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Abstract

A new and highly efficient algorithm for
one sided nonlinear 1, optimization is
presented. The new method is used as an
integral part of an approach to design

centering and yield enhancement.

Introduction

Gradient-based optimization techniques

have Dbecome powerful tools serving
practicing engineers in today's
computer-aided design. The recent
approach due to Hald and Madsen [1-3] has

proved highly successful in solving minimax
and 1, problems. Following the Hald and
Madsen approach, we have developed a
nonlinear one-sided 1, algorithm which
combines a trust region Gauss-Newton method
and a quasi-Newton method.

The one-sided 1, optimization problem

can be stated as

minimize U(x) = z fj(x) , (1)

x €3 (x)
where x = [x, x, ... x]*” is a set of
variables, £ = [f, f, ] is a set of

nonlinear functions, and

J(x) ={3 | £(x) >0}
identifies the set of positive functions.
In circuit design £ may represent error
functions arising from upper and lower
specifications (e.g., Bandler et al. [4]
have considered multiplexer design by the
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one-sided 1, optimization). We present an
approach to design centering and yield
enhancement of which the one-sided 1

optimization constitutes an integral part.
The new algorithm

The method we propose for solving (1) is

a hybrid method combining a first order
method with an appropriate second order
method. The user must supply first order
derivatives of the functions involved
(besides the function values) whereas the
second order derivatives are approximated
automatically by the algorithm.

The first order method is denoted Method 1
and the second order method is called
Method 2.

Method 1 is the féllowing iteration: At
the k'th iterate = a local bound A, is
given. In order to find a better estimate
of a solution the following linearized
problem is solved,

D iE, ) ) "h)

jeJy

minimize U (x,,h)

subject to IIh"°° < A, where

Je = Jp(xth) = {3 | £5(x,) + £,(x)Th >0 }.
This is equivalent with the following
problem,

m
minimize 2 'y (2a)
h,y i=1
subject to

! T .
¥ 2 fj(xk)+fj(xk) h, j=11,2,..., m (2b)
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=12,..., m (2¢)

v

1,2,..., n (2d)

where fj' denotes the gradient vector of fj
x. This subproblem can be solved by

The

w.r.t.
a standard linear programming routine.
(2b) (2¢c)
piecewise linearized model for each £y, as
+ (£,9)"h ).
J(x,+h) is approximated by J, (x,+h) which is

constraints and define a

y; = max {0, £ The index set
updated at each step of solving the linear
program.

In contrast, a more conventional approach

to the one-sided problem is to define f; =

max{O,fj} and minimize the 11 norm of fj+

using a conventional (two-sided) algorithm.
This approach assumes
1y T
Yy fj + (fj )'h
Yy =0
throughout an

either =
or
iteration of solving one

subproblem. In other words, J(x) 1is
approximated by

Jx) = {31 £(x) >0}
which will not be updated for an entire
In by

allowing the index set J to vary within an

iteration. our new algorithm,

iteration, the discontinuity at Yy 0 is
taken into account in solving the
subproblem.

The set of constraints (2d) defines a

trust region in which the linearized model
is considered to be a good approximation to
the nonlinear functions. The local bounc
Ax is adjusted after each iteration based
on the goodness of the linearized model,
using criteria similar to those described
[4].

Method 2 applies a quasi-Newton method
(BFGS) to

equations given by

Y £ (x) + D 8.£ (x)

jeg jez

in

solving a set of optimality

0’

£.(x) =0, je z (3)

1796

where Z identifies the set of functions
that at the The
multipliers Sj, jez, must satisfy 12%20.
These

are zero optimum.

optimality equations result from
applying the Kuhn-Tucker conditions to the

one-sided 1, problem. They are different

from, but similar to the optimality
equations for the (two-sided) 1, problem
[4].

The Hybrid Method.

Hald & Madsen [1-3],
the trust region
(Method 1)

Based on the theory of
our algorithm combines
Gauss-Newton method

with the quasi-Newton iteration

(Method 2).

away from a

Method 1 is intended to be used
it should
provide the global convergence, and Method

solution, i.e.
2 is used when a solution is approached to
obtain a fast local convergence,

Method 1 is used,

identifying the functions which are zero at

Initially, and the set 2
the solution is estimated. When a local
be the

is set up using the

minimum seems to
(3)
current estimate of 2,
Method 2

iteration

approached
nonlinear system
and a switch to
If the Method 2
(e.g. if the
then the safe

is made.

is unsuccessful
estimate of Zz is wrong),

method, Method 1, is used again. Several
switches between the two methods may take
place.

It should be

equality and inequality constraints can be

mentioned that linear

readily incorporated into the algorithm

(similarly to [4]).
Design centering and yield enhancement

One of the

one-sided 1, algorithm is found in circuit
’

important application
design centering and yield enhancement [5].

Given a set of circuit parameters ¢ and
a set of performance specifications, we can
calculate a set of error functions e(¢)
and a generalized .1p function v(e(¢))
[5,61. The of the
acceptability ¢. A v

sign v

of

signifies

nonpositive



indicates that all the specifications are
satisfied, whereas a negative v indicates

that some specifications are violated.

Given a nominal design ¢°, we can
generate some Monte Carlo points, denoted
by ¢, kx =1, 2,..., K, according to the

statistical distribution of the toleranced
Let the total number
the

circuit parameters.
of (o*)
specifications be K

points which violate

given by the total

faii’
of vi(o*) .
discrete estimate of the yield is given by
(K - Koy, /K.

significance to circuit engineers to find a

number nonpositive Then a

It is a matter of great

centered design ¢° which minimizes K

fail*

However, a direct minimization of K

which

fail’

is a discrete number, using

gradient-based techniques is not practical.

Consider the one-sided 1, sum defined as

U(q,o) = z akvk ’

(4)

keJd
where v, = v(¢*) and J = { k | v, > 0 }.
Note that the variables to be optimized
here are the nominal point ¢°. In (4) we

define a set of multipliers &, which are
calculated at the starting point as o, =
1/v, and kept constant during optimization.
The one-sided 1, objective function U(¢%)
(4) fail
of Monte Carlo points that fail

as defined in becomes precisely K
(the number
to meet the

By

specifications) at the starting

point. minimizing U(¢°)which is used

as a smooth and convex interpolating

we wish to achieve a
The

in this

function for Keoirr

centered design and an enhanced yield.

one-sided 1, algorithm described

paper serves as a powerful tool.

Consider as an example a Chebyshev

lowpass filter which has 11 parameters [7].
We assume a 1.5% relative tolerance with a
each circuit

uniform distribution for

parameter., The nominal design standard
It

The centered solution

synthesis was used as a starting point.
has a yield of 49%.
found by our algorithm improves the yield
to 84%.

The solution, as shown in Table 1,
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was achieved by a sequence of three design
with a total CPU time of 66 seconds
on the VAX 8600.

cycles,

TABLE 1
One sided 1; centering of Singhal and
Pinel's filter

Nominal Values

Component
Case 1 Case 2 Case 3 Case 4
X1 0.2251 0.21954 0.21705 0.21530
X7 0.2494 0.25157 0.24677 0.23838
X3 0.2523 0.25529 0.24784 0.24120
x4 0.2494 0.24807 0.24019 0.23687
X5 0.2251 0.22042 0.21753 0.21335
Xg 0.2149 0.22628 0.23565 0.23093
x7 0.3636 0.36739 0.37212 0.38224
xg 0.3761 0.36929 0.38012 0.39023
xg 0.3761 0.37341 0.38370 0.39378
X10 0.3636 0.36732 0.37716 0.38248
Xx]] 0.2149 0.22575 0.22127 0.23129
Yield 49% 78% 80% 84y
Number of multiple 50 100 100
circuits used
Starting point Case 1 Case 2 Case 3
Number of iterations 16 18 13
CPU time (VAX 8600) 10 sec. 30 sec. 26 sec.

A uniformly distributed 1.5% relative tolerance is
assumed for each component. The yield in this
table was estimated by Monte Carlo analyses with
300 samples. The parameter values in Case 1 were
obtained by standard filter synthesis [7].
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