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ABSTRACT

A flexible and powerful algorithm is proposed for
efficient gradient approximations. It combines the techniques
of perturbations, the Broyden update and special iterations.
Utilizing this method, powerful gradient-based algorithms for
nonlinear optimization of circuits and systems can be effectively
employed without calculating exact derivatives. Examples of
applications to fault location, worst-case tolerance design and
design optimization are presented.

INTRODUCTION

Many powerful algorithms for nonlinear optimization
have been developed and applied to circuit design problems, for
example, the algorithms for linearly constrained €; and
minimax optimizations described by Bandler, Kellermann and
Madsen (1], [2]. One difficulty in extending their practical
applications, however, is that exact gradients of all functions
with respect to all variables are usually required. For some
applications, either an explicit expression of the exact gradients
is not available or the computational labor for evaluating such
gradients is prohibitive. Moreover, it is highly desirable to
utilize many existing circuit simulation programs which
provide only the values of the functions (or responses).

In this paper, we propose a flexible and powerful
approach to gradient approximation for nonlinear optimization.
It is a hybrid method which utilizes parameter perturbations
(i.e., finite differencing), the Broyden update [3] and the special
iterations of Powell [4]. Finite differencing requires one
additional function evaluation to obtain the gradient with
respect to each variable. It is the most reliable but also the most
expensive method. The Broyden rank-one formula has been
used in conjunction with the special iterations of Powell to
update the approximate gradients, see, for example, Madsen [5]
and Zuberek [6]. Such an update does not require additional
function evaluations but its accuracy may not be satisfactory for
some highly nonlinear problems or for a certain stage of the
optimization. In our algorithm, parameter perturbations may
be used to obtain an initial approximation and to provide
regular corrections. The subsequent approximations are
updated using the Broyden formula. Special iterations are
introduced to improve the performance of the Broyden update.
We also propose a modification of the Broyden formula which
incorporates a knowledge, if available, of the structure of the
Jacobian (e.g., the sparsity of the Jacobian).
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The hybrid method proposed is quite flexible in
handling a large variety of problems, as proved through fault
location of a resistive mesh network, worst-case tolerance
design of a microwave amplifier and practical design of a 3-
channel multiplexer involving 45 nonlinear variables. An
interface is also developed for the gradient approximation
module such that it is rather independent of the optimization
technique and the circuit simulator. In the following sections,
our algorithm is described. Its implementation in conjunction
with an ¢; algorithm and a minimax algorithm are illustrated.

GRADIENT APPROXIMATIONS
Method of Perturbations

A nonlinear optimization problem usually involves a set
of, say, m nonlinear functions fj(x),j=1, ..., m, where x = [x; ...
xn]T is the vector of n variables.

The first-order derivative of fi(x) with respect to x; can
be approximated by

afj(x) _ fj(x +h e‘i) -fj(x)
N ,

(1)
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where e; is a unit vector and h is the perturbation on x;. An
approximation of the Jacobian
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using perturbations requires n+1 evaluations of the functions
f(x).

Broyden Update

Having an approximate Jacobian Gy at a point xi and
the function values at xi and x; + hy, we can obtain Gy
using the Broyden rank-one update [3]

f(xk+ hk) _f(xk)_Gk hk
(2)
ka1 = Gt
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L

The new approximation Gy4; provides a linearized model
between two points xi and xy + hy:

_ 3)
f(xk+ hk) —f(xk) = Gk+1hk‘
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Notice that if xy and xy+hy are iterates of optimization the
Broyden formula doés not require additional function
evaluations.

The application of the original Broyden update is not
trouble free. As has been observed by Zuberek [6], if some
functions are linear in some variables and if the corresponding
components of hy are nonzero, then the approximation to
constant derivatives are updated by nonzero values. We have
developed a method where the Broyden formula is applied to
each fj(x) as a single function. Associated with f;, a weighting
vector is defined by
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The approximation to fj'(x) is then updated by

T
fi(x, + By — fx)— € b,

, . (5)
(fj)k+1 - (fj)k + Th Y »
g Oy
where
A T ()]
qjk = [wlj hlk W hnk] .

If f; is linear in x;, we set wj; = 0. In circuit design problems, it
may be known that the performance function is linear in or
independent of some parameters over certain frequency or time
intervals. It can be verified that an approximate Jacobian given
by (5) also satisfies equation (3).

Special Iterations

The Broyden formula updates the approximate
gradients along the direction hy. If the directions of some
consecutive steps of optimization are collinear, the Broyden
update may not converge. To cure this problem, Powell [4]
suggested the method of "strictly linearly independent
directions" generated by special iterations. Unlike an ordinary
iteration where a step is taken in order to reduce the objective
function, a special iteration is intended to improve the gradient
approximation. After every p ordinary iterations the function
values are calculated at a point obtained using the formula
given by Powell [4] and a Broyden update is applied. We found
that p=2 is satisfactory, which is also suggested by other
authors (see, e.g., [4], [5] and [6]).

INTERFACING TO OPTIMIZATION ROUTINES

We have implemented our algorithm in a subroutine
which calls a user-written routine (e.g., a simulator) for function
values and calculates the approximate gradients required by a
gradient-based optimization routine. It has the following

features:

1. It is independent of and transparent to the optimizer
and the simulator.

2. The user controls how frequently perturbations are used

to obtain approximate gradients. Between these
perturbations the gradient approximation will be
updated using the Broyden formula and special
iterations.

3. Some sophisticated optimization methods employ
distinct stages of optimization. In this case, the user
may prescribe different patterns of gradient approxi-
mation for different stages. For example, when it is
close to a solution, approximate gradients of better
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accuracy may be desired, which can be achieved by
using perturbations more frequently.

4. Any linearity and sparsity present in the sensitivity
matrix can be exploited by assigning appropriate
weightings to the Broyden update.

Typically, a gradient-based optimizer calls a user’s
routine when function values and derivatives are needed. A
simple interface is to re-direct these calls to a routine which
implements gradient approximation. However, it can be made
more effective and efficient by suitable modifications to the
optimization routine.

1. Assuming that exact derivatives are available, an
optimization algorithm usually uses quite restrictive
rules for accepting and bounding the increment of an
iteration (hy in eqn. (2)). These rules should be relaxed
when the gradients are only approximate.

2. The optimization algorithm updates the gradients only
when an increment (a trial point) is accepted. If we start
with a very poor gradient approximation this may lead
to a dead cycle. Actually even if a trial point fails, the
function values at that point can and should still be used
to improve the gradient approximation.

These modifications will not alter the essential body of an
optimization algorithm but are necessarily algorithm-
dependent.

EXAMPLES OF APPLICATIONS

Our method has been applied to two general-purpose
algorithms for gradient-based nonlinear optimization. These
two algorithms, as described in [1] and [2], employ a 2-stage
combined LP and quasi-Newton method to solve linearly
constrained ¢; and minimax optimization problems,
respectively.

€, Optimization

Six problems of €; optimization have been tested. The
first one, due to Madsen [5], is a data-fitting problem involving 5
variables and 21 functions. The second one is a nonlinear €;
modelling problem, due to El-Attar et al. [7], of finding a third-
order model for a seventh-order system involving 6 variables
and 51 functions. The other four examples have been described
by Bandler et al. (Example 1, 2, 5 and the mesh network
example in [1]). The last example considers fault location of a
resistive mesh network consisting of 20 elements. The two
faulty elements deviate from their nominal values by 50
percent. Tolerances of 5 percent are associated with the other
elements. Using measurements on the circuit with a single
excitation, the actual faults have been identified.

The results are summarized in Table 1. In Case 1,
parameter perturbations are conducted at every optimization
iteration to approximate the gradients. This represents quite a
traditional approach to gradient approximation. In Case 2,
perturbations are used only for initialization. The subsequent
approximations are updated by the Broyden formula and special
iterations. Its advantage over Case 1 is clearly shown. The
optimization programs that we used employ a quasi-Newton
method to secure fast final convergence when a smooth valley is
detected near a solution (namely, Stage 2 of [1]). The accuracy
of the gradient approximation becomes crucial for such
iterations. For Case 3 in Table 1, different updating schemes
are used for two distinct stages. The approximate gradients are
updated by the Broyden formula and special iterations for Stage
1, and perturbations are employed for every Stage 2 iteration
where better accuracy is desired. The results show a similar



TABLE 1 ¢; OPTIMIZATION WITH GRADIENT

APPROXIMATIONS

Test Problem Case 1 Case 2 Case 3
1 54(9) 32(19) -
2 105(15) 63(40) -
3 71(17) 65(48) 54(24)
4 98(32) 54(43) 58(26)
5 89(17) 51(38) 54(26)
6 147(7) 34(10) -

Comments: The entries under each case are the number of
function evaluations. The entries in parentheses are the
corresponding numbers of optimization iterations.

number of function evaluations as Case 2 but the number of
iterations is smaller. Such a variant can be achieved very
conveniently with the flexibility of our algorithm.

Minimax Optimization

Two examples of practical circuit optimization are given
here.

Worst-case tolerance design [8] is considered for a
microwave amplifier consisting of an NEC70000 FET and five
transmission lines (Fig. 1). The FET is characterized by
tabulated scattering parameters. The design variables are the
characteristic impedance Z and the lengths ¢; of the
transmission lines. Assuming a 5 percent tolerance for each
length €;, we seek an optimally centered design to best satisfy
the specification given by 20 log |Sg1| = 7.625 dB between 6 GHz
and 18 GHz. The approximate gradient at the starting point is
used to predict the worst-case vertices. Working with these
vertices a solution is obtained. If at the solution we detect any
new worst-case vertices then they are added to the initial set.
This procedure is repeated until the set of selected vertices is
complete. The final solution is found to be [€; €3 €3 €4 €5 Z] =
[69.01 152.01 18.48 5.095 36.49 126.39], which required 280
function evaluations. Fig. 2 shows the worst-case envelope at
the solution. We have also solved the same problem with
derivatives being calculated entirely by numerical
differentiations, which required 585 function evaluations.

A large scale problem, namely a 12 GHz, 3-channel
multiplexer involving 45 nonlinear variables [9], is also solved.
A general multiplexer simulation program developed by
Bandler et al. [9] is efficiently utilized through our interface to
provide approximate gradients for the minimax optimizer. The
minimax error functions are created using specifications on
common port return loss and individual channel insertion
losses, simulated multiplexer responses and weighting factors.
The network parameters optimized include spacings, trans-
former ratios, cavity resonances and coupling coefficients. The
network responses at the starting point and at the solution are
- shown in Figs. 3 and 4, respectively. To reach the solution 476
response evaluations are performed. The solution reported in
[9] was obtained in more than 70 iterations, which would need
more than 3000 response evaluations to provide the required
exact gradient by numerical differentiations. The computa-
tional efficiency of the new algorithm is most pronounced in
solving such complex problems.
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Fig. 2 The worst-case envelope for the amplifier response.

CONCLUSIONS

The computational efficiency and structural flexibility
of a new algorithm for gradient approximation have been
demonstrated. Implementation of this algorithm in integration
with €; and minimax optimization have been illustrated.
Circuit examples of practical significance have been described.
The utilization of this algorithm in conjunction with a vast
variety of existing circuit simulators makes it effective and
practical to take advantage of the powerful tool of gradient-
based optimization in modern computer-aided design.
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Fig. 4 Responses of the multiplexer at the solution.
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