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Efficient Quadratic Approximation for
Statistical Design

RADOSLAW M. BIERNACKI, JOHN W. BANDLER,
JIAN SONG, anD QI-JUN ZHANG

Abstract —A highly efficient approach to quadratic approximation of
circuit responses is presented. Because it uses a fixed pattern of base
points, this approach requires extremely small amounts of CPU time and
storage space. Using this approach, a major obstacle for the traditional
quadratic approximation to deal with large problems, namely, the pro-
hibitive requirement for storage and computational effort, is effectively
eliminated. The accuracy and efficiency of this quadratic approximation
approach are strongly demonstrated by results of two statistical circuit
design examples.

1. INTRODUCTION

In order to make existing statistical circuit design methods
more practically useful, many approaches have been devised to
reduce very costly computational effort by approximating accept-
able regions or circuit responses. Quadratic approximation has
proven suitable and successful [1]-[4]. However, the determina-
tion of a quadratic model itself for a problem with a larger
number of variables may be too expensive.

For a circuit with 50 elements, the number of coefficients in
the quadratic model is 1326. The calculation of the coefficients in
a traditional manner involves 1326 circuit simulations and solv-
ing a linear system of 1326 equations. Besides all the coefficients,
the matrix of the linear system requires storage of a 1326 by 1326
array. Determining a quadratic approximation to the response of
such a circuit creates quite a large problem in the terms of
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computer time and storage, although the circuit itself may be of a
moderate scale. Therefore for large scale problems the traditional
approaches that aim to obtain unique quadratic models do not
effectively reduce computational costs.

Biernacki and Styblinski [4] introduced the concept of the
maximally flat interpolation and presented an updating algo-
rithm. The most significant property of their approach is that the
method allows the number of actual circuit simulation required
for an accurate model to be much less than that needed for a full
unique quadratic approximation. However, the computational
requirement of the method, especially storage space, is still high.

In this paper we substantially enhance the maximally flat
quadratic interpolation. Our approach makes use of a fixed
pattern of points at which simulation is performed, resulting in
very low computational requirements for both CPU time and
storage. The basic concept is reviewed in Section II. Our new
approach is described in Section III. Section IV compares the
efficiency of our approach with that of the original maximally
flat quadratic approximation. A brief overview of the design
centering approach used is provided in Section V. Two examples
of circuit statistical design are given in Section VI. Finally,
Section VII contains the conclusions.

II. THE Basic CONCEPT OF THE MAXIMALLY FLAT
QUADRATIC APPROXIMATION

A quadratic model in polynomial form to be used to approxi-
mate a given function f(x), x=[x; x, --- x,]’, can be
written as

n

Y a,(xi—r)(x-n) (1)

n
g(x) =ag+ X a(x—r)+
i=1

where r=[r, r, --- r,]7 is a known reference point. The form
of the quadratic function used is similar to that of [4]. However,
q(x) is defined here w.r.t. the reference point r rather than w.r.t.
the origin. Note that the subscript notation is that each coeffi-
cient can be easily identified with its corresponding x term, e.g.,
a;; is the coefficient of (x; — r,)(x; — r;). Determining a quadratic
model is equivalent to determining all its coefficients, which are
now unknowns in (1).

Suppose that m (m > n +1) evaluations of f(x) are performed
at some points x', i =1,2,- - -, m. These points are called the base
points. Using f(x'), we set up a system of linear equations

[Qu le“a] - [fl]
0y Oxnf|v b
where a and v are arranged to have the following orders: a =
lag a, a, -+ a,]" and v=[ay; @y - G,,a13813 """ a, 1,17
respectively. The vectors f, and f, are of dimensions »+1 and
m —(n +1), respectively. They contain function values f(x'). The
matrix Q,, i, j=1,2, is determined by the coordinates of the
base points and of r.

Similarly to [4], the reduced system with variables v is obtained
as

(2

Co=e 3)

where

C=0,— Qleﬁlle (4)
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and

e=f,— 0,0, (%)
If m < (n+1)(n+2)/2, the above system is underdetermined.

When the least squares constraint is applied to v, the unique
solution to (3) can be found as

o=CT(CCT) e (6)
and a is readily obtained as

a=0,'fi— 01,'Ope. @)
Then both v, the minimal Euclidean norm solution of (3), and a
give the maximally flat quadratic interpolation in the form of (1)
to f(x). The term of the maximally flat quadratic approximation
comes from the mechanism of the least squares constraint that
forces the second order derivatives to be as small as possible.

III. APPROACH USING A FIXED PATTERN OF BASE POINTS

In the original scheme of [4] all base points are randomly
selected. This type of selection allows certain freedom. However,
several large matrices have to be stored and manipulated. For
instance, matrix C needs an array with dimension n X(n +1) X
(m—(n+1))/2. Meanwhile, some fairly involved calculations,
such as matrix inversion, or equivalent calculations shown in
(4)—(7), are required. Even a circuit of a reasonable size may
demand large storage space and CPU time. Here, we shall
propose a new approach which is based on a fixed pattern of
base points. The regularity of the pattern will greatly reduce
storage and simplify the calculation of coefficients.

In our approach, only m (n+1<m < 2n+1) base points are
used. The reference point r is selected as the first base point x!.
The next n base points are determined by perturbing one vari-
able at a time around r, ic.,

xi+1=,+[0...0 B, 0~-0]77 i=1,2,---,n (8)

where B; is a predetermined perturbation. It can be shown that
the first n +1 base points lead to very simple forms of matrices
Q1" and 0y,'Qy,. They are

1 0 0
-1/, 1/B
ou'=| o0 (9
0
-1/B, 1/B,
and
0 0!
A 0!
on 0= 1ol (10)
0o Bl

|

Because of this simple pattern they need not be stored in matrix
form.

After the first n +1 base points, the remaining m —(n +1)
points follow to provide the second-order information on the
function. Similarly to the base points defined in (8), the consecu-
tive base points are selected by also perturbing one variable at a
time. For simplicity, these base points are determined by consec-
utively perturbing the variables in r, that is

1= p s [0 000 v, 0...0]TY i=1,2,-+-,k

(11)
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where v, is another perturbation of r, which must not equal §;,
and k equals m —(n+1). Under this arrangement matrices Q,;
and Q,, have regular structures. Substituting @,; and @,, into
(4), the matrix C takes a concise analytical form

(v=B)n 0 i
: |
|
Cc= (v~ B), | 0
I
. |
N |
0 (YA 7BA)YA :
(12)
and the vector e can be expressed by
1-v/B n/B :
1-v./B, Y2/Bs |
: " 0 E
M P /B, o |1
: 0 . {
1-v. /B, Yi /B {\
(13)

Substituting (12) and (13) into (6), the coefficients are determined
by

a, = {[ 1) = 1O =2 - 1(:H]/8)

[(v.~B), =12,k (l4a)
a,=0, i=k+1,--,n (14b)
and
a, =0, i#j i,j=1,2,---,n. (14c)
The coefficients a,, and g, are easily obtained as
laly=f(x") (152)

and
a, =[x~ (] /B -Ba,, i=12,--.n. (15b)

The maximally flat quadratic interpolation, using a fixed pat-
tern of base points defined here, has an interesting property. All
the coefficients of the mixed terms, a,; for i+ j, are conve-
niently forced to be zero because no related information can be
extracted from the fixed pattern. Any of the a,’s in (14a), i < k,
can be nonzero because double perturbations are made along a
straight line parallel to the ith axis. If a third perturbation is
made along the same line, it can be shown that the C matrix will
not have full row rank, and, therefore, the third perturbation
does not provide any extra useful information for the quadratic
model. It should be noted, however, that the fact that the mixed
term coefficients become zero is due to the maximally flat inter-
polation, and not an assumption.

In a situation where the mixed terms are important, this
approach can easily be modified by introducing an appropriate
transformation of variables. In such a case the perturbations can
be carried out along the lines not necessarily parallel to the axes.
The proposed fixed pattern of base points can thus be general-
ized while preserving the main advantages of our approach.

Theoretically speaking, the efficiency and simplicity of our
models are achieved at the expense of some model accuracy. It
should be stressed, however, that even so-called exact circuit
simulation carries certain approximation of the actual physical
behavior. Therefore, our approach provides an excellent model-
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ing technique for many practical problems, especially when a
very high accuracy is not really necessary. The method is suitable
for up to 2n +1 base points. It takes advantage of the concept of
maximally flat quadratic interpolation and thus any number of
base points between n +1 and 2n +1 can be used.

IV. COMPUTATIONAL EFFICIENCY

A dynamic updating scheme was proposed in [4], which allows
the existing model to be revised when a new base point is added.
However, this simple updating may not be suitable if some of the
base points are far from the region of interest. To maintain
accuracy, it may be desirable to disregard such points. Our
method can be used to rebuild the model very efficiently when-
ever it is needed. However, it can also be used within the concept
of dynamic updating provided that the base points are selected in
the aforementioned manner and their number does not exceed
2n+1.

In this section we compare computational efficiency of our
approach with that of the original method of [4]. To unify the
comparison we assume that exactly 2rn +1 base points are used to
build the model. In our approach the required storage is reduced
to a minimum. Only 2 perturbations and 2r +1 function values
are to be stored. No matrix manipulations are needed. All
calculations are simplified to (14) and (15). The operational
count to calculate all coefficients using this pattern can be merely
4n. In this new approach, the storage requirement and computa-
tional count vary linearly with the number of variables. For the
original method {4}, at least, all base points, matrices Q,; and C
are stored in three arrays with dimensions n X(2n +1), (n +1) X
(n+1) and nXnX(n+1)/2, respectively, and the computa-
tional count is O(n*). For the original approach, the storage
requirement and computational count vary cubically and quarticly,
respectively, with the number of variables. For a circuit with 50
elements and m chosen as 101, we need storage consisting of two
arrays of 101 and 100, and computational effort of 200 multiphi-
cations. The original approach would require storage consisting
of three arrays of 50 by 101, 51 by 51 and 50 by 1275, respec-
tively, and incomparable computational effort.

V. DESIGN CENTERING OVERVIEW
Due to various kinds of fluctuations inherent in the manufac-
turing process, the circuit outcomes will present variations of
responses from one another. Manufacturing yield is simply the
ratio
Npour/N,

pass

where N, is the number of circuit outcomes meeting the design
specifications and N, is the total number of circuit outcomes.
Yield optimization simultaneously considers many circuits and
takes a variety of fluctuations into account, aiming at a circuit
design with satisfactory yield.

Suppose that we are given a nominal design x° and predeter-
mined statistics related to the tolerances of circuit parameters.
We can generate some Monte Carlo outcomes, x/, i =1,2,---, K,
according to the statistical distribution of the toleranced circuit
parameters. Each circuit outcome is associated with an accep-
tance index given by

I(x*) = { 1, if xk se%tisfies the specifications (16)
0, otherwise.
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Then, yield is estimated by

X /
Yz[ Y 1“(x*)}/1<.

k=1

(17)

Consequently, our problem of circuit optimization is stated as

maximize Y.

XO

A number of algorithms have been proposed for statistical
design centering, e.g., by Director and Hachtel [5] (the simplicial
approximation), Soin and Spence {6] (the center of gravity
method), Bandler and Abdel-Malek [1], [2] (updated approxima-
tions and cuts), Styblinski and Ruszezynski [7] (stochastic ap-
proximation), Polak and Sangiovanni-Vincentelli [8] (outer ap-
proximation), and Singhal and Pinel [9] (parametric sampling).
Here we briefly review the approach employing the one-sided /
optimization technique proposed by Bandler and Chen {10] and
used in our examples.

Simulation of each circuit outcome determines a set of error
functions,

. T
e(x)=[e(x) ex(x) - en(x)] (18)
where M is the number of specifications applied. Then, the
generalized /, function v(e(x')) can be calculated from e(x').
Consider the one-sided /; objective function for yield optimiza-
tion [10] defined by

u(x%) = Y av(e(x')) (19)
ieJ
where J = {ilv(e(x')) >0, i=1,2,---,N} and o, are properly
chosen nonzero multipliers. Using the optimization algorithm in
[10] to minimize u(x"), we can achieve a centered design with
improved yield. This design centering approach is used in the two
examples presented in the following section.

Statistical design centering involves a very large number of
circuit simulations and, therefore, it is essential to reduce the
CPU time needed for simulation. In such a design, the trend of
the circuit response hypersurface seems to be more important
than the accuracy of the individual circuit responses. Therefore,
our approximation technique is capable of enormous acceleration
of the design process without substantial loss of accuracy in the
vicinity of a nominal circuit. Once the approximate model is
established it is evaluated at all statistical outcomes that are
sampled according to the statistical distribution of interest. There
is no limit to the type of distribution, correlation of the variables,
etc., provided that the statistical samples do not fall too far away
from the region of approximation.

VI. EXAMPLES
A. Design of an 11-Element Low-Pass Filter [9], [!1]

We have tested our quadratic approximation method within
the framework of a circuit design program, which uses a general-
purpose simulator and the generalized /, centering approach
outlined in the preceding section. For the quadratic approxima-
tion, the individual circuit responses are chosen as the functions
to be approximated. The reference point is defined as the nomi-
nal point. At each iteration, a set of quadratic models is built.
The models are evaluated for all outcomes, i.e., the statistically
sampled circuits. The objective function is calculated from the
resulting approximate error functions.

A low-pass filter with 11 elements (9], [11], shown in Fig. 1,
was used in this example. The upper specification was 0.32 dB at
(0.02,0.04,- - -,1 Hz), and the lower specification 52 dB at 1.3 Hz,
on the insertion loss. A tolerance of 1.5 percent was assumed for
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Fig. 1. The LC low-pass filter [9], [11].

1 T

TABLE I
COMPARISON OF STATISTICAL DESIGN OF A LOw-Pass
FILTER WITH AND WITHOUT QUADRATIC

APPROXIMATION
Nominal Exact Simulation Quadratic Approximation
Component Design -
Phase 1 Phase 2 Phase | Phase 2
Xi )(n Xl X’ X! X‘
Xy 0.22510 0.22572  0.22512 0.22266  0.21669
Xz 0.24940 0.24903 0.24944 0.25045 0.25133
Xy 0.25230 0.25269  0.25276 0.25268 0.25083
Xy 0.24940 0.24908  0.24882 0.25028 0.24067
Xg 0.22510 0.22568  0.22594 0.22335  0.22120
Xg 0.21490 0.21589 0.21658 0.22163 0.23347
Xq 0.36360 0.36313 0.36275 0.36291 0.37008
Xg 0.37610 0.37625  0.37698 0.37938 0.37217
X9 0.37610 037633  0.37561 0.37156  0.38529
Xg0 0.36360 036313  0.36305 0.36226  0.37232
Xy 0.21490 021587  0.21674 0.22168 0.21893
Yield Estimated
from Exact 54.0% 61.7% 63.7% 70.2% 79.7%
Simulation *
Yield Estimated
from Quadratic 54.0% 74.0% 84.5%
Approximation **
Number of
Outcomes Used 200 200 200 200
for Optimization
Starting Point x* x! x° x3
Number of 48000 31200 529 828
Simulations
Number of 9 7 10 19
Iterations
CPU Time 96.2min.* 62.4min.* 2.5min. 3.9min.
(VAX 8600)
CPU Time 48imin.  312min. 123min.  19.5min.*
(MicroVAX)

CPU times do not include yield estimation based on actual simulation.

* The yield is estimated using 1000 outcomes.

The yield is estimated using 200 outcomes used in design.

+ The CPU time is approximately given by assuming that the
speed ratio of YAX 8600 to MicroVAX is 5.

.

all elements. Outcomes were uniformly distributed between toler-
ance extremes. The starting point was the result of a synthesis
procedure [9].

Results and comparisons are given in Table I. Two designs
within the same optimization environment were carried out. The
only difference between the two approaches was the way of
calculating the circuit responses. The actual circuit simulations
were used in the first design and our approximation method was
utilized in the second one. Each design consisted of two succes-
sive centering processes shown as phases 1 and 2 in Table 1. Two
phases of design with actual simulations took approximately 96.2
and 62.4 min on VAX 8600 and required 48000 and 31200 circuit
simulations, respectively. Achieved yields were 61.7 and 63.7
percent, respectively. Two phases of design with our approxima-
tion method used only 2.5 and 3.9 min on the VAX 8600. Only
529 and 828 actual circuit simulations were required. At the
solutions of the two phases, the final yields were 70.2 and 79.7
percent, respectively. In all cases the yield values were estimated
from 1000 Monte Carlo samples using exact circuit simulations.
For the purpose of clarity, the CPU time needed for this yield
estimation is not included in the aforementioned CPU times.

1EEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 11. NOVEMBER 1989

Vg _ e Va_ + Vo e V-

+
&
I

+

= S e B B
Zs 74 73 22 7
ot gt pgt pyet
Is I4 I3 I2 It
v8 | v 2 vi

15 4 — 1

- - (-
S 4 ! 3, 13 2 12 1 !
A i B
Fig. 2. The equivalent circuit of a 5-channel multiplexer. In the ith channel,
V; is the output, Z; denotes the multi-coupled cavity filter, 7, symbolizes the
impedance inverter, n{ and n5 are the input and output transformer ratios,

¥/ and Y/ represent the nonideal series junction susceptances, and /' stands
for the waveguide spacings.

Interestingly, for this example, our method not only presented
greatly reduced computational effort as compared to the actual
simulation approach, but also reached a higher final yield. It
suggests that accurate, time-consuming exact circuit simulation
does not necessarily result in a better final yield. This statement,
however, cannot be generalized any further.

While not illustrated in the table, we have used this example to
compare the efficiency of our method w.r.t. the original maxi-
mally flat approach [4]. Using the same base points and employ-
ing the same scheme of rebuilding the models at each iteration,
the original approach required approximately 5.3 and 8.3 min for
the same two phases that our method took 2.5 and 3.9 min to
finish. It should be noted that in both cases the CPU time needed
to build and/or to evaluate the model constitutes only a fraction
of the overall time, thus the remaining portions are common for
the two approaches.

B. Design of a 5-Channel Microwave Multiplexer

This example is a 5-channel 12-GHz contiguous band mi-
crowave multiplexer consisting of multi-cavity filters distributed
along a waveguide manifold {12]. Fig. 2 illustrates the equivalent
circuit of the multiplexer. Tuning is essential and expensive for
multiplexers to satisfy the ultimate specifications. The goal of this
design is to easy the tuning process.

In order to take the appropriate tolerances into account, speci-
fications were chosen to be 10 dB for the common port return
loss and for the individual channel stopband insertion losses,
resulting in 124 nonlinear constraint functions. Design variables
included 60 couplings, 10 input and output transformer ratios,
and 5 waveguide spacings. Tolerances of 5 percent were assumed
for the spacings, and tolerances of 0.5 percent for the remaining
variables. The starting point was the solution of the conventional
minimax nominal design w.r.t. specifications of 20 dB. The
corresponding responses are shown in Fig. 3. The estimated yield
w.r.t. specifications of 10 dB at this point was 75 percent.

Yield optimization was carried out on the CRAY X-MP /22
using the generalized /; centering algorithm [10], our approxima-
tion scheme and utilizing a multiplexer simulation program [12].
The process consisted of 4 phases as shown in Table II. At the
beginning of each phase, a set of quadratic models corresponding
to 124 responses was constructed. These models were used for all
outcomes in the phase. This is different from the first example
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TABLE 1II

STATISTICAL DESIGN OF A S-CHANNEL MULTIPLEXER
USING QUADRATIC APPROXIMATION

Phase | Phase 2 Phase 3 Phase 4
Starting Point Nominal Solution Solution Solution
of the Phase Design of Phase 1| of Phase 2 of Phase 3
Initial Yield Estimated  75.0% 81.0% 84.3% 90.0%
from Exact Simulation
Initial Yield Estimated  56.3% 69.0% 69.3% 92.0%
from Approximation
Number of Outcomes 50 100 150 200
Used for Optimization
Number of lterations 4 6 6 4
Final Yield Estimated 81.0% 84.3% 90.0% 90.3%
by Simulation
Finat Yield Estimated 71.3% 77.3% 91.3% 94.0%

by Approximation

CPU Time
(CRAY X-MP/22)

16.5s 17.6s 17.8s 17.6s

CPU times do not include yield estimation based on actual simulation.
All yields are estimated using 300 samples.
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Fig. 5. The envelope containing return loss responses of acceptable circuits

among 3000 Monte Carlo samples.

where the quadratic models were rebuilt at each optimization
iteration.

Four phases took totally 69.5 s on the CRAY X-MP/22 to
reach a 90-percent estimated yield. This approach allowed us to
handle this large optimization problem (with 75 toleranced vari-
ables, 124 constraints, and up to 200 statistically perturbed
circuits) in acceptable CPU time. At the solution, the return
losses of 3000 outcomes and of satisfactory outcomes are con-
tained within the envelopes in Figs. 4 and 5, respectively.

VIL

In this paper we have presented a highly efficient quadratic
approximation technique. The new approach takes advantage of
the maximally flat interpolation and of a fixed pattern of base
points, thus substantially reducing the computational effort and
required storage. A set of extremely simple formulas to calculate
model coefficients has been derived. The elegance of this ap-
proach is its conciseness and applicability. The very strong im-
pact of our approach on the feasibility of statistical design of
larger circuits should not be underestimated. From the results of
two examples of statistical design, very high efficiency and the
capability of handling large problems have been proven. It should
also be noted that our approach is suitable for a large variety of
applications where a large number of expensive simulations is
involved.

CONCLUSIONS
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Identification Via Fourier Series for a Class of
Lumped and Distributed Parameter Systems

B. M. MOHAN anD K. B. DATTA

Abstract — Operational matrix of integration, as well as one shot opera-
tional matrix for repeated integration (OSOMRYI) is used in this paper to
estimate the parameters, and initial and boundary conditions of linear
time-invariant (LTI) lumped parameter systems. It is demonstrated that
OSOMRI provides better accuracy over conventional operational matrix
of integration. Moreover, an algorithm for distributed parameter system
identification via Fourier series is also included. Finally, a comparative
study of the estimates obtained by the proposed method for both the
systems with those available in the literature by other methods is also
carried out.

1. INTRODUCTION

Identification of lumped parameter systems (LPS) via Block-
Pulse and Walsh functions [2], Chebyshev first and second kinds,
Legendre and Jacobi, Laguerre and Hermite ([1] and the refer-
ences therein) has already been studied. Similarly, others have
used various orthogonal functions [5] apart from Walsh functions
[3] for distributed parameter systems (DPS) identification. Inspite
of these large number of contributions, it appears that no con-
certed effort has been made to explore the potentiality of Fourier
series in system identification which consequently forms the main
objective of this paper.

In the context of analysis of linear time-invariant (LTI) sys-
tems, Paraskevopoulos et al. [4] have already developed an inte-
gration operational matrix for Fourier series. In this paper, a
more general operational matrix, with a merit that it can be
applied over any arbitrary finite interval of integration, is devel-
oped. In order to improve the accuracy of operational matrix for
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repeated integration of Fourier basis vector the concept of
OSOMRLI, originally introduced by Rao and Palanisamy (2] in
connection with Walsh functions, is introduced. Essentially based
on this OSOMRI, an algorithm for the identification of LTI
single-input single-output (SISO) continuous LPS is presented in
addition to an algorithm for the identification of first-order
continuous DPS in this brief. Numerical examples with detailed
comparison of results obtained via proposed Fourier series
method and other existing methods are provided.

II. PRELIMINARIES OF FOURIER SERIES

The Fourler series or Fourier expansion corresponding to a
function f(t), which satisfies Dirichlet conditions, is approxi-
mately given by

n—1

() = o)+ X [fo(0)+[*7(0] = fle(n) (1)
Jj=1
where the Fourier coefficients f;, f; and f* are

fo=a["f(0) de
‘l , (2)
/I=2af’/f(t)¢>,(t)a't: I =2aj;ff(t)¢/*(t)dt

¢, (t)=Cos{jﬂ[2t7(t,+tf)]a}, j=0,1,2,- o

¢r () =sin{ jm[2r=(r,+1,)]a}, =123,

1, —initial 1; ¢, —final r; a=1/(t, ~1,)
VYR A AR AN Y

(4)

and
o (1) =[d0(1).dy(1). v, (1), 07 (0) .- gr (D] (5)

A. Operational Matrix for Integration of Fourier Basis
Vector ¢(t)

Operational matrix for integration of ¢(¢), denoted by E, may
be obtained from the following steps.

i) Integrate every element of ¢(¢) with respect to f,
il) Express the result of step (i) in truncated Fourier series,
iii) Put the result of step (ii) in a vector-matrix form to
obtain

[o(r)dr=Ea(1) (©)

where E is a nonsingular (2n ~1)X(2n —1) matrix having the
form

1/2 0" wl/m
E=(t,-1)| 0 0 S/2m
-w/2nr —-S/27 0

with

w=[1,-1/21/3,---.(-1)" /(n-1)]"
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