the first-order

method of Madsen [2] and an approximate second-order

method, The first-order method provides fast convergence

to the neighborhood of a solution. If this solution is

singular, then the rate of convergence becomes very slow

and a switch is made to the other method. Here a quasi-

Newton method is used to solve a set of nordinear equa-

tions that necessarily hold at a local solution of (l). This

method has superlinear final convergence (see Appendix

B). Several switches between the two methods may take

place and the switching criteria ensure the global conver-

gence of the combined method. Notice that the user of this

algorithm is required to supply function values and first-

order derivatives, whereas the necessary second derivative

estimates are generated by the algorithm.

We show in Appendix A that, in the neighborhood of a

local minimum of (l), our method generates the same

points as the method of Powell [9] and Han [8]. However,

in the latter method, a quadratic program must be solved

in every iteration, whereas we have to solve only a set of

linear equations or, if the solution is regular, a linear

programming problem. Therefore, the computational effort

used per iteration with our method is normally much

smaller.

III. DESCRIPTION OF THE ALGORITHM

The algorithm is a combination of two methods denoted

Method 1 and Method 2. Method 1 is intended to be used

far away from a solution, whereas Method 2 is a local

method. We first describe these two methods.

A. Method 1

This is essentially the algorithm of Madsen [2]. At the

kth step, a feasible approximation x~ of a solution of (1)

and a local bound A ~ are given. In order to find a better

estimate of a solution, the following linearized problem is

solved:
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1 x
h <+hk

I-- At ~Ak4

Fig. 1. An example with one variable and two functions illustrating a
Method 1 iteration of the algorithm.

subject to

llhll~ < A~

af(xk+h)+bl=O, i=l, ”””, leq

a:(xk+h)+bi>o, i=(le~+l),. ... l. ~ (3)

The solution of (3), denoted h ~, is found by linear

programming. Notice that x~ + h ~ is feasible. The next

iterate is x~ + h ~ provided this point is better than x~ in

the sense of F, i.e., if F(x~ + h ~) -= F(x~). Othmwise

xk+l=x~. In Fig. 1, an example with one variable, two

functions, and no constraints (1= O) is shown. F(x) is the

kinked bold-faced curve. At x~, linear approximations of

the two functions ~1 and jz are made and the solution of

(3) is hk, which is found at the intersection of the two

linear approximations. We assume that the local bound A ~

is so large that it has no influence. The new point is

x~ + ~= x~ + h ~, which is seen to be close to a local mini-

mum of F.

The local bound A ~ is introduced because the linear

model (3) is a good approximation ,of (1) only in some

neighborhood of x~. Therefore, it makes sense to consider

only small values of Ilh II in connection with the linear

model (3). The size of the bound is adjusted in every

iteration based on a comparison between the decrease in

the objective function F and the decrease predicted by the

model (3). If the ratio between the two is small

F(xk)– F(xk+hk) <0.25 [~(xk,O)– ~(xk,lt/J]

(4)

then the bound is decreased, A~+ ~= A~/4. Otherwise, if

F(xk)– F(xk+hk) >o.75[F(xk,o)– ~(xk, hk)]

(5)

then A~+ ~= 2A ~. If neither (4) nor (5) hold, then we leave

the bound unchanged, A ~+ ~= Ak.
Experiments have shown that the algorithm is rather

insensitive to small changes in the constants used in the

updating of the bound. This method has safe global con-

vergence properties (Madsen [2]), and if the solution is

regular, then the final rate of convergence is quadratic

(Madsen and Schjaer-Jacobsen [13]).

6.0
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5.0

4,5

J

4.0

M

3.0
LO
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Fig. 2. Two-dimensional singular minimax problem arising from opti-
mization of a two-section 10:1 transmission-line transformer with

optimization parameters 21 and Z2. The first 6 iterations are per-
formed using Method 1 of the algorithm. Iterations 7 and 8 are
performed using Method 2. The total number of iterations (function
evaluations) to reach the solution with the accuracy of 10-6 is 11 (0.49
s on Cyber 170/815). If Method 2 is not used, 25 iterations (1.14 s of

CPU time) are required to reach the solution.

When the solution’ is singular, however, the final conver-

gence can be very slow. Consider the example of Fig. 2 in

two variabltx where two functions are active at the solution

z(i.e., ~(z)= F(z ) for two v~ues of ~). Fig. 2 shows
contours for a two-section transmission-line transformer

problem, where the rninimax functions correspond to the

reflection coefficient sampled at 11 normalized frequencies

w.r.t. to 1 GHz {0.5,0.6, ””., 1.4,1.5}, The optimization

variables are characteristic impedances ZI and Z2. Section

lengths 11 and 12 are kept constant at their optimal value

1~, which is the quarter wavelength at the center frequency.

According to Madsen and Schjaer-Jacobsen [3], this is a

singular problem. Above the dotted line, F is equal to one

of the functions & F(x)= ~l(x), and below the dotted

line, F is equal to another function, F(x)= ~z(x). At the

dotted line, ~l(x) = /2(x) = F(x), and this line represents

the bottom of a valley.

If ~1 and ~z are different, then there is a kink at the

bottom of the valley and a method based on linearization,

such as Method 1, will provide fast convergence to this

kink, as illustrated by the iterands in the figure (see point

number 3). After the dotted line has been reached, how-

ever, the convergence towards z can be slow because the

iterands have to follow a curve which passes the solution z

in a smooth manner (with no kink). In the example, over

eight iterations are needed to converge to a region close to

the solution. Therefore, a method based on first derivatives

only is not sufficient, in general, to give fast convergence.

Some (approximate) second-order information is needed.
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Fig. 3. Two-dimensionaf regular minimax problem ansing from optimi-
zation of a two-section 10:1 transmission-line transformer with optimi-
zation parameters II/1 and Z1. The first 5 iterations shown are

Aperformed using Metho 1. The totaf number of iterations to reach the
solution with the accuracy of 10-6 is 8 (0.37 s of CPU time on Cyber
170/815).

Notice that if three functions were equal at a minimum of

a two-dimensional problem, then no smooth curve through

the solution exists and Method 1 provides fast (quadratic)

convergence to the solution.

Fig. 3 shows contours for the same two-section trans-

former problem. However, the optimization variables

are now 11/1~ and 21. Characteristic impedance 22 and

section length 12/1~ are kept at their optimal values

(12/1, =1, Z2 = 4.472136). Here, the problem is regular

and five iterations are sufficient to reach the vicinity of the

solution.

B. iilethod 2

It is a local method. It is assumed that a point near a

solution z is known, and that the active sets A(z) ~

{~l~(z)= F(z)} and C(z)~ {ila~ + b,= O} are known.
At a local minimum z of (l), the following necessary

conditions hold (see, e.g., [7]):

~ AjJ’(z)- ~ p,ai=o
.i=A(z) i=c(z)

~ A,-l=o
jG/t(z)

fro(z)-j(z)=fz ~=~(z)\{-io}

a~+b, =O, i= c(z), (6)

where the multipliers Aj and p, are nonnegative and

j. ~ A (z ) is fixed. Method 2 is an approximate Newton
method for solving the nonlinear system (6) (in the varia-

bles (z, A, p)). Exact first derivatives are used but the ma-

trix XA, ~ “(z ) is approximated using a modified

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (see

Appendix A for details). In this way, an approximate

Jacobian J~ is obtained at the estimate (x~, h(~), p,(~)) of

the solution of (6). The next estimate is found by

[1
Ax~

J~ AAf~J = –R(x~, ~(~), p(~))

Ap(@

(x~ , ~(k+l)) ~(k+l)) =(x~,~@),p@))+? 7

+ (Ax~, AX(~), Ap@)) (7)

where R(z, X, p) = O is the vector formulation of (6).

C. The Combined Method

The combined method is the algorithm which we recom-

mend and use in this paper. Initially, Method 1 is used and

the active sets used in (6) are estimated. When a singular

local minimum seems to be approached, a switch to Method

2 is made. If the Method 2 iteration is unsuccessful,

Method 1 is used again. Several switches between the two

methods may take place. When Method 1 is used, we say

that the iteration is in Stage 1, otherwise it is in Stage 2. A

detailed description of the two stages follows.

The Stage 1 Iteration: We have a point x~, a local

bound A~, and a matrix J~ which should approximate the

Jacobian of (6).

1) x~+ ~ and Ak+ ~ are found using Method 1, and
approximations A~+ ~ and C~+ ~ of the active sets at x~ + ~

are found via the active sets at the solution h k of the linear

model problem (3).

2) An estimate (X(~+ 1), p(~+ l)) of the multipliers is found

through a least-squares solution of (6) with

(Xk+l) ‘k+l, k+l.C ) inserted for (z, A(z ), C(z )). This esti-

mate is used for finding a new Jacobian estimate Jk* ~ by

the BFGS update as described in Appendix A.

3) A switch to Stage 2 is made if the following two

conditions hold:

a) The active set estimates have been constant over

three consecutive different Stage 1 iterates.

b) The components of X(k+ 1) and p(~+ 1) are non-

negative.

The Stage 2 Iteration: Xk, A k, Jk, and active set esti-
mates Ak, C~ are given.

1) Find (Xk+l, A ‘~+1), p(k+’)) and Jk+l using Method 2

with (Ak, Ck) inserted for (A(z), C(Z )).

2) Let A~~l=A~, Ck+l= Ck, and Ak+l= Ak.

3) Switch to Stage 1 if one of the following conditions

holds:

a)

b)

c)

A function or constraint outside of A k+l or Ck+l

is active at Xk+ ~.

A component of k(k+ 1) or p(k~ 1) is negative.

llR(xk+~, ~(k+l), P(k+l))ll > 0.99911R(~k, h(k),

IL(k)ll (see (7) for the definition of R).
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TABLE I

COMPARISON OF ALGORITHMS FOR THE THRSE-SECTION

TRANSFORMER (NUMBER OF FUNCTION EVALUATIONS)

Algomthm Stnrt, ng Point x{)! Starting Point xoz

This algor~thml 18 *
Hald and Madsen [ 121 21

Agnew [191 Alg I 23
Alg 11 20

Bandler and Charalambous [20 1 95

Charalambous and Corm [21 I 162

C0nn[221 67
Madsen [2] 253

Madsen and Schjaer-Jacobsen [3] 29
This algorlthmz 15 +

21 **
46
64

109
155

67
60

707
48
~2++

Execution times o“ Cyber 170/815 in seconds are * O 6, ** O 7, + O 57, + + O 85

“Active” frequency pants selected by 1 without cubic interpolation
the cubic interpolation search
050000, 076999, 123001, 150000 2 with cubic interpolation

This completes the description of the combined method.

It has been shown [12] that the combined method can

only converge to stationary points and that the final rate of

convergence is quadratic on regular problems and superlin-

ear on singular problems (provided that the Jacobian of (6)

is regular).

The results published by Hald and Madsen [12] corre-

spond to the combined method as described here except

that the PSB (Powell’s symmetric Broyden) formula was

used for updating Jk in Method 2. Our numerical results

indicate that the use of the BFGS formula as described in

Appendix A is significantly better (see Table I).

For this paper, we have used the MMLC version [14] of

the algorithm based on the earlier implementation due to

Hald [15].

IV. COMPARISON WITH OTHER ALGORITHMS

A. The Test Problem

To compare the performance of the present algorithm to

other minimax algorithms, a three-section 100-percent rela-

tive bandwidth 10:1 transmission-line transformer prob-

lem has been chosen (see Fig. 4). It is a special case of an

N-section transmission-line transformer. Originally studied

by Bandler and Macdonald [16], [17], this type of test

problem is now widely considered.

The problem is to minimize the maximum reflection

coefficient of this matching network. A detailed discussion

on the formulation of direct minimax response objectives is

presented in [18].

Formally, the problem is to

miniXtizeF(x) = ~O~~x511P(x, 0) I (8)
.,

where

[x = ll/lq .q 12/lq Z2 13/lq Z,]T.

The minimax functions represent the modulus of the

reflection coefficient sampled at the 11 normalized fre-

1

10

Fig. 4. Three-section, 10:1 transmission-line transformer used as a test
problem to compare the performance of minimax algorithms.

quencies @ (w.r.t. 1 GHz) {0.5, 0.6, 0.7, 0.77, 0.9, 1.0, 1.1,

1.23, 1.3, 1.4, 1.5 }. The known quarter-wave solution

is given by 11= 12 = 13 = Iq, Z1 = 1.63471, Z2 = 3.16228,

Z3 = 6.11729, where 1~ is the quarter wavelength at the

center frequency, namely,

1~= 7.49481 cm for 1 GHz.

The corresponding maximum reflection coefficient is

0.19729. Two starting points have been used

Xi= [0.8 1.5 1.2 3.0 0.8 6.0]~

X: = [1.0 1.0 1.0 3.16228 1.0 10.0]~.

Gradient vectors with respect to section lengths and char-

acteristic impedances are obtained using the adjoint net-

work method.

B. Performance of the New Algorithm

Table I shows the performance of the new algorithm as

compared to other algorithms. Table I also shows results

obtained using the present algorithm with a cubic interpo-

lation search for maxima of the response. Using this tech-

nique, the number of sample points can be reduced from

11 to 4, and we do not have to know in advance the

location of frequency points corresponding to the maxima

of the response. More information on the cubic interpola-

tion search technique is given in Section V in the context of

a new approach to worst-case design of microwave circuits.
To show the influence of the parameters DX (initial step

length of the iterative algorithm) and KEQS (the number

of successive iterations with identical sets of active residual

functions that is required “before a switch to Stage 2 is

made), the optimization has been performed several times

for different values of DX and KEQS. The resulting

numbers of residual function evaluations required to

achieve the accuracy EPS = 10 – 6, as well as the number

shifts to Stage 2 are summarized in Table II (the numbers

of shifts are given in parentheses).

It can be observed that the increasing values of KEQS

correspond to slightly increased numbers of function

evaluations. Moreover, too small and too large values of

DX require more residual function evaluations because of

adjustments which are performed by the algorithm. From

other experiments, it was observed that the increasing

values of KEQS correspond, generally, to smaller numbers

of shifts to Stage 2 (some too early shifts are eliminated).

V. WORST-CASE NETWORK DESIGN

A. Preliminary Remarks

In this section, we will formulate the fixed tolerance

problem (FTP) [23], [24] embodying a‘ worst-case search

and the selection of sample points for the discrete ap-
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TABLE II 0.40 L
I 1 , 1 1 , I 1 (

THE INFLUENCE OF THE CONTROLLING PARAMETERS DX AND

KEQS ON THE NUMBER OF FUNCTION EVALUATIONS

> 0.30 -

H

KEQS H
t
%

DX 2 3 4
:0.20 -

8
:

01 21(2 I 23(2) 24(2)
Y
k

O 25 19(2) 18[21 19[21 .

05 18(21
0.10 -

20(2) 22(2)
075 18(2) 18(2) 20(2)
10 21(2) 22(2) 23(2)

I , I 1 1 1 I ,
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.+ 1.5

NORMRL12ED FREQuENCY

proximation of a continuous problem. As mentioned in the (a)

introduction. the discretization of a continuous moblem.
may result in a large number of rninimax functions to be 0.40 – 1 1 1 1 1 1

minimized. The size of the problem increases dramatically

if we want to consider tolerances on network parameters

since, for each frequency point selected to represent the ~* 0.30 –

response 2“ (n is the number of network parameters), ~

minimax functions have to be created if we want to con- s

sider all vertices of the tolerance region.
= 0.20 -

(5

A number of methods have been proposed for solving 5

the worst-case problem. Schjaer-Jacobsen and Madsen [24] $,7,0

suggest the application of interval arithmetic. Bandler et al.

[25] and Tromp [26] described methods which rely on the

assumption that the functions considered are one-dimen- ,
0,5 0.6 o,? 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

sionally convex. NORMRLIZED FRkDuENCY

Our approach to the fixed tolerance problem is a double (b)

iterative algorithm. For each outer iteration of minimizat-

ion, first a search using cubic interpolation is done to
0.40– 1 1 1 I 1 1 r-T-

determine frequency points which are candidates for active

functions, and then a number (equal to the number of

selected rninimax functions) of inner loop optimizations ~
- 0.30

are performed to determine the worst case for each of the @

minimax functions. :
:0.20 –

The advantage of our approach is that the worst-case s

search (done by means of linearly constrained optimiza- ~
k

tion) and the actual minimization are linked together such w,.,0 -
that each worst-case calculation affects immediately the

outer iteration of minimization.
,

B. Cubic Interpolation Search Technique
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

NORMRLIZEO FREQUENCY

The cubic interpolation technique allows us to consider
(c)

the minimum number of frequency points to adequately
Fig. 5. (a) Responseof the three-section transmission-line transformer

at the starting point x}. The initial sample points are 0.5, 0,8, 1.2, and

approximate the continuous problem. In many cases, the 1.5. The uniformly spaced (with the step length of 0.1) search points are

discretization of a continuous problem may not be ade- 0.5, 0.6,...,1.5. The sample points selected by the algorithm using cubic

quate to give the continuous rninimax solution. As il-
interpolation are 0.5, 0884, 1.2, and 1.5. The edges of the frequency

lustrated in Fig. 5, the solution obtained using uniformly
interval are kept as the sample points. The initiaf sample point 0,8 has
been replaced by the point 0.884 since a maximum has been detected

spaced sample points may not be optimal in the continuous between 0.8 and 0.9. The sample point 1.2 has not been changed since

minimax sense since some of the peaks of the response (or
no maximum has been found between points 1.2 and 1.3. (b) Response
of the three-section transmission-line transformer after the first itera-

error function) have been missed. One way to overcome tion of optimization. The sample points selected by the cubic interpola-

this difficulty is to use densely spaced sample points. This, tion search (with the step length of 0.1) are 0.5, 0.729, 1.210, and 1.5.

however, may result in a prohibitively large number of
Now the initial sample poutt 1.2 has been replaced by 1.210 since a
maximum has been detected between points 1.2 and 1.3. The sample

minimax functions to be optimized. Therefore, it is desir- point 0.884 has been replaced by a new sample point 0.729 resulting

able to develop a technique to locate the maxima of the from the maximum between 0.7 and 0.8. (c) Response of the three-sec-

response w.r.t. frequency and to track these maxima during
tion transformer at the solution. The sample points selected by the
cubic interpolation search (with the step length of O.1) before the last

the optimization process as they shift along the frequency iteration of optimization are 0.5, 0.770, 1.230, and 1.5.
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axis due to the. changes in the values of optimization

parameters. Such a technique has been developed by Band:

ler and Chen [27]. It is based on the cubic interpolation

formulas of Fletcher and Powell [28]. For convenient refer-

ence, the formulas are given in Appendix C.

C. Fixed Tolerance Problem

To present the method for worst-case tolerance design,

we will introduce some notation which basically follows

that of [23].

A design consists of design data of the nominal point
+04[+: +!.. s$!] ~ and a set of associated tolerances

E~[cl t~.-. c.] ~, where n is the number of network

parameters. An outcome of a circuit is any point @~ [@l

‘+2”” . @n]T such that $,= O: + Clpl, –1 <p, <1, i =

1,2,. ... n. The tolerance region R, is defined as R. A

{@l@i =@! + ~i~z, j=l,z,” “ “, n}. Theextreme points of R,
are called the vertices and are obtained by setting p, = A 1.

We consider a set of m nonlinear functions

~(o”)~f(+o)a,), jeJ~{l,2,. ... m} (9)

where tiJ, j G J, is an independent parameter (frequency).

The number of functions m is equal to

m=m ~=+2

where m ~= is the number of the maxima of the response

and 2 represents the edges of the frequency interval [ o,, qJ.

The fixed tolerance problem can be defined on the basis

of the worst-case objective function [24] as that of de-

termining

,0 ,Jfiyt(+)}. (10)rnin F(@O) = rnin max
4° <

For each outer iteration of minimization w.r.t. ~“, m

frequency points are determined (by a search technique

based on cubic interpolation) and m linearly constrained

optimizations are performed to find the worst cases.

At the k th outer iteration of minimization, we have an

approximation O] of the solution and we solve m linearly

constrained optimization, where the jth problem, j G J is

miyp(-t(ok)) (11)

subject to

(+~)k-cz~(~i)k<(+!)k+ci ‘=12”””, n

Once O: for the jth function is determined, we can iden-

tif y whether the worst-case occurred at a vertex using the

following criteria.

Let

(YJk=l(40k-(+?)kl. (12)

,.

If l(y,)~–c,l<lo – 5, then the worst-case occurred at a

vertex, for which p,, i =1,2,. 0., n, are easy to determine

{

–1, if (+%4%p, = (13)
+1, otherwise

1>2>

TABLE III
FIXED TOLERANCE PROBLEM FOR THE THREE-SECTION

10:1 TRANSFORMER

Number of Mmlmax Functions
Xumber of Varmt)k

Requmed Accuracy of the Solution
Assumed Tolerances
Step S,ze m the Cub,c

Interpolation Search
SOIutlon Vector

“Active” Frequency Points

Maximum Refl Coefficient
Number of F“nctmn Evdwmom

Execution Time on Cyber 170/815

(m seconds)

4
6
10-6

5%

01

C,/tq = O 96373 Z2 = 322493

z, = 167797 t#tq = O 96483
t& = 098720 Z3 = 6 0481i

050000, 078726, 127242, 150000
033589
32

81

The function values $, j G J, and the gradients of ~,

j = J, which are returned to the outer iteration are evaluated

at a point ($:)@ i.e., were the jth worst case occurred.

D. Illustration of the Approach

The three-section transmission-line transformer is used

to illustrate the approach and its validity for worst-case

design. Numerical results are summarized in Table 111. As

expected, the nominal parameter values are different from

the values obtained for the nominal design problem. The

location of the two internal maxima of the response has

also changed as compared to the nominal design problem.,

Each linearly constrained optimization to determine the

worst-case for the particular frequency with the accuracy

10-3 requires about four iterations of the algorithm.

VI. CONTIGUOUS AND NONCONTIGUOUS-BAND

MULTIPLEXER DESIGN

A. Introducto~ Remarks

Practical design and manufacture of contiguous- and

noncontiguous-band multiplexer consisting of multicavity

filters distributed along a waveguide manifold has been a

problem of significant interest [29]–[31]. Recently, a gen-

eral multiplexer design procedure using an extension of the

normal least-squares method has been described [32].

We present here a general multiplexer optimization

procedure exploiting exact network sensitivities. The simul-

ation and sensitivity analysis aspects of the problem,

together with a number of examples of multiplexer optimi-

zaticm (including a twelve-channel, 12-GHz multiplexer

without dummy channels), have been described in [33]. All

design parameters of interest, ,e.g., waveguide spacings,

input–output, and filter coupling parameters, can be di-

rectly optimized. A typical structure under consideration is

shown in Fig. 6.

B. Formulation of the Problem

A wide range of possible multiplexer optimization prob-

lems can be formulated and solved by appropriately defin-
ing specifications on common port return loss and individ-

ual channel insertion loss functions. The minimax error

functions are created using those specifications, simulated

exact multiplexer responses, and weighting factors.
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Icommon port ,“ncwl spacing

---

short ctrc. u

Fig. 6 The multiplexer configuration under comideradrm J1,Jz,..., J~,., .,
are arbitrarily defmed 3-port Jumtmrw ~1, Bz, ..., BN are terminated
branches or channels which may each be represented m reduced
cascade form, and &, S2,. ... S~ are usually wavegu~despacing
elements.

The minimax functions ~(x), js J, are of the form

~&k(Qz)(~:(~>@z)-~Jk(~t)) (14)

‘w~k(ot)(F;(x*oi) -s;k(ol)) (15)

w;(@1)(F2(x> @,)–~3(@z)) (16)

— W;((J,)(F’(X,U1 )-S;(U1)) (17)

where F;( x, a,) is the insertion loss for the k th channel at

the ith frequency, F’(x, tit) is the return loss at the

common port at the i th frequency, S&~( U, )(S}~( O,)) is the

upper (lower) specification on insertion loss of the k th

channel at the i th frequency, S:( ~, )(S~( u, )) is the upper

(lower) specification on return loss at the ith frequency,

and W;k, w;k, W:, w; are the arbitrary user-chosen non-

negative weighting factors.

C. Five-Channel 11- GHz Multiplexer Design

The procedure is illustrated by designing an 11-GHz,

five-channel multiplexer having the center frequencies and

bandwidths (similar to those of [32]) given in Table IV.

Suppose we want to design this multiplexer such that

certain specifications on the common port return loss and

individual channel insertion loss functions are satisfied. A

lower specification of 20 dB on return loss over the pass-

bands of all five channels should be satisfied. We want also

to control return loss between channels 1 and 2, 2 and 3,

and 4 and 5 in a similar way. We impose also additional

specifications on insertion loss for all channels, i.e., we

want the insertion loss in the transition bands not to drop

below 20 dB.

We start the design process with five identical six-pole,

pseudo-elliptic function filters. Starting values of the cou-

pling coefficients for the filters are given in the following

matrix [31]:

Fig. 7. Responsesof the 5-charmel,11-GHz multiplexer at the starting
point of the optimization process.

TABLE IV

MULTIPLEXER CENTER FREQUENCIES AND BANDWIDTHS

Channel Center Frequency Bandw,dth
(MHz) (MHz)

1 109925 81

2 110750 76

3 111550 76

4 114950 76
5 116185 154

The filters are assumed lossy and dispersive. Waveguide

junctions are assumed nonideal.

Fig. 7 shows the responses of the multiplexer at the start

of the optimization process. As we see, the specifications

on the common-port return loss are seriously violated.

The optimization process is performed in several steps.

First, we select only nonzero couplings, input/output

transformer ratios, and filter spacings as optimization vari-

ables. This gives a total of 45 optimization variables. The

error functions resulting from the multiplexer responses

and specifications are created at 51 nonuniformly spaced

frequency points. An improved design is obtained after 30

function evaluations (230 s on the Cyber 170/815). The

responses corresponding to the first step of the optimiza-

tion process are shown in Fig. 8.

In order to completely satisfy the design specifications

we perform a second step of optimization in which we

release additional optimization variables, i.e., cavity reso-

nances. This gives a total of 75 nonlinear optimization
variables. Using the same frequency points as in step 1 and

[0 0.62575 0 0 0 0 1

1
0.62575 0 0.57615 0 0 0

M= ;
0.57615 0 0.32348 0 –0.74957
o 0.32348 0

1

1.04102 0 “

o 0 0 1.04102 0 1.04239
0 0 – 0.74957 0 1.04239 0

The initial spacing lengths are set equal to Agk/2 (half results of the first optimization as a starting point, we

the wavelength corresponding to the k th center frequency). continue the optimization process. After 30 additional
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Fig. 8. Responses of the 5-channel, 11-GHz multiplexer after the first Fig. 10. The final optitized responses of the 5-channel multiplexer

30 iterations using 45 optimization v@ables and 51 nonuniformly obtained with 75 variables and 66 minirnax functions. A search tech-

spaced sample points. nique for the pe&s of the return loss response has been employed.

Fig. 9. Responses of the 5-channel, 11-GHz multiplexer after 30 ad-

ditional iterations using 75 optimization variables and 51 minimax
functions.

function evaluations (and 470 s of CPU time on the Cyber

170/815), the design specifications are satisfied and the

optimized responses of the five-channel multiplexer are

shown in Fig. 9. To improve the return loss response of the

multiplexer, the third step of optir’nization is performed in

which a search technique for maxima of the response is

employed. This gives 66 minimax functions and the same

number of variables as previously. After 25 additional

function evaluations (and 360 s of CPU time on the Cyber

170/815), we obtain the final optimized responses as shown

in Fig. 10.

In the approach presented, the emphasis is on achieving

a maximally effective set of early iterations of optimization

using a subset of all possible optimization variables. This

subset should- correspond to “dominant” variables of the

problem. Initial selection of the variables can be facilitated

by the full knowledge and experience of the designer and

by an initial sensitivity analysis at selected frequency points.

VII. CONCLUSIONS

We have described a new and highly efficient algorithm

for nonlirrear rninimax optimization problems which arise

in microwave circuit design. The algorithm combines linear

programming methods with quasi-Newton methods and

the convergence is at least superlinear. Comparison made

with the existing minimax algorithms on the classical three

section transmission-line transformer problem shows clearly

that this algorithm is better in terms of the number of

function evaluations required to reach the solution with a

desired accuracy.

We have presented a novel approach to worst-case toler-

ance design of microwave circuits integrating a cubic in-

terpolation based search technique for maxima of the

response with the worst-case search using linearly con-

strained optimization. The validity of the approach has

been demonstrated by solving a fixed tolerance problem

for a three-section transmission-line transformer. We em-

phasize that our approach does not require the designer to

know in advance the location of frequency points corre-’

spending to the maxima of the response and significantly

reduces the number of sample points adequately approxi-

mating the continuous response. This aspect of our ap-’

preach is particularly important since it can significantly

reduce the number of minimax functions for which the

worst cases have to be found.

The robustness of the algorithm presented makes possi-

ble the practical design of contiguous- and noncontiguous-

band microwave multiplexer. To our knowledge, our work

is the first successful attempt to use gradient-based optimi-

zation for multiplexer design, as well as being the largest

nonlinear optimization process ever demonstrated on mi-

crowave circuit design for a reasonable computational cost.

We feel that the algorithm presented will have a signifi-

cant impact on microwave circuit design techniques and

practices allowing the designer to consider problems of

greater size than usually done in the past, including toler-

ances on circuit parameters.

APPENDIX A

QUASI-NEWTON ITERATION

AND THE POWELL METHOD

Here the details of the approximate Newton iteration

used in Method 2 are given. Furthermore, it is shown that

close to a local minimum, Method 2 generates the same

points as Powell’s sequential quadratic programming

method [9] applied to the nonlinear programming formula-
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tion of (1~. Therdfore, our method has the same local

convergence. properties as that of poweI1.

We consider one iteration ~f Method 2. For simplicity,

we use the n~tation x= x,, A = x,, I.L=pk, A = A(z),

and C = C(z). In a Newton iteration for solving (6), we

should use the Jacobian

I
~A, f’’(x) E -F

.(c A

R’(x, x,p)= 00.. .0 11”””1 00”””0

GT o 0

FT o 0 1
(Al)

where E has the columns ~.’(x), j = A, F has the col-

umns al, i = C, and G has the columns $;(x) – f ‘(x),

j = A\{ j. }. Only the upper left-hand block ipvolves more

than first derivatives. In Method 2, this block is approxi-

mated by an updating formula, whereas the exact values

are used in the other blocks of R’.
The Lagrangian function corresponding to (1) is

so the upper left-hand block of (Al) is L;X( x, 1, p) since

A,= OforjfEA.

This block is approximated by the BFGS formula with

the modifications clf Powell [9] that keep the approxima-

tion positive definite. Thus, the matrix Jk of (7) is

[Bk E –F 1

J,= 0’:;”0 11”””1 0“””0
o 0

(A3)

1 l’T

where Bk is updated through

o

B k+l = Bk – BkSSTBk/[STBkS] + @)’[ST~]

with
S=xk+l —x

An iteration of Method 2 is now given by (A3), (7), and

(A4) with

II

L;(x, x,p)

R(x, h, P)= z~,–l (A5)
e

f
where e has the cc)mponents ~O(x) – ~(x), j ~ A\{ j. }

and ~ has the components a~x + b,, i = C.

Now consider the nonlinear programming formulation

of problem (1)

min$$zeG(x,8)~8

subject to

a~’+ b, := O, i=l,. . . ,/
~ eq

a~x+ hi;> O, i=(leq+l),. ... l. (A6)

Assume that Powell’s sequential quadratic programming

method is used to solve (A6). At the iterate (x,8) = (XL, ~~),

the following subproblem is solved:

subject to

fs+p-[$(x)+ J’(x)T@z j=l,. ... ~

a~(x+h)+bz=O, i=l,. ... leq

a~(x+h)+bi>O, i=(l~~+l),..”,l

(A7)

with 7A being a positive definite estimate of the Hessian of

the Lagrangian. B~ has the dimensions n x n. Actually, it

should be (n + l)(n + 1), but the row and column corre-

sponding to p are left out for notational convenience since

they have no influence. The neXt iterate is ( xk + 1, 8k.t 1) =

(x, 8)+ a(h, p), where (h, p) denote the solution of (A7),

and close to a solution a = 1 is necessary for fast con-

vergence. We assume that (x,8) is close to a solution

(z, 8“) and that a =1. Assume further that x is so close to

z that the active constraints at the solution of (A7) are the

same as at the solution of (A6). These are identified by the

indices j~ A = A(z) and i GC= C(z).

Using these assumptions, we can find the solution of

(A7) using the Kuhn-Tucker conditions. They give

P–[&(x)+ f(+Tq‘o, j~A,

a~(x+h)+b, =O, iEC. (A8)

This is equivalent to the system

j=A\{~o}
a~(x+lz)+b, =O, iGC.

(A9)

Using (A3), (A5), and (A2) and a small calcul~tion, it is
seen that (A9) is the same as (7) with h = Ax~, A = x(’+ 1)

and ji = pck+l) (provided that Bk = B~). Thus, the point

x + h found by Powell’s method is the same as the point

x~ + ~ found by Method 2. Furthermore, Powell uses ~ and

~ as the new multiplier estimates so also here there is

coincidence with Method 2.

Finally, the matrices %~ and Bk are updated through the

same formula. This is seen from the fact that the Lagrangian

of (A6) is
m ,
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with ~= (x, 8). In Powell’s method, fi~ is updated by (A4)

with L instead of L. Therefore, it is seen from (A2) and

(A1O) that the updates of ~~ and B, are identical.

Consequently, Method 2 is identical to Powell’s method

in its final stages provided that the matrices to be updated

are initialized in the same way.

APPENDIX B

SUPERLINEAR CONVERGENCE

If the sequence { r~ } converges to r* in such a way that

Irk+l
-r”’ =p<l

?+mM Irk– r*l

the sequence is said to converge linearly to r* with conver-

gence ratio ~.

The case where ~ = O is referred to as superlinear con-

vergence.

APPENDIX C

CUBIC INTERPOLATION FORMULA

As a well-known fact, a maximum of a continuous

differentiable function e(a) is characterized by e’ ~

6’e/8u = O and 82e/ilu2 <O. This implies a change in the

sign of 8e/ 80 and, in the neighborhood of the maximum,

6’e/6’ti decreases as frequency increases. It follows that if

there exist two points ~1 < Qz such that

e~, >0 and e;2 <0

at least one maximum of e(co) lies between 01 and Wz. If

o ~ and o+ are close enough to exclude the existence of

multiple maxima, the location of the. detected maximum

can be estimated by the cubic interpolation formula [28]

(u, -q)[x -y-e&] ,-.,
‘mai — W2
,. —,. — (u)

e’ –
al

e~2+2x

where

(C2)

(C3)
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