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An Automatic Decomposition Approach to
Optimization of Large Microwave Systems

JOHN W. BANDLER, FELLOW, IEEE, AND QI-JUN ZHANC+, STUDENT MEMBER, IEEE

,4fmfs-act — We present a novel and general technique applicable to the

optimization of large microwave systems. Using smrsitivity information

obtained from a suitable Monte Carlo analysis, we extract possible decom-

position properties which could otherwise he deduced only through a

detailed physical and topological investigation. The overall problem is

automatically separated into a sequence of subproblems, each being char-

acterized by the optimization of a subset of circuit functions w.r.t. vari-

ables which are sensitive to the selected responses. A heuristic algorithm

for automatic decomposition is developed. The decomposition patterns are

dynamically updated until a satisfactory solution is reached. The partition-

ing approach proposed by Kondoh for FET modeling problems is verified.

The technique was successfully tested on Iarge-scafe optimization of

microwave multiplexer involving 16 channels, 399 nonlinear functions,

and 240 variables.

I. INTRODUCTION

A SERIOUS CHALLENGE to researchers in micro-

wave CAD areas is due to the size of practical

microwave systems. Existing CAD techniques, mature

enough to handle systems of ordinary size, generally balk

at large circuits. The reasons for their failure include

prohibitive computer storage and CPU times required. A

frequent frustration with large-scale optimization is the

increased likelihood of stopping at an undesired local

optimum. Other difficulties, especially in prototype and

production tuning, are due to human inability to cope with

problems involving large numbers of independent vari-

ables to be adjusted simultaneously to meet a specified

response pattern over a wide frequency range.

Recently, FET modeling [1] and manifold multiplexer

design [2] problems were solved using appropriate decom-

position schemes. The success of these efforts motivated us

to pursue the generalization and automation of decomposi-

tion approaches for microwave optimization problems.

The concept of decomposition has been a traditional,

mathematically based vehicle for approaching large-scale

problems, e.g., in mathematical programming [3]-[6]; in

circuit analysis [7]–[13], design [3], andl fault diagnosis

[14]; and in optimal power flow [15], [16],, state estimation

[17], and real and reactive power optimization [18],
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Microwave engineers have their own special concerns

with dccornposition, as exposed in [1], [2] and [19]. Thor-

ough laboratory experimentation has to be performed be-

fore using certain function structures assumed in mathe-

matical programming theory. They do not take advantage

of topological analysis often exploited in the areas of

circuits and systems since microwave device models are

oriented more to physical than topological analysis. Unlike

power systems, most microwave responses are much more

complicated and highly nonlinear. It is often difficult for

microwave engineers to analytically indicate possible de-

composition patterns. To our knowledge, there does not

exist a general and abstract theory describing a decomposi-

tion approach to microwave circuit optimization not re-

quiring particular physical or topological knowledge of the

system.

In this paper, we present a novel technique applicable to

the optimization of large microwave systems. Using sensi-

tivity information obtained from a suitable Monte Carlo

analysi:s, we extract possible decomposition properties

which could otherwise be deduced only through a physical

and topological investigation. The overall problem is auto-

matically separated into a sequence of subproblems, each

being characterized by the optimization of a subset of

circuit functions w.r.t. variables which are sensitive to the

selected responses. Our suggested technique has been suc-

cessfully tested on microwave multiplexer involving up to

16 channels and 240 variables.

In Section II, we describe the basic concepts of decom-

position for circuit optimization problems. Using these

concepts, the partitioning approach for FET modeling

problems suggested by Kondoh [1] is verified. Section III

illustrates the automatic determination of suboptimization

problems. An automated decomposition algorithm for

large-scale microwave optimization is presented in Section

IV. In ISection V, the method is applied to the optimization

of microwave multiplexer. Interesting results demon-

stratin~; the procedure of automated decomposition for a
five-channel multiplexer are depicted in illustrative graphs.

The results of optimizing a 16-channel multiplexer using

our approach are provided.

II. THE DECOMPOSITION APPROACH

A. Circuit Optimization Problems

Let @= [@l +Z . . . +.] ~ represent the system parameters.

The circuit responses, denoted as F~(@, u), k =1,2,. . . . nF,

are fu lnctions of variables @ and frequency a. In an
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optimization problem for circuit design, the objective func-

tion usual] y involves a set of nonlinear error functions

j(+), j=l$z ,’””, m. Typically, the error functions repre-

sent the weighted differences between circuit responses

and given specifications in the form

wuk(u)(Fk(+, u)-suk(@))

-w.k(~)(~,(oj~) -~L,(@)) (1)

k={l,2,. .”, nF}

where Suk and S~~ are upper and lower specifications,

respectively, and wu~ and WLk are weighting factors.

Suppose sets I and J are defined as

14{1,2,. .-, n} (2)

J~{l,2,0. ”,m}. (3)

The overall optimization problem, e.g., a minimax optimi-

zation, is

m~,~;e ~~y$ ( @). (4)
(,

B. Description of the Decomposition Approach

In a decomposition approach, one attempts to reach the

overall solution by solving a sequence of subproblems. A

typical subproblem is characterized by

mfii~~e ~eajf ( ~ ) (5)
,,

where Is and JS are subsets of I and J, respectively.

The basic idea for decomposition is to decouple a vari-

able ~, from a function f, if the interaction between them

is weak. A subproblem contains only the sensitively related

variables and functions. A proper arrangement of the

sequence of different subproblems to be solved is often

important to ensure convergence and efficiency.

C. Sensitivity Analysis

We perform sensitivity analysis at a set of randomly

chosen points @’, 1=1,2, . . . . A measure of the interaction

between $, and ~ is defined as

(6)

where 4! and Lo are used for scaling. All the Sl~, i =

1,2,. . . ,n and j=l,2,. .”, m constitute an n X m sensitiv-

ity matrix S. It is reasonable to conclude that @l and ~

can be decoupled if S,, is very small.

D. Grouping of Variables and Functions

The examination of various interaction patterns be-

tween ~,, i = I, and J, j E J, results in the breakdown of

all variables o into p groups identified by index sets

11, 12,. . . , Ip, and all functions ~ into q groups identified
by sets Jl, Jz,. ””, J~. We have

I=11U12U. ..UIP (7)

and

J= JIUJz U.. .UJq. (8)

The partitioning of o or ~ can be achieved either

manually or automatically. The manual procedure corre-

sponds to the manual determinations of variable groups

and function groups using a priori knowledge. Such

knowledge is typically obtained through extensive labora-

tory experiment and an excellent understanding of the

particular device. The automatic procedure corresponds to

the computerized partitioning of o or ~ based upon the

sensitivity matrix S.

As an example for manual partitioning of ~, we con-

sider an N-channel multiplexer. The common port return

loss and channel insertion loss responses associated with

the same channel can be grouped together since their

behavior is similarly affected by variables @ Therefore, we

have N groups of functions, i.e., q = N. J1 contains indices

of error functions related to channel 1, 1=1,2,. .0, N.

E. Automatic Partitioning of Variables @

Suppose the function groups have been determined, i.e.,

J has been decomposed into .Jl, 1=1,2,”””, q. We define

an n X q matrix C whose (i, l)th component is

C*[ ~ ~ s,,. (9)
j=.l(

A very small value of an entry in the C matrix, say C,/,

implies that the i th variable and the lth function group are

weakly interconnected.

Let C,,e represent the average value of all components

in the C matrix. For a given factor A, A >0, the matrix is

made sparse such that Cl, is set to zero if it is less than

Acave. By making C sparse, insensitive variables are

eliminated and weak interactions between variables and

function groups are decoupled.

Two variables O, and $, belong to the same group if

they interact only with the same groups of functions, i.e., if

the i th and the j th rows of C have the same zero/nonzero

pattern. A thorough computerized checking of the C ma-

trix results in the automatic determination of index sets Ik,

k=l,2, ”.”, p.

F. Example of Matrix C

Consider the fictitious relations between variables and

function groups shown in Fig. l(a). The functions ~ have

been arranged into five groups. The C matrix (already

made sparse) is

22. 100. 32. 0. 0.

0. 100. 0. 0. 0.

0. 100. 0. 0. 0.

0. 0. 83. 100. 0.
0. 0. 0. 0. 100.
0. 0. 100. 86. 0.
0. 0. 100. 0. 0.

0. 78. 100. 55. 0.
100. 0. 0. 0. 0.

(lo)

As seen from Fig. l(a), +2 and +3 both affect only the

second function group. In the C matrix, rows 2 and 3 both

have only one nonzero located at the second column.
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(a)

+, 4, !$,
k 1, icl, 1613

(b)

Fig. 1. A flctitcnrs example showing only the strong interconnections

between variables and function groups (a) System configuration corre-
sponding to matrix C. (b) System configuration corresponding to

matrix D.

Therefore, variables +Z and +3 are grouped together. Simi-

larly, variables @4 and +G belong to the same group. The

resulting index sets for variable groups are 11= {9}, 12 =

{2, 3}, 1,= {7}, 1,= {5}, 1,= {4,6}, I,= {l}, and I,=

{8}. The index sets have been ordered such .that the kth

variable group correlates with no more function groups

than the (k + I)th variable group does, k =1,2,. ..,6. Such

an arrangement is made to keep subsecluent description

simple.

G. Decomposition Dictionary

To manipulate directly with groups of variables and

groups of functions, we construct a p x q dictionary de-

composition matrix D. Define the (k, 1)th component of D

as

(11)

If DA, is zero, variables in the k th group are decoupled

from functions in the lth group. Otherwise if D~, # O, we

say that ~,, i & 1~, and ~, j F J,, are correlated. The

decomposition dictionary gives a clear picture of the corre-

lation patterns between groups of variables and functions,

facilitating the automatic determination of suboptimiza-

tion problems. The ideal dictionary is a diagonal matrix

where a subproblem simply corresponds to a diagonal

element. In this case, only one variable group and one

functicm group are involved in a subproblem. If a diagonal

dictionary can be obtained without artificially making C

sparse (i.e., using sparse factor A = O), then the system is

complete] y decomposable [20]. For a completely decom-

posable system, different subproblems can be calculated in

parallel.

H. Example of the Decomposition Dictionary

Consider the previous example with the resulting C

matrix defined in (10). According to the index sets Ik,

k=l,2,.. . ,7, the decomposition dictionary D can be ob-

tained from C by adding rows 2 and 3, and adding rows 4

and 6, respectively. The relations between groups of vari-

ables amd functions are shown in Fig. l(b). The resulting

dictionary is

/100. o. 0. 0. 0.

0. 200. 0. 0. 0.

0. 0. 100. 0. 0.

0. 0. 0. 0. 100. (12)

o. 0. 180. 180. 0.
20. 100. 30. 0. 0.

0. 70. 100. 50. 0.,

where each entry has been rounded to multiples of 10.

I. Decomposition for FET Device Models

Through extensive experiment on practical FET devices,

Kondoh [1] summarized eight suboptimization problems

which can be repeatedly solved to yield a FET model with

improved accuracy. The equivalent circuit is shown in Fig.

2. We lperform sensitivity analysis at ten randomly chosen

parameter points in the 10 percent neighborhood of @o, @o

representing the true value listed in [1]. The function ~

used ir~ (6) is defined as the weighted difference between

the calculated and the measured values of the modulus or

the phase of a particular S parameter. The entire frequency

band for calculating S’ is [1.5,26.5] GHz. Functions associ-

ated with the same S parameter are grouped together.

Table I shows the C matrix of (9) before being made

sparse, indicating strong as well as weak interconnections

between each individual parameter and different groups of

functions. In the table, each row has been scaled. Table II

provides an example of the decomposition dictionary

calculated and normalized from Table I. Table II yields

eight subproblems which agree with and further verify the

decomposition scheme proposed in [1]. When the C matrix

is made sparse, certain entries, whose values are only

slightly less than the dominant ones, are also set to zero.

Therefore, as mentioned in [1], repeated cycling and care-

ful ordering of the eight suboptimizations are necessary.
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)’s
L’

source
lead

Fig. 2. A FET equwalent circuit

TABLE I

TH~ C MATRIX FOR THE FET MODEL

Function Groups

Frequency Band Variables s,~ S21 S,* S2Q

% 1855 100.00 87.55 6833

c Ks 100.00 89.74 67.98 62.25

entire C* 4.88 67.74 45.73 100.00

band Cdg 4.24 48.66 100.00 6127

R, 35.53 37.14 100.00 5.88

Rd, 1744 97.6a 70.51 100.00

T 31.91 100.00 36.61 59.31

RE 10000 50.67 24.87 29,69

upper h 34.65 74.31 85.85 100.00

half R, 100.00 65.63 8843 39.53

band Lg 100,00 87.85 57.16 37.44

Ld 9.99 97.86 61.78 100.00

h 62,94 31.31 10000 21.99

TABLE II
NORMALIZ~D DECOMPOSITION DICTIONARY D

Functicm Groups

Frequency Band Variable Groups s,~ s~~ Slz S22

R~,, Cd, 0.00 0.00 000 1.00

entire % Loo 0.00 000 0.00

band Cdg, R. 0.00 0.00 100 0.00

gm 0.00 1.00 000 0.00

upper % Ld 0.00 0.00 000 1.00

half Ra R,, Lg 1.00 0.00 000 0.00

band L, 0.00 0.00 1,00 0.00

. 0.00 1.00 000 0.00

The feasibility of computerized automatic decomposition

is demonstrated by this example.

III. AUTOMATIC DETERMINATION OF

SUBOPTIMIZATION PROBLEMS

A. Reference Function Group and Candidate Variable Group

Usually, the decomposition dictionary is not diagonal. A

suboptimization often involves several function groups and

several variable groups. Among the function groups in-

volved, there is a key group which we call the reference

group. Such a group typically contains the worst error

function. The reference function group is used to initiate a

subproblem as described in the subsequent text.

Suppose the index set J[ indicates the reference function

group. The candidate groups of variables to be used for the

suboptimization are those which affect ~, j = J1.

In the decomposition dictionary, the lth column associ-

ates with the reference function group. Rows having a

nonzero in the lth column are candidate rows, each corre-

sponding to a candidate variable group. Take Fig. l(b) as

an example. Suppose that the function group J2 is the

reference group, i.e., 1= 2. The candidate groups of vari-

ables are 12, IG, and Iv since they correlate with the

reference function group. Correspondingly, in the D ma-

trix of (12), rows 2, 6, and 7 are candidate rows since they

all have a nonzero in the second column.

B. Determination of a Suboptimization Problem

An automatic procedure for the determination of Is and

J’ for the suboptimization of (5) has been developed.

Suppose J1 indicates the reference function group. For a

selected candidate variable group, e.g., the one correspond-

ing to set 1A, the index set J’ indicates the union of all

function groups which correlate with variable group k. 1$

identifies variables in the k th group, as well as all other

variables which correlate with functions only within ~,

j = Js. Also, Z’ excludes variables not correlating with any

active functions in ~, j = Js. A function f is said to be

active if

f> o.8Mf when &ff >0

f > 1.25Mt when M_f <0 (13)

where

M~ ~ ~m~aj~. (14)

C. Priority of Candidate Variable Groups

It can be seen that a pair of ( I’, J’) associate with a pair

of (1A, J,). For a selected reference function group, each

candidate variable group leads to a subproblem. The se-

quence of subproblems used to penalize ~, j ● J,, is

determined by the priority of all resulting candidates.

Since each candidate determines the function set J’ for

a suboptimization, the priority of the candidate is based

upon the pattern of error functions it will affect, i.e.,

patterns of ~, j c J’. Firstly, the fewer the number of

function groups in J’, the higher the priority. Secondly,

the worse the overall error functions in J’, the higher the

priority. The overall error functions in Js are ranked by an

appropriate measure, e.g., the generalized least p th func-

tion (GLP) [21].

The priority of candidate variable groups can be simi-

larly determined in the decomposition dictionary. The

fewer the number of nonzeros that exist in a candidate

row, the higher the priority. For two candidate rows con-

taining an equal number of nonzeros, a higher priority is
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given to the candidate having a larger value in its gener-

alized least p th function.

D. Example

For the example of Fig. 1, suppose thlat the maximum

error functions within each of the five function groups are

[3.8 4. 1. – 1. 2.]. Suppose that we choose the worst

group, i.e., group 2, as the reference function group.

According to our previous discussions, th~ecandidate vari-

able groups are 1;, ZG, and IT. Iz has the highest priority

since it affects fewer (i.e., only one) function groups’ than

16 or Z, does. The functions affected by variables in IG (or

l,)are~, jG.lS=.ll U.J2U.13 (or J’=.lz U.13u J4). 16

has a higher priority than I, since the overall error func-

tions in JI u Jz U J3 are worse than in Jz U J~ U Jo.

Correspondingly, in the decomposition dictionary of

(12), rows 2,6, and 7 are candidates. Row 2 has the highest

priority since it contains fewer nonzeros than others. Row

6 has the second highest priority since its GLP value is

larger than the GLP value for row 7.

To formulate a suboptimization problem, i.e., to decide

on 1’ and J’, we choose a pair of (1~, Jl), e.g., candidate

variable group Ic and reference function group Jz. ‘The

index set JS = J1 U Jz U J3. The variable index set 1S in-

cludes 16 (indicating the candidate variable group), as well

as II, 12, and 13 (indicating all other variables affecting

functions only within J’). Further, 13 can be excluded

from. 1S since variables in 13 do not affect active functions

in J’. Therefore, we have 1S= 16 U 11 U I:?.

E. Circuit Responses and Sample Frequencies

When a subset of error functions ~(~), j ● J’, are

included in a subproblem, the necessary circuit response

functions F.(O$ u~), a G {1,2, - . .,n~} and frequency

points u~, bc {1,2, ” “ “, n ~ }, should be selected for circuit

simulation programs. Thk is accomplished using a coding

scheme representing the one-to-one correspondence be-

tween j and (a, b). We define weighting factor matrices
W’u (for upper specification) and W~ (for lower specifica-

tion). Both matrices are n ~ by n.. The (a, b)th component

of Wu and W~ are the weighting factors Wua( u~) and

W,a(uh), respectively, as defined in (1). The quantity

Wua( @/,) or ~La( @/,) is zero if no uPPer or lower specifica-
tion is imposed on F.(O, a~). The coding scheme relating

the index of ~ to the indices of nonzeros in Wu and W~ is

constructed by systematically scanning though Wu and

then WI,, respectively.

IV. AN AUTOMATIC DECOMPOSITION ALGORITHM

An automatic decomposition algorithm for optimization

of microwave systems has been developed and imple-

mented. The algorithm heuristically decides when to up-

date the sensitivity matrix and the decomposition diction-

ary. The formulation and the sequence of suboptimization

problems are dynamically determined. The degree of de-

composition is reduced as the system converges to its

overall solution. As a special case, if all variables interact

with al I functions, our approach solves only one subprob-

lem, this being identical to the original overall optimiza-

tion.

Step 1:

Comment:

Step 2;

Comm6wt:

Step 3:

Comment:

Step 4:

Comment:

Step 5:

Commeut;

Step 6;

Comment;

Step 7:

Comme)nt:

Initialize sparse factor A. Calculate the sensi -

tivity matrix S and the decomposition dict-

ionary D. Calculate ~.

The initial sensitivity matrix can be obtained

from a suitable Monte Carlo sensitivity analy-

sis performed off-line. All error functions are

calculated in this step.

Define 1 such that

The lth function group contains the worst

response. Such a function group will be fre-

quently chosen as the reference group to be

penalized.

For the given 1, determine the sequence of

candidate rows in D. Rank the candidates @

decreasing priority. Set k = O.

The lth function group is the reference group

to be penalized. All variable groups corre-

lating with the lth function group are consid-

ered as candidates.

If k = O then set k to the row index of the

first candidate; otherwise set k to the row

index of the next candidate. If such a candi-

date does not exist, then go to step 8.

The candidate groups of variables are sequen-

tially selected. Each entry into this step results

in a selection of a candidate with a lower

priority than the current one.

Define Z’ and J’ using the current k, 1. If 1”

and J: are identical with their previous val-

ues, then go to step 4. Solve the suboptimiza-

tion problem of (5). Terminate the optimiza-

tion if

A subproblem is formulated and solved in this

step. By checking the functions not covered in

the present suboptimization, any significant

deterioration in the overall objective function

is prevented. The factor A’ can be, e.g., 1.2.

If l’= I and J’= J, then stop.

The program terminates following the comple-

tion of an overall optimization which is con-

sidered as the last subproblem.

Calculate ~. Calculate

Go to step 5.

An overall simulation is performed. By going

to step 5, the current reference function group

can be continuously penalized in the next
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Fig. 3. Return and insertion loss res~onses of the five-channel multi.

20

~lexer for each suboptimization. The’20-dB specification line indicates
which channel(s) M to be optimized in the next subproblem, The
variables to be selected are indicated, e.g., 35 representing coupling

35, d representing the distance of the corresponding channel filterM
from the short circuit main cascade termmation. The previously opti-
mized channels are highlighted by thick response curves. (a) Responses

at the starting point. (b) Responses after the first suboptimlzation. (c)
Responses after the second suboptimlzation. (d) Responses after the

third suboptlmlzatlon. (e) Responses at the optimum solution.
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subproblem even if this group does not in-

clude the worst error functions.

Step 8: If

max ~ < ~~ .fi
jEJ’

then go to step 2. If A = O, then stop; other-

wise, update S, reduce A, ulpdate dictionary

L?, and go to step 3.

Comment: When the selection of a candidate fails, a new

sequence of candidates will be defined by

going to step 2 or 3. By reducing the sparse

factor & the degree of decomposition is

reduced as the overall solution is being

approached. The reference function group

will be readjusted if the existing one does

not contain the maximum error function.

For completely decomposable problems, the

terminating conditions in step 6 will not be

satisfied and the program will exit from

step 8.

While the theory in the previous sections is applicable to

general optimization problems such as the least pth opti-

mization, the algorithm described in this section is particu-

larly suitable for the minimax optimization defined by (4).

Both variables and functions are allowed to pverlap be-

tween different subproblems. Convergence of the al-

gorithm is not theoretically guaranteed.

V. LARGE-SCALE OPTIMIZATION OF MULTIPLEXER

The automatic decomposition technique was tested on

the optimization of microwave multiplexer used in satel-

lite communications. Specifications were imposed on the

common port r@urn loss and individual channel insertion

loss functions. Each suboptirnization was solved using a

recent minimax algorithm [22]. Until our recent paper on

multiplexer [2], the reported design and manufacturing of

these devices was limited to 12 channels [23]–[27].

A contiguous band five-channel multiplexer was specifi-

cally optimized to illustrate the novel process of automatic

decomposition, as shown in Fig. 3. Functions associated

with the same channel are grouped together. Variables for

each channel include six coupling parameters, six cavity

resonances, input and output transformer ratios (n ~ and

n*), and the distance measure from the channel filter to

the short circuit main cascade termination. Tlie overall

problem involved 75 variables and 124 nonlinear func-

tions. Fig. 3(a)–(d) shows the multiplexer responses for the

first three suboptimizations. Eleven subopt imitations-were

used reaching the optimal solution shown in Fig. 3(e). The

final subproblem was the overall optimization.

We also tested our approach on a 16-channel multi-

plexer involving 240 variables and 399 nonlinear functions.,

The responses at the starting point are shlown in Fig. 4.

Only ten suboptimizations were performed before reaching

the response of Fig. 5. Then a full optimization was

activated, resulting in all responses satisfying their specifi-

cations as shown in Fig. 6. A comparison between the

Fig,

FREqUFNCY (MHZ]

4. Return and insertion loss responses of the 16-channel multi-
plexer before optimization.

FREQUENCY (MHZ]

Fig, 5. Return and insertion IOSS responses of the 16-channel multi-
plexer after ten suboptirnizations. Each of the ten su~optimizations

i nvolvcd responses associated with only one channel and no more than,-
15 variables:
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Fig. 6. Return and inwrtion loss responses of the 16-channel multi-
plexer at the overall solution. All design specifications are satisfied.

optimal design with and without decomposition is pro-

vided in Table 11[1.When used to obtain a good starting

point for subsequent optimization, the decomposition ap-

proach offers considerable reductions in both CPU time

and StOriige. The feasibility of obtaining a near optimum
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TABLE III

CCSNWARISONOF 16-CHANNF,L MULrIPI.EXER OPTIMIZATION WITH
ANL) WITHOUT D~COMKISf’rION

P.rpme Reduction in Criteria for With W,thout

of Objective Comparison Demrnp Decomp

Optimization+ Function

to provide a from CPU time * 99 250

good starting 13,46

pOint for to .wrk,ng space 2,197 483,036

further opti- 2.4 “eededt

mization

to obtah a from CPU time ● 651 553

near optimum 13.46

solution to work,ng space 73,972 483,036

032 neededt

to obtain from CPUtime” 1045 1289
optimum 13.46

solution to working space 483>036 483,036

-009 neededt

‘ L)iffcrent sparse factors k have been used to control the degree of

ckxompositmn for the three different purposes.

“Sccondson the FPS-264 mainframe.
‘Machine memory units (one unit per red number) required by the

minitnax optimization package [22]

for large problems using computers with memory limita-

tions is observed from the table. Such a near optimum is

obtained at the cost of increased CPU time. When close to

the desired solution, the sizes of the subproblems may

approach that of the overall problem. In this case, the

performance of optimization does not differ significantly

with or without decomposition, unless the original problem

is almost completely decomposable.

VI. CONCLUSIONS

We have presented an automated decomposition ap-
proach for optimization of large microwave systems. Com-

pared with the existing decomposition methods, the novelty

of our approach lies in its generality in terms of device

independency and its automation. Advantages of the ap-

proach are 1) a very significant saving of CPU time

and/or computer storage and 2) efficient decomposition

by automation. By partitioning the overall problem into

smaller ones, the approach promises to provide a basis for

computer-assisted tuning. It contributes positively towards

future general computer software for large-scale optimiza-

tion of microwave systems.
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