Integrated Model Parameter Extraction Using Large-Scale Optimization Concepts

JOHN W. BANDLER, FELLOW, IEEE, SHAO HUA CHEN, MEMBER, IEEE, SHEN YE, STUDENT MEMBER, IEEE, AND QI-JUN ZHANG, MEMBER, IEEE

Abstract — This paper presents a robust approach to model parameter extraction. The approach not only attempts to match dc and ac measurements under different bias conditions simultaneously, but also employs the dc characteristics of the device as constraints on bias-dependent parameters, hence improving the uniqueness and reliability of the solution. The approach is an expansion of the hierarchical modeling techniques recently proposed by Bandler and Chen. Based on Bandler and Zhang's automatic decomposition concepts for large-scale optimization, a sequential model building method is proposed which, combined with powerful l_1 optimization techniques, can be used to establish a model with simple topology and sufficient accuracy.

Practical FET models proposed by Materka and Kacprzak and by Curtice and Ettenberg are used to illustrate our formulation. A detailed numerical example based on the Materka and Kacprzak model is presented which has up to 28 optimization variables and 414 nonlinear error functions. The results show that a unique solution can be reached even after perturbing the original starting point (initial model parameter values) by 20 to 200 percent. The results also demonstrate the effectiveness of applying the sequential model building method to the FET modeling problem.

I. INTRODUCTION

MODEL parameter extraction, i.e., the determination of equivalent circuit parameters from dc, RF, and microwave measurements on devices (such as FET's), is of fundamental importance to microwave circuit designers. Conventionally, we seek a set of model parameters which minimizes the difference between the model responses and the measurements. To alleviate indeterminacy as well as for simplicity, techniques have been implemented (e.g., [1]-[3]) which separate the dc, low-frequency, and high-frequency measurements and divide the model parameters into corresponding subsets. This defines a set of subproblems to be solved sequentially. Such a sequentially decoupled solution, however, may not be reliable: a parameter determined solely from dc measurements may not be suitable for the purpose of microwave simulation, and the information contained in ac measurements is not fully utilized.

The multicircuit algorithm [4], [5] can improve the uniqueness of the solution by simultaneously processing multiple sets of S-parameter measurements made under different bias conditions. However, the authors [4], [5] assumed for computational purposes that the model parameters were either completely bias-independent or arbitrarily bias-dependent.

The approach presented in this paper not only attempts to match dc and ac measurements simultaneously, but also employs the dc characteristics of the device as constraints on the bias-dependent parameters. This enables us to use more efficiently the information contained in dc and nonzero frequency measurements and to reduce the degrees of freedom by imposing constraints on bias-dependent parameters. In this way we aim at improving the uniqueness and reliability of the solution.

Bandler and Zhang [6] have proposed a decomposition dictionary to reveal the interdependency between functions and their variables. In this paper, such a dictionary and the powerful l_1 optimization algorithm [7] are integrated to explore the relations between the model responses and model parameters during the modeling process, so that possible model defects can be overcome sequentially. In other words, we start the modeling process with the simplest model structure, subsequently adding elements according to the l_1 optimization result and the dictionary for a better match between the model responses and the measurements.

In Section II, through a simple circuit example, we demonstrate the feasibility and usefulness of integrating dc and ac modeling in one optimization problem. In Section III, general and abstract definitions for the model parameters are given. The definitions are illustrated by examples of significant interest, namely the Materka and Kacprzak FET model [2] and the Curtice and Ettenberg FET model [8]. The modeling optimization problem with both dc and ac responses is formulated in Section IV. In Section V, we present the sequential model building approach. In Section VI, a FET modeling example using the Materka and Kacprzak model is described in detail to demonstrate our new approach.

Manuscript received April 11, 1988; revised August 23, 1988. This work was supported in part by Optimization Systems Associates Inc. and in part by the Natural Sciences and Engineering Research Council of Canada under Grant A7239.

J. W. Bandler, S. H. Chen, and Q. J. Zhang are with Optimization Systems Associates Inc., 1911 Ferrier Street, Dundas, Ont., Canada L9H 3E7. J. W. Bandler is also with the Simulation Optimization Systems Research Laboratory and the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada L8S 4L7.

S. Ye is with the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada L8S 4L7. IEEE Long Number 8824202.
II. A Simple Circuit Example

As a simple example to illustrate that combining dc and ac modeling is both feasible and useful, let us examine the linear RC circuit shown in Fig. 1. The unknown parameters are \(\phi = [R_1 \ R_2 \ C]^T \). \(R_2 \) is assumed to be a known resistor. We also assume the response to be the dc current \(I \), under dc excitation \(V_1 = V_{dc} \), as

\[
I = \frac{V_{dc}}{R_1 + R_2}
\]

and ac (complex) voltage \(V_2 \), under ac excitation \(V_1 = V_{ac} \), as

\[
V_2 = \frac{V_{ac} R_1 R_2 sC}{sC(R_1 R_2 + R_1 R_3 + R_2 R_3) + R_1 + R_2}
\]

where \(s \) denotes the complex frequency variable.

It is obvious that we cannot distinguish \(R_1 \) and \(R_2 \) if only the dc response \(I \) is used. It can also be verified that if only the ac response \(V_2 \) is taken we cannot uniquely determine \(\phi \) either, no matter how many frequency points are applied.

It can be proved, however, that \(\phi \) will be uniquely determined when we utilize both dc and ac measurements simultaneously, i.e., to match the dc response and ac response to the corresponding measurements at the same time. (The detailed proof of this observation is provided in Appendix I.)

III. Classification of Model Parameters

A. The General Case

In general, consider a device model with its equivalent circuit. The model parameters can be individually classified as bias-independent, unconstrained bias-dependent, or constrained bias-dependent. We also separate the parameters that appear in both dc and ac (small-signal) models from those appearing only in the ac model. Therefore, we define six subsets of model parameters, denoted by \(\phi_a, \phi_b, \phi_c, \phi_d, \phi_e \) and \(\phi_f \), respectively, where \(\phi_a \) and \(\phi_b \) are bias-independent, \(\phi_c \) and \(\phi_d \) are unconstrained bias-dependent, and \(\phi_e \) and \(\phi_f \) are constrained bias-dependent. The parameters \(\phi_a \) and \(\phi_b \) appear in both the dc and ac models, whereas \(\phi_c \) and \(\phi_d \) affect only the ac small-signal equivalent circuit.

We use a superscript \(k \) to indicate a different bias point and the corresponding device model. Therefore, \(\phi_a^k, \phi_b^k, \phi_c^k \), and \(\phi_f^k \) belong to the model under the \(k \)th bias condition, whereas \(\phi_e \) and \(\phi_f \) remain unchanged for different bias points.

We express the functional dependency of \(\phi_a \) and \(\phi_f \) on the bias condition by \(\phi_a^k = \phi_a(\alpha, \beta) \) and \(\phi_f^k = \phi_f(\alpha, \beta) \), where \(\alpha \) and \(\beta \) are the coefficients of the constraints, and \(\alpha = v(\beta, \phi_e, \phi_c, \alpha) \) denotes the dc state variables (such as the voltages and currents). The coefficient \(\alpha \) affects the dc equivalent circuit but \(\beta \) does not.

Table I summarizes the foregoing definitions.

This categorization stems from the consideration of the physical device and a feasible model. It is clear that we need \(\phi_a \) and \(\phi_b \) to represent the parameters which do not vary or vary only slightly with the bias conditions, such as the package capacitance and lead inductance of an FET. We need \(\phi_e^k \) and \(\phi_f^k \) to represent those bias-dependent parameters whose functional bias dependency expressions may not be known or available; on the other hand \(\phi_a^k \) and \(\phi_f^k \) may be used to test or investigate the functional bias-dependent properties of the model parameters.

Introducing \(\phi_d(\alpha, \beta) \) and \(\phi_f(\alpha, \beta) \) allows us to describe other bias-dependent parameters whose bias-dependent properties can be expressed by functions or, as we refer to them, constraints. Such constraints may be derived from physical characteristics of the device. They may be introduced empirically to simulate the pattern of the dc characteristic curve. They may also include mathematical expressions, such as polynomials. These constraints reduce the degrees of freedom in modeling, since the number of variables in this group, namely \(\alpha \) and \(\beta \), does not increase when more bias points are used, so that the uniqueness of the solution can be improved.

Our classification of the model parameters is consistent with the hierarchical parameter descriptions of Bandler and Chen [5]. From the definitions presented above, for example, we can see that for the ac responses, \(\alpha \) and \(\beta \) are low-level parameters compared with \(\phi_a, \phi_b, \phi_c, \phi_d, \phi_e \), and \(\phi_f \). However, we should notice that a parameter can appear as a low-level and a high-level parameter simultaneously. For example, \(\phi_e \) is at the same level as \(\phi_e \) but it depends on \(\phi_e \) as well.

B. Two Practical FET Device Examples

To illustrate the definitions presented in the previous subsection, we consider a typical nonlinear FET model of the type proposed by Materka and Kacprzak [2]. The model and its corresponding small-signal equivalent circuit are shown in Fig. 2 (a) and (b), respectively.
In the Materka and Kacprzak model, there are three bias-dependent current sources \(i_f \), \(i_s \), and \(i_d \) (see Fig. 2 (a)), which are defined as [2]

\[
\begin{align*}
 i_f &= I_s \left[\exp \left(\alpha_s \beta_s \right) - 1 \right] \\
 i_s &= I_s \left[\exp \left(\alpha_s \beta_d \right) - 1 \right] \\
 i_d &= I_{ds} \left(1 - \frac{V_g}{V_p} \right)^2 \tanh \left(\frac{\alpha_d \beta_d}{V_g - V_p} \right)
\end{align*}
\]

where

\[
V_p = V_{po} + \gamma V_d
\]

and where \(I_s, \alpha_s, \beta_s, \alpha_d, \beta_d, \) \(I_{ds}, \) \(V_{po} \), and \(\gamma \) are parameters to be determined. Three other bias-dependent parameters, \(G_{ds}, \) \(G_m, \) and \(C_{gr} \) (see also Fig. 2 (b)), are constrained by [2]

\[
\begin{align*}
 G_{ds} &= \frac{\partial i_d}{\partial V_d} \\
 G_m &= \frac{\partial i_d}{\partial \beta_d} \\
 C_{gr} &= C_{go} \left(1 - \frac{V_g}{V_{bi}} \right)^{-0.5} \quad \text{for} \ V_g < 0.8V_{bi}
\end{align*}
\]

where \(C_{go} \) and \(V_{bi} \) are also parameters to be determined.

Table II gives clear classifications for all the parameters of the Materka and Kacprzak model.

We have also considered another typical nonlinear FET model, namely that proposed by Curtice and Ettenberg [8], as shown in Fig. 3 (a). Its small-signal equivalent circuit is shown in Fig. 3 (b). Following the considerations and the notations of [8], \(I_{ds} \) is a function of \((R_F, V_{bs}); I_{ss} \) is a function of \((R_s, R_p, V_{bs}) \); \(I_{rs} \) is a function of \((R_s, R_p, V_{bs}); I_{sr} \) is a function of \((A_0, A_1, A_2, A_3, \gamma, \beta, V_{bs}); I_{bs} \) is a function of \((V_{bs}); \) and \(\gamma \) is a function of \((A_i). \) The classifications of the parameters are listed in the last column of Table II.

(For details of the Curtice and Ettenberg model, see [8].)

IV. MULTIBIAS DC AND AC MODELLING OPTIMIZATION

Assume that the dc and ac measurements are \(S_{dc}^k \) and \(S_{ac}^k(\omega_k), \) respectively, where \(\omega_k, n = 1, 2, \ldots, N, \) is a set of frequency points. Correspondingly, we assume

\[
F_{dc}^k = F_{dc}(\phi_0, \phi_1, \alpha)
\]

as the dc model response, and

\[
F_{ac}^k(\omega_k) = F_{ac}(\phi_0, \phi_1, \phi_2, \phi_3, \phi_4, \alpha, \beta, \tau^k; \phi_0, \alpha, \beta, \tau^k; \omega_k)
\]

as the ac model response. Thus, the error functions corresponding to the dc model responses can be expressed as

\[
\begin{align*}
\epsilon_{dc}^k &= w_{dcj} \left[F_{dcj}^k - S_{dcj}^k(\omega_k) \right], \\
 j &= 1, 2, \ldots, M_{dc}^k; \ k \in K_{dc}
\end{align*}
\]

where \(w_{dcj}^k \) is the weighting factor, \(M_{dc}^k \) is the number of dc measurements taken at the \(k \) th bias point, and \(K_{dc} \) is the set of bias points at which dc measurements are taken. The error functions corresponding to the ac model responses can be expressed as

\[
\begin{align*}
\epsilon_{acj}^k(\omega_k) &= w_{acj}^k \left[F_{acj}^k(\omega_k) - S_{acj}^k(\omega_k) \right], \\
 j &= 1, 2, \ldots, M_{acj}^k; \ n = 1, 2, \ldots, N; \ k \in K_{ac}
\end{align*}
\]
the l_1 modeling optimization problem

$$\text{minimize} \left\{ \sum_{i \in J_{dc}} |f_i| + \sum_{i \in J_{ac}} |f_i| \right\} \quad (12)$$

where the optimization variables are α, β, ϕ_e, ϕ_a, ϕ_c^k for $k \in K$, and ϕ_c^k for $k \in K_{ac}$, since ϕ_c^k is required for calculating both dc and ac responses, whereas ϕ_c^k is required only for calculating ac responses.

In order to calculate the model responses, we first solve the nonlinear dc circuit of the model for ϕ_e, ϕ_a^k, and α, $k \in K$, so that F_{dc}^k, if $k \in K_{dc}$, can be determined. If $k \in K_{ac}$, $\phi_e(\alpha, v_d)$ and $\phi_a(\alpha, v_d)$ are calculated with v_d^k obtained from the dc solution. And then $F_{ac}^k(\omega_n)$, $n = 1, 2, \ldots, N$, can be determined.

The derivatives of the error functions required by the optimization can be obtained by the perturbation method. However, since the equivalent circuit of the device model is usually not very complicated, it is both feasible and efficient to get them analytically by adjoint analyses. The details of the analytic derivative calculations are discussed in Appendix II.

V. SEQUENTIAL MODEL BUILDING

A device model, such as the FET model in Super-Compact [9], may have a complicated topology and a comprehensive set of possible model parameters. In practice, we prefer a simplified model, provided that the match between the model responses and the measurements is satisfactory. It not only simplifies the computation, but also increases the identifiability.

Approaches have been proposed (e.g., [10], [11]) which optimize both the element values and the model topology. However, the topology optimization part of these approaches is entirely by trial and error and quite often has no physical justification.

For sequential model building, we start with a simple basic model structure, and sequentially add parameter(s) that would most effectively improve the match between the model responses and the measurements, where we assume that a comprehensive model which is physically meaningful is available. The iterative process continues until the match is satisfactory or no more parameter could be added. In order to find out the relationship between the model responses and parameters, we have applied the decomposition approach of Bandler and Zhang [6] to construct a decomposition dictionary to identify the interdependency between the model responses and parameters.

Consider a function $f_j(x)$ and a parameter x_i. A measure of the degree of interdependency between x_i and f_j can be defined, following [6], as

$$C_{ij} = \frac{1}{L} \sum_{r=1}^{L} \left| \frac{\partial f_j(x')}{\partial x_i} x^0_i \right|^p \quad (13)$$

where L is the number of points randomly chosen around x, x^0_i is a scaling factor, and p can be 1 or 2. (In the example discussed in the next section we will choose $p=1$.) The decomposition dictionary is constructed by fur-
ther grouping closely related functions

\[D_n = \sum_{j \neq i} C_{ij} \quad (14) \]

where \(J_1 \cup J_2 \cup \cdots \cup J_q = J_{Dc} \cup J_{De} \), and \(q \) is the number of function groups. For instance, we may designate all the error functions related to the complex \(S \) parameter \(S_{11} \) to one function group. The relative magnitude of \(D_n \) indicates the relative degree of interdependency between parameter \(x_i \) and the \(r \)th function group.

By virtue of the \(l_1 \) optimization algorithm [7], which has the very desirable feature of isolating large errors among all the error functions, the sequential model building procedure can practically be implemented: during the modeling process the \(l_1 \) solution and the corresponding decomposition dictionary at a specific model structure can indicate the most appropriate element(s) to be included in the model if the match has not been satisfactory. (See case 2 of the example in the next section.)

The decomposition dictionary may reveal parameters that are impossible or very difficult to identify from the available measurements; i.e., if the dictionary entries corresponding to a parameter are very small, this parameter may be very insensitive to any functions. Such parameters could be kept fixed at standard values. They may even be eliminated from the model if they have little effect on the match between the model responses and the measurements.

VI. A FET EXAMPLE

Consider again the Materka and Kacprzak model discussed in Section III-B. The FET equivalent circuit model is shown in Fig. 2(a) and the corresponding small-signal equivalent circuit is shown in Fig. 2(b). We use measurements made under three different bias conditions (the same data have been considered by Bandler et al. [12]).

Following the assumptions in [12], we will use the classification of the parameters under Model 1* in Table II; however, we ignore the package parasitics \(L_{pp}, L_{pd}, C_{ps}, \) and \(C_{pd} \). Since there are three bias points, altogether we have 28 optimization variables in \(\phi_{a}, \phi_{b}, \phi_{c}, \) and \(\phi_{d} \) for \(k = 1, 2, 3, \alpha, \) and \(\beta \). The units of the related parameters are listed in Table III.

The error functions are defined according to (7) and (8). Here \(K_{ac} = K_{dc} = \{ 1, 2, 3 \} \) for three different bias points; \(M_{ac}^2 = 2 \) corresponding to the dc measurements on the gate and source currents; \(M_{ac}^q = 8 \) representing the real and imaginary parts of the \(S \) parameters; and \(N = 17 \) representing 17 frequency points from 2 to 18 GHz, 1 GHz apart. The weighting factors \(w_{ac} \) and \(w_{ac} \) are properly chosen to balance the dc and ac error functions. The total number of nonlinear error functions for this example is 414.

At each bias point, we use Powell’s algorithm [13] to solve the nonlinear dc equivalent circuit. The adjoint network analysis technique is applied to efficiently calculate the sensitivities of both dc and ac equivalent circuits.

Three cases are discussed as follows. In case 1, we will show the robustness of the modeling approach proposed in Section IV. In case 2, an experiment will be shown to demonstrate the feasibility of the sequential model building procedure in Section V. A similar experiment will be discussed briefly in case 3 with a different scaling factor in (13).

Case 1: At the starting point, we construct the decomposition dictionary. The scaling factor \(\phi_{d} \) in (13) for this
dictionary is chosen to be x_i^0, which corresponds to the exponential transformation on the variables used by the optimization. This dictionary shows very small entries for I_s, α_r, $I_{s_{tr}}$, and $\alpha_{s_{tr}}$. An L_1 optimization is performed, fixing $I_s = I_{s_{tr}} = 0.5$ nA, $\alpha_s = 20$ V$^{-1}$, and $\alpha_{s_{tr}} = 1$ V$^{-1}$. The resulting parameter values are listed in Table IV. Table V shows the dc responses, and Fig. 4 depicts the ac responses at the solution for one bias point.

To check whether we should consider I_s, α_s, $I_{s_{tr}}$, and $\alpha_{s_{tr}}$ as variables, we set up the dictionary at the solution, as shown in Table VI. The fact that the entries for I_s, α_s, $I_{s_{tr}}$, and $\alpha_{s_{tr}}$ remain very small confirms the validity of eliminating them as optimization variables. As a further verification, we attempted another optimization which included all possible variables. As expected, it did not improve the match between the model responses and the measurements.

The insensitivity of I_s, α_s, $I_{s_{tr}}$, and $\alpha_{s_{tr}}$ is, in fact, expected, since it is known that special bias conditions are needed in order to effectively determine the forward-biasing and breakdown properties of the FET [2].

To test the robustness of our approach, we randomly perturbed the starting point by 20 to 200 percent and restated the optimization. All the variables converged to virtually the same solution.

Case 2: As in case 1, the decomposition dictionaries in this case are constructed by choosing the scaling factor x_i^0 in (13) to be x_i^0, which corresponds to the exponential transformation on the variables used by the optimization. To demonstrate the feasibility of the sequential model building procedure, we restart the modeling process with a simplified model which does not include L_s and $L_{s_{tr}}$. Also, R_s, $R_{s_{tr}}$, I_s, α_s, $I_{s_{tr}}$, and $\alpha_{s_{tr}}$ are kept constant according to their relatively small entries in the decomposition...

TABLE VI

<table>
<thead>
<tr>
<th>Parameter</th>
<th>I_{sp}</th>
<th>I_{ds}</th>
<th>S_{11}</th>
<th>S_{21}</th>
<th>S_{12}</th>
<th>S_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_s</td>
<td>0.000</td>
<td>0.000</td>
<td>0.020</td>
<td>0.010</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>$R_{s_{tr}}$</td>
<td>-</td>
<td>-</td>
<td>1.50</td>
<td>3.80</td>
<td>10.20</td>
<td>1.10</td>
</tr>
<tr>
<td>L_s</td>
<td>-</td>
<td>-</td>
<td>0.320</td>
<td>1.60</td>
<td>4.60</td>
<td>0.20</td>
</tr>
<tr>
<td>$L_{s_{tr}}$</td>
<td>-</td>
<td>-</td>
<td>0.910</td>
<td>0.24</td>
<td>15.0</td>
<td>0.89</td>
</tr>
<tr>
<td>$R_{s_{tr}}$</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>r</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
<td>6.30</td>
<td>1.30</td>
<td>2.60</td>
</tr>
</tbody>
</table>

C_{ds}: $- - 1.7 1.7 28.4 4.4$

C_{ds}: $- - 0.36 4.1 9.8 16.0$

R_{s}: $0.00 0.00 1.4 0.54 3.5 0.16$

$R_{s_{tr}}$: $0.00 0.55 0.64 0.39 6.6 0.53$

C_{ds}: $- - 3.4 3.0 21.6 6.6$

C_{ds}: $- - 0.80 4.4 9.3 16.0$

R_{s}: $0.00 0.00 1.6 0.60 2.1 0.24$

$R_{s_{tr}}$: $0.00 0.15 0.20 0.18 1.8 0.13$

C_{ds}: $- - 4.2 3.3 19.6 6.9$

C_{ds}: $- - 0.94 4.0 9.2 16.0$

R_{s}: $0.00 0.00 2.1 0.61 2.1 0.26$

$R_{s_{tr}}$: $0.00 0.03 0.07 0.08 0.74 0.09$

R_s: $0.00 0.00 0.00 0.00 0.00 0.00$

$R_{s_{tr}}$: $0.00 0.00 0.00 0.00 0.00 0.00$

R_s: $0.00 0.00 0.00 0.00 0.00 0.00$

$R_{s_{tr}}$: $0.00 0.00 0.00 0.00 0.00 0.00$

C_{ds}: $- - 9.3 5.5 9.7 2.4$

The dictionary was set up using 50 random points over a 25 percent range around the solution point.
dictionary. Fig. 5 depicts the model responses and the measurements at one bias point after the \(l_1 \) optimization using this simplified model.

It is obvious from Fig. 5 that the worst match is for \(S_{11} \). According to the decomposition dictionary at this stage, as shown in Table VII, the most effective candidates for improving the match in \(S_{11} \) are \(R_s \) and \(L_s \) because of their larger entries under \(S_{11} \). The result of a subsequent optimization which includes \(R_s \) and \(L_s \) as variables is shown in Fig. 6, from which a significant improvement on the match of \(S_{11} \) can be observed.

Further steps of sequential model building based on the decomposition dictionary include adding \(R_d \) and \(L_d \) to improve \(S_{22} \) and eventually converge to the same solution as in case 1.

By such a sequential model building, we have obtained a clear view of the relationship between a model parameter and the model responses, and we have the ability to avoid possible redundant model parameters. If the match between the model responses and measurements is sufficiently good, we do not have to include more optimizable parameters even if there are still some left.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>S_{11}</th>
<th>S_{21}</th>
<th>S_{12}</th>
<th>S_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_s</td>
<td>1.7</td>
<td>0.56</td>
<td>1.2</td>
<td>0.16</td>
</tr>
<tr>
<td>L_s</td>
<td>1.1</td>
<td>0.22</td>
<td>0.84</td>
<td>0.08</td>
</tr>
<tr>
<td>L_g</td>
<td>0.05</td>
<td>0.19</td>
<td>0.65</td>
<td>1.2</td>
</tr>
<tr>
<td>R_g</td>
<td>0.07</td>
<td>0.70</td>
<td>1.1</td>
<td>2.9</td>
</tr>
<tr>
<td>R_1</td>
<td>0.48</td>
<td>0.16</td>
<td>0.98</td>
<td>0.05</td>
</tr>
<tr>
<td>R_2</td>
<td>0.41</td>
<td>0.14</td>
<td>0.51</td>
<td>0.06</td>
</tr>
<tr>
<td>R_3</td>
<td>0.41</td>
<td>0.10</td>
<td>0.39</td>
<td>0.05</td>
</tr>
<tr>
<td>I_s</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>α_s</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>α_{ar}</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes:
1. Only relevant function groups and possible parameter candidates are listed.
2. The dictionary is constructed by assuming an initial value of 0.01 for R_s and L_s.
3. 30 points and a 25 percent range were used to set up the dictionary.

Case 3: We also conducted an experiment where the decomposition dictionary was constructed by setting the scaling factor x_i^0 in (13) to 1, which corresponds to the sensitivities of the error functions with respect to the actual parameters.

At the starting point, we construct the dictionary with respect to all the possible variables. The actual variables used first in the optimization are those whose entries in the dictionary are relatively large, and other variables are kept constant. Then each time an optimization is completed but the result is not satisfactory, we check the match between the model responses and measurements, and select new variable(s) according to the updated dictionary which would most effectively improve the match.

Following such a procedure, results similar to those in case 2 were clearly observed. However, also observed from this experiment is that the parameters first chosen as optimization variables, i.e., the parameters whose entries are dominant in the decomposition dictionary, appeared to stay quite close to the first solution in the subsequent optimizations. Therefore, alternative decompositions for the optimization problem could be investigated.

VII. CONCLUSIONS

By introducing dc constraints and formulating the modeling process as a complete and integrated optimization problem, i.e., including simultaneously the dc and ac responses, we have improved the uniqueness and reliability of the extracted model parameters. A sequential model building approach has been proposed based on a decomposition dictionary. It can be used to arrive at a suitable compromise between the simplicity and adequacy of the model.

A powerful I_i optimization technique, which is essential to the implementation of the sequential model building, has been employed in our algorithm. All the required gradients have been provided through efficient adjoint analyses.

Practical FET models have been considered. A FET modeling example using the Materka and Kacprzak model has been described in detail which clearly demonstrates the advantages of the new approach.

It should be noted, however, that when dc characteristics are used as constraints, they should be compatible with the actual device to be modeled; otherwise inappropriate dc constraints could cause large intrinsic discrepancies between the model responses and measurements.

As to the prospects of the approach proposed in this paper, we can see that:

1) The model parameters extracted can be used directly by the harmonic balance method.
2) We can establish a more reliable small-signal model when dc constraints are considered.
3) The approach is applicable to other device modeling problems since it is quite general.
4) The sequential model building procedure is particularly promising.

A computer program RoMPE (Robust Model Parameter Extractor) [16] has recently been developed by Optimization Systems Associates Inc. It offers the techniques presented in this paper to microwave community through a user-friendly interface which includes state-of-the-art graphics and a simple yet flexible input file format.

APPENDIX I

VERIFICATION OF THE IDENTIFIABILITY OF THE RC CIRCUIT

The RC circuit under consideration is shown in Fig. 1. As in the derivations in [14], we use the concept of analog circuit fault diagnosis [4] to verify the identifiability of R_1, R_2, and C in the circuit. Briefly, given a complex-valued vector of responses $h(\phi) = [h_1(\phi) \cdots h_n(\phi)]^T$, where $\phi = [\phi_1 \cdots \phi_n]^T$, the measure of identifiability of ϕ is determined by testing the rank of the $m \times n$ Jacobian matrix

$$J = [\nabla h^T(\phi)]^T \quad (A1)$$

where ∇ is the partial derivative operator $\partial / \partial \phi$. If the rank of matrix J is less than n, then ϕ will not be uniquely identifiable from h.

1) *Only a dc Response:* The dc response I is

$$I = \frac{V_{dc}}{R_1 + R_2}. \quad (A2)$$

The corresponding Jacobian matrix is

$$J_{dc} = [-V_{dc}/(R_1 + R_2)^2 - V_{dc}/(R_1 + R_2)]. \quad (A3)$$

It is clear that rank $d_{dc} = 1$. Therefore, R_1 and R_2 are not identifiable from the dc response I. This result is also straightforward intuitively.
2) Only an ac Response: The ac response V_2 is calculated as

$$V_2 = \frac{V_{ac} R_1 R_2 sC}{sC(R_1 R_2 + R_1 R_3 + R_2 R_3) + R_1 + R_2}. \quad (A4)$$

The corresponding Jacobian matrix

$$J_{ac} = \begin{bmatrix}
-H \left[s_i C(R_2 + R_3) + 1 \right] & H \left[R_1 (s_i C R_3 + 1) / R_2 \right] & H \left[(R_1 + R_2) / C \right] \\
\vdots & \vdots & \vdots \\
-H \left[s_m C(R_2 + R_3) + 1 \right] & H \left[R_1 (s_m C R_3 + 1) / R_2 \right] & H \left[(R_1 + R_2) / C \right]
\end{bmatrix} \quad (A5)$$

where $s_i, i = 1, \ldots, m$, indicate different frequencies, and

$$H = \frac{V_{ac} R_1 R_2 sC}{sC(R_1 R_2 + R_1 R_3 + R_2 R_3) + R_1 + R_2}. \quad (A6)$$

Denoting the three columns of J_{ac} by J_1, J_2, and J_3, we can obtain

$$\frac{(R_2 + R_3)}{R_1} J_1 + \frac{R_2}{R_2 + R_3} C (R_1 + R_2) J_3 = 0 \quad (A6)$$

which means that the rank of J_{ac} is less than 3, no matter how many frequency points are used. Hence we cannot uniquely determine ϕ from the response V_2.

3) Combined dc and ac Responses: When we consider both dc and ac responses simultaneously, combining (A3) and (A5), the Jacobian matrix becomes

$$J = \begin{bmatrix}
\frac{-V_{dc}^2}{(R_1 + R_2)} & \frac{-V_{dc}^2}{(R_1 + R_2)} & 0 \\
-H \left[s_i C(R_2 + R_3) + 1 \right] & H \left[R_1 (s_i C R_3 + 1) / R_2 \right] & H \left[(R_1 + R_2) / C \right] \\
\vdots & \vdots & \vdots \\
-H \left[s_m C(R_2 + R_3) + 1 \right] & H \left[R_1 (s_m C R_3 + 1) / R_2 \right] & H \left[(R_1 + R_2) / C \right]
\end{bmatrix} \quad (A7)$$

where the superscript T stands for transposition. The derivative of f_j with respect to $\phi_{ou}, \phi_{iu}, \phi_{oi}, \phi_{ei},$ and ϕ_{hi} for $k \in K_{ac}$ on the right-hand side of (A9)–(A11) can be obtained by standard dc adjoint analysis, while the derivative of ψ^e with respect to $\alpha, \beta, \phi_{ei},$ and ϕ_{hi} for $k \in K_{ac}$ can be obtained by nonlinear dc adjoint analysis [15].

Appendix II

Derivative Computations of the Model Responses

For $j \in J_{dc}$, f_j is a function of $\phi_{ou}, \phi_{iu},$ and $\alpha, k \in K_{dc}$. The corresponding $\partial f_j / \partial \phi_{ou}, \partial f_j / \partial \phi_{iu},$ and $\partial f_j / \partial \alpha$ can be derived by nonlinear dc adjoint analysis [15].

For $j \in J_{ac}$, we know that

$$f_j = f_j(\phi_{ou}, \phi_{iu}, \phi_{ei}, \phi_{hi}, \alpha, k) \quad (A8)$$

where the true variables are $\phi_{ou}, \phi_{iu}, \phi_{ei}, \phi_{hi},$ and α, and ψ^e was defined in Section III-A. Therefore, we can use the chain rule to obtain the required derivatives:

$$\frac{\partial f_j}{\partial \phi_{ou}} = \frac{\partial f_j}{\partial \phi_{ei}} + \partial \psi^e \frac{\partial f_j}{\partial \phi_{ei}} + \partial \psi^e \frac{\partial f_j}{\partial \psi^e} \quad (A9)$$

Acknowledgment

The first author would like to acknowledge Dr. R. A. Puel of Raytheon Computer Company, Research Division, Lexington, MA, for many helpful discussions on device modeling for CAD.

References

Shao Hua Chen (S'84–M'88) was born in Swatow, Guangdong, China, on September 27, 1957. He received the B.S. (Eng.) degree from the South China Institute of Technology, Guangzhou, China, in 1982 and the Ph.D. degree in electrical engineering from McMaster University, Hamilton, Canada, in 1987.

From July 1982 to August 1983, he was a teaching assistant in the Department of Automation at the South China Institute of Technology. He received a graduate scholarship from the Chinese Ministry of Education and joined the Department of Electrical and Computer Engineering at McMaster University in 1983. He held an Ontario Graduate Scholarship for the academic years 1985/86 and 1986/87. Currently he is working as a research engineer for Optimization Systems Associates Inc., Dundas, Ontario, Canada. His research interests include optimization methods, sensitivity analysis, device modeling, design centering, tolerancing, and tuning, as well as user-friendly computer graphics.

Shen Ye (S'88) was born in Shanghai, China, on January 31, 1957. He received the B.E. and M.E. degrees in electrical engineering from Shanghai University of Technology, Shanghai, China, in 1982 and 1984, respectively.

From August 1984 to August 1986 he was with the Department of Electrical Engineering, Shanghai University of Technology. Since September 1986, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada. His main research interests include analog fault diagnosis, device modeling, and computer-aided design using optimization methods.

Qi-Jun Zhang (S'84–M'87) was born in Xianyan, Shaxi, China, on October 8, 1959. He received the B. Eng. degree from the East China Engineering Institute, Nanjing, China in 1982, and the Ph. D. degree from McMaster University, Hamilton, Canada in 1987, all in electrical engineering.

He was a research assistant in the Institute of Systems Engineering, Tianjin University, Tianjin, China, from 1982 to 1983. He was a teaching assistant in the Department of Electrical and Computer Engineering, McMaster University, from September 1987 to March 1988. Presently he is a research engineer with Optimization Systems Associates Inc., Dundas, Ontario, Canada. His professional interests include all aspects of circuit CAD with emphasis on large-scale simulation and optimization, design and modeling of nonlinear microwave circuits, statistical modeling, sensitivity analysis, and the diagnosis and tuning of analog circuits.

Dr. Zhang is a contributor to *Analog Methods for Computer-Aided Circuit Analysis and Diagnosis* (Marcel Dekker, 1988).