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Introduction

In recent contributions [1, 2], Director and Rohrer discussed the
concept of the ad joint network and its relevance to automated design of
networks in the frequency and time domains. Employing Tellegen’s theorem
[3, 4] they demonstrated how the gradient vector for a least squares type
of response objactive function with respect to all existing (and nonexist-
ing, if desired) elements could be evaluated from only two complete analyses,
one of the given network and one of its topological Iy equivalent ad joint
network, In the frequency dgmain [2] they considered both reciprocal and
nonreciprocal lumped, linear and time invariant elements. More recently
[5], it was shown how their approach could be implemented for least pth and
minimax response objective function s[6].

The purpose of this paper is to show how the ad joint network approach
may be used to advantage in gradient calculations for a broad class of multi-
port commensurate and noncommensurate structures of interest to microwave
engineers. The results can then be incorporated into an automatic optimiza-
tion algorithm in which such functions as gain, insertion loss, reflection
coefficient or any other desired response function can be optimized to meet
least pth or minimax performance specifications. The essence of this approach
is that al I required partial derivatives of the objective function may be
obtained from the results of at most two complete analyses of the network
at each frequency regardless of the number of variable parameters and with-
out actual Iy perturbing them. The computational inefficiency and uncer-
tainty inherent in the numerical estimation of partial derivatives by per-
turbation could be circumvented and the use of efficient gradient methods
of minimization [6] could more profitably be exploited in producing optimal
des i gns.

Numerical Example

(1)

Referring to Figure I suppose we have to minimize

u = id i lL(’”d) - ‘(@d)l p

where L is the insertion loss between Rg and RL
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.
L is the desired insertion loss between Rg and RL

fld is a set of discrete frequencies IJId

p is a positive integer

that’ is to say to agDroximate a sDecif ied insertion loss unction in a least
pth sense over a set’of frequencies in the range of interest, where

L(wd) = - 20 log10 ‘L(jwd) (Rg + RL)
~

(2)

Consider the noncommensurate network shown in Figure 2 having 13
variables. An objective function of the form of (1) was chosen with C = O,

p = 10 and Qd. consisting of .5, .6, .7, .8, .9 and 1.0 GHZ. For the element
values shown In Figure 2 U = 3,04383 x 108. Table I shows the components of
the gradient vector VU estimated from Iz and .001% incremental changes in the
parameters compared ;ith those obtained using the ad joint network approach
with two network analyses,

It is readily shown that for design on the reflection coefficient
basis only one analysis is required. In the case of Iossless two-ports (such
as the present example) it may thus be preferable to design on this basis
rather than insertion loss.

COnc I us i ons

Growing new elements in the manner of Director and Rohrer[2] can also
be envisaged. One has to be nmre careful at microwave frequencies, however,
concerning the location and in choosing the nature of the element, i.e.,
distributed or lumped. It may be more convenient in some instances to ob-
tain the partial derivatives with respect to geometrical dimensions rather
than characteristic impedance or admittance. Since Tellegen!s theorem can
also be written in terms of wave variables we can carry out the preceding
analysis in terms of the scattering matrix.
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Figure I Network for insertion loss design.

&
Id40$2

5 cm

-r

3nH Ioofl

r

J-

/ +’
~ 4Py

2“ 1-
25 fl 10n H

‘--T 50Q
—8cm — —Icmd

Figure 2 Noncommensurate network having 13 variables terminated in 50fl
and 100ti.
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