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Efficient Large-Signal FET Parameter
Extraction Using Harmonics

JOHN W. BANDLER, FELLOW, IEEE, QI-JUN ZHANG, MEMBER, IEEE, SHEN YE,

STUDENT MEMBER, IEEE, AND SHAO HUA CHEN, MEMBER, IEEE

Afm&act — We present a novel approach to nonlinear large-signaf FET

model parameter extraction for GaAs MESFET devices measured under

large-signaf condkions. Powerful nonlinear adjoint-based optimizatio~

which employs the harmonic bafance method as the nonlinear circuit

simulation technique, simultaneously processes mrdtibias, yultipower

inputs, mnki-fundamental-frequency excitations, and mnftiharmonic mea-

surements to uniquely reveaf the parameters of the intrinsic FET. In

contrast to other methods by which the model parameters me extracted

using dc and small-signal measurements, onr new approach can provide

more accurate and refiable large-signaf model parameters extracted under

actual operating cond@ions. Tfre mrMfied Materka and Racprzak FET

model serves as an example. Numericaf results verify that our approach

can effectively determine the parameters of this modeL Inchrding harmon-

ics in parameter extraction results in a reliable huge-siguaf model. Reaf

data provided by Texas Instruments have afso been employed. The tech-

nique has been implemented in a new program called HarPE.

I. INTRODUCTION

A N ACCURATE nonlinear large-signal FET model is

critical to nonlinear microwave CAD. Various ap-

proaches to FET modeling have been proposed, e.g., [1]-[5].

The dominant nonlinear bias-dependent current source in

these models, namely, the drain-to-source current source,

is commonly determined by fitting static or dynamic dc

I–V characteristics only [1], [2], [4]-[7] or by matching dc

characteristics and small-signal S parameters simultane-

ously [3]. Other nonlinear elements in the model are deter-

mined either by applying special dc biases so as to de-

termine the parameters of “the gate-to-source nonlinear

current source in the Materka and Kacprzak model [2] or

by using small-signal S parameters so as to determine the

gate-to-source nonlinear capacitor [3].

The FET models obtained by those methods may pro-

vide accurate results under dc and/or small-signal operat-

ing conditions. They may not, however, be accurate enough

for high-frequency large-signal applications [8], since they
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are determined under small-signal conditions and then

used to predict the behavior for large-signal operations.

Parameter extraction using large-signal measurements, e.g.,

power measurements [9], has recently been proposed.

However the approach in [9] does not distinguish individ-

ual harmonics.

In this paper, we present a truly nonlinear large-signhl

FET p~rameter extraction procedure which utilizes spec-

trum measurements, including dc bias information and

power output at different harmonics under practical wcrk-

ing conditions [10]. Besides multibias and multifrequency

excitations, multipower inputs are introduced for large-sig-

nal parameter extraction. The harmonic balance method

[11] is employed for fast nonlinear frequency domain simul-

ation in conjunction with #l [12] and lZ optimization for

extracting the parameters of the nonlinear elements in the

large-signal FET model. Powerful nonlinear adjoint analy-

sis for sensitivity computation [13] is implemented with

attendant advantages in computation time.

Numerical expeiimen ts show that all the parameters can

be identified under practical large-signal conditions and

that including higher harmonics in large-signal parameter

extraction is crucial to the reliability y of the model. Numer-

ical results are also obtained in processing actual measure-

ment data provided by Texas Instruments.’ Good agree-

ment between the measurements and the model responses

is reached, demonstrating the feasibility of our new param-

eter extraction approach.

In Section II, the formulation of the large-signal param-

eter extraction optimization problem is presented. Section

III describes the applications of the harmonic balance

technique to model response simulations and nonlinear

adjoint sensitivity and,ysis to gradient calculations. An

automatic weight assignment algorithm enhancing paramet-

er extraction optimization is given in Section IV. Numeri-

cal examples are discussed in Section V, where we use the

modified Materka and Kacprzak FET model [14], which

has 21

part of

parameters charact&-izing the nonlinear intrinsic
this large-signal F12T model.

H. OpTmnzAT1oN FOR LARGE-SIGNAL

PARAMETER EXTRACTION

Consider the FET model and its measurement environ-

ment shown in Fig. 1, where Yin and YOUt are input an~d

output 2-ports, and Yg and Yd are gate and drain bias
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Fig. 1. Circuit setup for large-sigrd multiharmonic FET measurement.

2-ports, respectively. A large-signal power input Pi. is

applied to the circuit. The responses including dc and

several harmonic components are measured.

In addition to the multibias, multifrequency concept we

pioneered for small-signal parameter extraction [3], [15],

we allow the circuit to be excited at several input power

levels. Various combinations of bias points, fundamental

frequencies, and input power levels together with multihar-

monic measurements contribute to the information needed

for real large-signal parameter extraction. In the following

discussion we use the term bias – input-frequency combina-

tion to indicate the modeling circuit working at a bias

point with a particular input power level and at a particu-

lar fundamental frequency.

Assume for the jth bias–input-frequency combination,

j+,z,.. ., M, the measurement is

(1)

where M is the number of bias–input-frequency combina-

tions, S“(0) is the dc component of the measurement,

S,(u,~), k=l,2,. . . . H, are the k th harmonic components

at the j th bias–input-frequency combination, and H is the

number of harmonics contained in the measurement. S,(0)

can be taken as the bias-related dc voltage or current,

which varies at different fundamental frequencies and in-

put levels even at a fixed bias point. When using power

spectrum measurement, S, ( u,~) denotes the k th harmonic

of the output power spectrum measured at the j th bias–

input-frequency combination. (The equivalent output volt-

age with phase information might also be employed [10].)

Corresponding to (l), the model response ~(~) can be

expressed as

q(+) = [5(N) q(+?ql) ““”q(+>qH)]Tj

j=l,2, -.., M (2)

where + stands for the parameters of the model to be

determined. The parameter extraction problem can be

formulated as the following optimization problem:

(‘in f ‘,dcl~( +,”)–sj(o)lp

@ ,=1

H

+ z ykl~J(+$Q,k ))-s,(@,k)lp (3)
k=l

where w,~C and WIL are weighting factors, and p = 1 or 2

Nonl or part

[Intr, nsc FETl

() —

Lneor port

[ ~

+
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Fig. 2. Block diagram for illustrating circuit simulation using the har-

monic balance method.

corresponds to #l or & optimization, respectively. The

criterion of the above optimization is to match the model

responses to the measurements at dc and several harmon-

ics. It is clear that the practical usefulness of this parame-

ter extraction approach depends on the effectiveness of

calculating the model responses F,(+), j =1,2,. “ “, M, and

their derivatives. (In the next section we will show that the

numerical computation of F~( o ) and its derivatives is not a

trivial task.)

The magnitude of the circuit responses varies widely at

different bias–input-frequency combinations and different

harmonics. An automatic weight assignment algorithm has

been developed to improve robustness and enhance con-

vergence speed. If the harmonic measurement is made in

the form of output power, the conditioning of the opti-

mization problem can be further improved by converting

the output power to its equivalent output voltage.

111. NONLINEAR CIRCUIT SIMULATION AND

GRADIENT CALCULATION

For a nonlinear large-signal FET model, the circuit

model in Fig. 1 is nonlinear. This means that the model

response F,(+) in (2) must be obtained by solving a

dynamic nonlinear circuit, and the gradient of the objec-

tive function in (3) involves calculation of the derivatives

of the dynamic nonlinear circui~ response.

To solve these two difficult problems, we have employed

the efficient harmonic balance method [11] for fast nonlin-

ear circuit simulation in the frequency domain. A powerful

nonlinear adj oint sensitivity analysis technique [13] has

been implemented to calculate the derivatives of the model

response and therefore the gradient of the objective func-
tion in (3) with respect to +. In this section we discuss the

applications of the harmonic balance technique to model

response simulation, and of nonlinear adjoint sensitivity

analysis to gradient calculations.

Let the nonlinear circuit model be partitioned into linear

and nonlinear subcircuits, as illustrated in Fig. 2. Assume

that the multiport 1’ matrix of the linear subcircuit can be

established, all the nonlinear elements are voltage-con-

trolled, and there is no nonlinear inductor inside the

intrinsic FET model. Also, for simplicity, we assume that

the parameters in the linear subcircuits are known. In the

rest of this section. we will focus our discussions on the jth
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bias–input-frequency combination; therefore the corre-

sponding subscript j will be omitted to simplify the nota-

tion. Other bias–input-frequency combinations can be

treated similarly.

A. Nonlinear Circuit Simulation Using Harmonic

Balance Method

Following [11], the harmonic balance equation for our

model can be expressed as

Zd(~>V(@)> @~)+~~(~~)Q(~> V(@)> @~)

+Y(tik) v(+, cok)+l,(tik)=o, k=o,l,..., w

(4)

where k represents the k th harmonic, tio ==O corresponds

to the dc component, v(+) = [VT(+>O) VT(O> @l) “ “ “
VT(+, u~,)] ~ is the voltage vector to be solved for, Y

stands for the multiport admittance matrix of the linear

subcircuit, 1, is the equivalent current excitation from the

external excitations, Id corresponds to the current from

the nonlinear current sources, fl(u~) is a diagonal matrix

with ti~ as diagonal elements, and Q corresponds to the

charge from the nonlinear capacitors. For example, Id

may contain the drain-to-source and drain-to-gate nonlin-

ear current sources, and Q may include the gate-to-source

nonlinear capacitor.

In (4) @ represents the optimization variables, i.e., the

parameters to, be determined, and H’ the number of har-

monics considered in the harmonic balance simulation. It

should be noticed that H z H (the number of measured

harmonics used), and H’ can be different for different

bias–input frequency combinations. For higher accuracy

H’ could be greater than H.

We solve (4) by organizing it into a scalar form:

+

Y’ (o)

Y’((JJ

2101

where the superscripts R and I represent real and imagi-

nary parts of the corresponding component, respectively.

Note that in sol~ng the harmonic balance equation (5), @

is constant and V(O) is the variable. Powell’s algorithm for

solving nonlinear equations [16] is used, where in orde.r to

save computation time and provide higher accuracy the

exact Jacobian matrix is calculated in our program, i.e.,

Y(@,v(+))

The detailed calculations of the entries of Y(+, ~($)) are

discussed in [11].

When the solution ~(~) is reached, the model response

F(+) can be easily obtained:

where a (ok) and b ( ti~,) are constant vectors determined

by the linear subcircuit, and l?(ti~) corresponds to the

external excitations including power input source and bias

sources.

B. Gradient Calculation by Nonlinear Adjoint

Sensitivity Ana&sis

Let N be an index set indicating interfacing ports

between linear and nonlinear parts, and eml(k) and enz(k)

be such unit vectors that V.(O, u~) = (e.l(k) +‘

jenz(k))T~($), n ~ N. The circuit response F(@ Ok) in (7)
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e
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can be rewritten as

F(@, ti~)

= ~ an(o,)(eml(k)+ je.,(k))~~(+)+ b~(u,)E(a,).
nGN

(8)

The derivative of F(4, ti~) w.r.t. +1 is then

f3F(@, @k)

aql

To realize the above derivative, we first derive from (5)

that

(?F(+)

a+,

(lo)

where J( $, 7(~)) is defined in (6) and is available at the

solution of the harmonic balance equation. Then by multi-

plying both sides of (10) by e~(k), we get

where

ti~(+) = [(t~(+,o))T (t~(+,6+))T. 0. (t~(@, @Hr))T

($’(+,O))T (tq+, q))T. . . (P(+,LJH))T]

and is determined by solving the adj oint system

~T(o,~(@))fi(@) =e~l(k). (12)

It can be proved that if ~, is a parameter of a nonlinear
element at branch b, then

example, if branch b is the gate-to-source diode with

characteristics

i~($, o(t)) =l~O[exp (a~u~(t))–l]

and ~{ = a~, we will have

a~,(+>~(~))
a+,

=IGoub(t) exp(aGub(t))

where discrete Fourier transformation is used, NT z (2 H’

+1) is the number of samples in the time domain within

one period T, T1 = T/NT, and T = l/( fundamental fre-

quency).

The same derivations can be applied to

(3P(*)
e~z(k)—

aq, -

Hence, i3F(@, ti~)/tl @l in (9) can be obtained. Conse-

quently, the gradient of the objective function in (3) can be

obtained.

Summing up, we can see that the gradient of the nonlin-

ear circuit response F(O) w.r.t. @ can be calculated by

nonlinear adj oint analysis which utilizes the existing Jaco-

bian matrix from the solution of the harmonic balance

equation to complete all the adjoint analysis. The equiva-

lent conductance at the nonlinear element level, i.e.,

Gb~i(@, ~f) or GbQ, (0, Ut), are the same for different ad-
joint systems, and therefore only need to be calculated

once. Compared with the perturbation method for gradient

computations, which requires solving one nonlinear circuit

for each optimization variable, the nonlinear adjoint analy-

sis not only provides the exact gradient of the objective

function, but, what is more important, significantly re-

duces the computation time and makes our parameter

extraction approach computationally practical [13], [17].

IV. WEIGHT ASSIGNMENT PROCEDURE

In the large-signal parameter extraction approach, pre-

sented in Section 11, the model response is optimized to

match several harmonics at various bias–input-frequency

combinations. Two difficulties must be overcome to opti-

mize the objective function in (3): the magnitude differ-

1fReal[Fb(+, @,) G;L(4> ~/)]
ap(+) - /=~

if b G {nonlinear current sources}

e~(k)—=
a+,

(13)

— ~ Imag[Fb(@,~/)GFQi(@,@/)] if b = {nonlinear capacitors}

/=0

where the superscript * stands for complex conjugate, and ences between different harmonic measurements, and the

Gb~,(~, ~~) and GbQ,(@, @~) are the ~th Fourier coeffi- differences between different bias–input-frequency combi-

cients of the partial derivatives of the current ib( +, O( t)) nations. Suitably chosen weighting factors can balance

and charge q,,( 4, V(t)) w.r.t. 1#1,respectively (see [13]). For these differences and improve the convergence of the opti-
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mization. This weight assignment procedure assumes that

(a) the possibility of having large measurement errors is

small, (b) the power measurement has been converted to

the magnitude of the output voltage, and (c) we want one

harmonic in a bias–input-frequency combination to have

the same opportunity in the objective function as the same

harmonic in another bias-input-frequency combination.

A. Balance of a Harmonic Between Different Bias – Input-

Frequency Combinations

In (1) of Section 11, we have defined the k th harmonic

measurement S1( u,~), where j =1,2,. . . . M corresponds to

the jth bias–input-frequency combination. Let ~~ be the

mean value of the k th harmonic measurement over M

combinations:

Fk=; .$S’(qk), k= O,l,..., H. (14)
]=1

Since the measurement will not be zero, we can balance

the k th harmonic by

q

“(ajk) “

(15)

Minimum and maximum bounds can be imposed on w~k;

i.e., simple interpolation adjustment can be used within the

k th harmonic if some w;, j = 1, . . . . M, lies outside the

bound(s).

B. Balance Between D#ferent Harmonics

In practice we may want to emphasize some harmonics

over the others; e.g., the lower harmonic measurements

may be emphasized due to their larger magnitudes and

therefore higher measurement accuracy. This requires ad-

justment between different harmonics. Let K~ be the

weight adjustment factor for the k th harmonic. Then the

weighting factors for the optimization problem (3) can be

expressed as

51
Wlk = Kkw~=-,

J Sk
k=l,2,..., H (16)

and
—

Wjdc= KOW;O; (17)
o

where we take the mean value of the first harmonic mea-

surement as a reference. As an example, if we want to

place equal emphasis on the dc and fundamental harmonic

measurements and lower emphasis on higher harmonic

measurement, we can choose K~ = 1 for k = O and 1, and

K~=B-kfor k=2,, ... Hwhere B >1.

V. NUMERICAL EXAMPLES

In the numerical examples, we use the Microwave Har-

monica [14] modified Materka and Kacprzak FET model

as the intrinsic FET, as shown in Fig. 3. All tlhe linear FET

model parameters such as the parasitic in Fig. 1 are

s
Fig. 3. Intrinsic part of the modified Materka and Kacprzak FET

model.

extracted using small-signal measurement data. The non-

linear elements of the model are described by [14]

‘~=F’”~(t-’)o~(t)’(1
(

i 1
(E+ KEUG)

F(o~, u~) = ~~ss 1– ~ ~YU~
Po

(

s~v~
-tarlh

lDS’S(l – ‘GUG) )

i~=l~o[exp (a~u~)–l]

iB=lBoexp[aB(uD– VI– VBC)]

(

RI= RIO(l– K,u~)

R1=O if K~v~ >1

{

Cl= Clo(l -- K1u~) - 1’2+ C1~
(1:8)

c1 = C10J5-i- Cls if K1v~ & 0.8

and

{

CF=CFO[l– K~(ul– u~)] ‘“2

Cp= CFOJ7 if K~(ul– u~) >0.8

where IDS~, P’po, Y, B, KE, S1, KG, T, SS, 1~0, a~, 1~0,

a~, V~c, RIO, K~, Clo, Kl, C1~, C~O, and K~ are the

parameters to be determined. Since only one of l~o and

V~c is independent (see the Appendix), we fix V~c and

optimize the other 20 parameters:

During the optimization the nonlinear circuit is solved

using the harmonic balance method, where the excitation

of the circuit is the available input power Pi., which can be

converted to an equivalent input voltage source Vin by

(20)
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TABLE I
PARAMETERVALUES OFTHEINTRINSIC PARTOFTHEMODIFIED

MATERKA AND KACPRZAK FET MODEL

Value

Name Unit Case 1 Case 2 Case 3

IDSS
v Po
7
E
KE
S1
KG
r
s,

lGo
‘G
1BO
‘B
v BC
R 10
KR
c 10
K1
c 1s
c FO
KF

A 0.1888
v -4.3453

-0.3958
2.0

I/v 0.0
1/n 0.0972
I/v -0.1678
ps 3.654
1/n 0.0
A O.5X1O-9
I/v 20.0
A O.5X1O-9
I/v I ,0
v 0.0”
n 4.4302
l/v 0.0
PF 0.6137
I/v 0.7686
pF 0.0
pF 0.0416
1Iv 0,0

0.0521
-1.267
-0.0877

1.269
-0.3224

0.0731
-06482

5.322
4.462 x10-5
8.782 x10-g
34.04
5.960x 10-12
4.245
20.0’
0.0361
9.892x10-S
1.066
1.531
0.0314
1.321
1.638

0.0740
-3.185

0.0177
2.937

-0.9077
0.1527

-0.4912
0.1011
0.0022
4.965x10-11
20.32
1.OOOX1O-12
2.000
20.0’
0.1243
0.0
1.170
1.201

-0.5243
0.0623

-0.0959

* Since only one of IBO and VBC is independent (see the
Appendix), we fix VBC and optimize IBO.

Three cases are discussed. In case 1, we will show the

theoretical aspects of the proposed approach, i.e., the

robustness, reliability and efficiency of our parameter ex-

traction approach if there is no model deficiency. Case 2

gives a numerical experiment of matching the modified

I’vfaterka and Kacprzak model to the Curtice model. In

case 3, we will discuss practical large-signal FET model

parameter extraction for the measurement data provided

by Texas Instruments.

Case 1: Robustness and Efficiency of the Parameter Extrac-

tion Approach

We use the MESFET parasitic from [3]:

[R, L, R. L, % L, C., R,, c~.~

= [0.0119 Q 0.1257 nH

0.3740 Q 0.0107 nH 0.0006 L! 0.0719 nH

0.1927 pF 440 Q 1.5 pF]

and assume that the solution of the model is also from [3],

which is listed in Table I. The circuit is simulated at four
bias points: (V~~ = – 0.5 V, V~~ = 2 V), (V~~ = – 2 V,

V~~=2V), (V~~=–0.5V, V&=5 V). and(V~B=–2V,

V~~ = 5 V). At each bias point three input power levels

(P,n = 5, 10, and 15 dBm) and two fundamental frequen-

cies ( fl = 1 and 2 GHz) are applied, respectively. There are

a total of 24 bias–input-frequency combinations. Six har-

monics are considered in the harmonic balance simulation.

The output power POut and the dc voltage V~c (see Fig. 1)

of the simulation results are then used as the simulated

measurements. This corresponds to the situation of no

model deficiencies.

To examine the robustness of the approach, we gener-

TABLE II

MATCH ERRORS BETWEEN THE MEASUREMENTS

AND MODEL RESPONSES IN CASE 1
.——. — .-—

P.Ut matching errors in (Ye)

Harm. Match (H=l) (H=2) (H=3)

First harm, -0.53 -0.84 -1.08

Second harm. 21.32 7.58 6.77

Third harm. -37.48 -14.36 -9.31

where H=l, 2, or 3 corresponds to the number of har-
monics included in the objective function (3), and the
comparisons here are made at bias point (VGB=-2V,
VDB=2V), available input power Pin=lOdBm and funda-
mental frequency fl=l GHz.

ated several starting points by uniformly perturbing the

assumed solution by 20 to 40 percent and optimized them

with the t’l norm, i.e., p = 1 in (3). The circuit response

~(+) in (2) was computed using six harmonics (H’= 6).

In the case where there is no measurement error, i.e., the

exact simulation results obtained at the assumed solution

are used as the measurement data, all the starting points

converged to the known solution exactly when we included

the first three harmonics, the first two harmonics, or one

harmonic (plus dc) in the objective function; i.e., H =3, 2,

or 1 in (3), respectively. However, it has been observed

that the speed of convergence is usually faster when more

harmonics are considered in the optimization.

To simulate a real measurement environment we added

10 percent normally distributed random noise to the simu-

lated measurements. The same starting points were opti-

mized with the 22 norm, i.e., p = 2 in (3), and the same

conditions were tested. When H = 3 or 2 in (3), all the

starting points converged to virtually one solution which is

close to the assumed solution and gave very good match to

the measurement with noise. When H =1, however, those

different starting points did not converge to a single solu-

tion close to the assumed solution. Although at these

solutions the matches to the measurements with noise at dc

and fundamental harmonic are better than those achieved

when H = 3 or 2, poor matches at second, third, and/or

higher harmonics exist. Table II shows the match errors at

one of the bias–input-frequency combinations at the solu-

tions obtained when H =1, 2, and 3 in the objective

function.

From these experiments, we can see that with our ap-

proach the nonlinear parameters can theoretically be deter-

mined even when H = 1 in (3). In practice when the model
is not perfect and the measurement contains error, it is

necessary to include higher harmonic measurements in the

nonlinear large-signal model parameter extraction, for it

not only improves convergence, but, what is more impor-

tant, results in a more reliable model.

Two different starting points were used to compare the

CPU execution time with and without nonlinear adjoint
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TABLE III
PARAMETERS OF THE CURTICE MODEL USED IN CASE 2

Parameter P2 (1 Iv) AO (A) Al (A/V)
Value

AZ (A/V2)
0.04062 0.05185 0.04036 -0.009478

Parameter A3 (A/V3) 7 (l/v) fiso W IS (A)
Value -0.009058 1.608 1.O5X1O-9

Parameter N (-) :SO (PF) H;O (P’F) FC (-)
Value 1.0 0.5

Parameter C&(l/II) VW (w VBR (J’) T (P$)
Value 0.7 20 5.0

see [4]

TABLE IV
INPUT LEVELS USED WITH DIFFERENT FUNDAMENTAL FREQUENCIES

AND DIFI ERENT BIASES IN CASE 2
—
—

Pin (dBm)

(VGB, VDB) —

fl=0.5GHz fl=l.OGHz fl=l.5GHz f1=2.0GHz

(-0.3, 3) 0,4 0, 4 0, 4 0, 4
(-0.3,7) 0,4 0, 4 0, 4 0, 4
(-1.0,3) 0 0 0 0
(-1.0, 7) o 0, 4 0,4 0
(-0.5, 3) -- 8 8 --
(-0.5, 7) 8 8 8 8

fl denotes the fundamental frequency

analysis for gradient computation. To reaclh an t’l objec-

tive function value of about 1.0X 10-3 for another exam-

ple having 16 bias–input-frequency combiniitions, 20 vari-

ables, and 64 error functions, the Fortran program with

the adjoint analysis runs approximately 10 times faster

than that without adjoint analysis (about 200 s versus 2000

s on a VAX 8650 computer).

Case 2: Fitting to the Curtice Model

Here we use a set of data generated by the Curtice

model [4]. The circuit is similar to that of Fig. 1 except that

the intrinsic FET is replaced by the intrinsic part of the

Curtice model. Some of the parameters of the Curtice

model are taken from [4, fig. 13]. See Table III. The

parameters in the linear part of the circuit are the same as

in case 1.

We selected 32 bias–input-frequency combinations, as

shown in Table IV. The first three harmonics were as-

sumed as measurement data. Any signal below – 30 dBm

was discarded. There were 111 error functions in total.

To extract the model parameters, ~j optimization was

applied and the result is listed under the case 2 column in

Table I. Fig. 4 illustrates the modeling results at a bias

point other than those considered in the optimization.

Excellent agreement is observed.

As for case 1, parameters at the solution were perturbed

uniformly by 20 to 40 percent and reoptimized. Of six

starting points, four converged to the same solution with

little variances in RIO and K~. The other two converged to

different local solutions with higher final objective func-

tion values.

Fig. 5 shows the characteristics of drain-to-source non-

linear current sources of the Curtice model and the modi-

fied Materka and Kacprzak model, and again we have

reached an excellent match. Notice that only six bias

points are used in the optimization, which is even less than

the total number of parameters for this current source.

However, since we modeled under actual large-signal con-

ditions, employing higher harmonic measurements, a much

larger range of information has been covered than individ-

ual points on the dc 1– V curve can provide.

Case 3: Processing Measurement Data from ‘Texas Instru-

ments

Actual GRAS FET measurement data were obtained

from Texas Instruments [18] including small-signal and

large-signal measurements. We used the small-signal S

parameter measurement data to extract the linear parame-

ters of the model. Large-signal measurements taken at 36

bias–input-frequency combinations were used for nonlin-

ear parameter extraction. Table V illustrates the bias–i n-

put frequency combinations in detail. At each combina-

tion, the dc bias current and up to three RF harmonic

output power measurements are available.

Optimization with the /1 norm was performed where,

depending on the scales of the input and the correspond-

ing output powers,, the c;rcuit was simulated using three to

seven harmonics. There are 20 optimization variables and

113 error functions. Among ten different starting points,

six converged to virtual] y one single solution with varia-

tions of 1~0, 1~0, a~, and RIO because of their relative] y

low sensitivities to the response functions. One typical

solution is listed under the case 3 column in Table I. Fig. 6

shows the match at the solution between the model re-

sponses and measurement ts at one of the bias points taken

into account in the optimization, while Fig. 7 shows the

match at a bias point not included in the optimization.

Good agreement at both bias points is observed.

Fig. 8 depicts the 1– ,V characteristics of the drain-tcl-

source nonlinear current :source at the solution. Notice that

this set of curves is obtained from large-signal parameter

extraction, not from typical dc 1– V curve fitting.

VI. ICONCLUSIONS

An accurate and truly nonlinear large-signal parameter

extraction approach has been presented where not only dc

bias and fundamental frequency but also higher harmonic

responses have been used. The harmonic balance method

for nonlinear circuit simulation, adjoint analysis for non-

linear circuit sensitivity calculation, and state-of-the-art

optimization methods have been applied. Improvements to

the convergence of the optimization process have been

discussed. Numerical results have demonstrated that the

method is both theoretically and computationally feasible,

i.e., the method can uniquely and efficiently determine

the parameters of the nonlinear elements of the GaAs

MESFET model under actual large-signal operating condi-

tions. Numerical results have also shown that under multi-

bias, multipower inputs and multifrequency excitations.,

spectrum measurements can effectively reflect the nonlin-
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Fig. 4. Agreement between the (Materka) model response and the simulated measurements (using the Curtice model) at

V6B = – 0.5 and V~B = 5 in case 2 Solid lines represent the (Materka) computed model response. Circles denote the

simulated measurements at fundamental frequency 0.5 GHz and triangles the simulated measurements at fundamental
frequency 15 GHz (a) Fundamental component. (b) Second harmonic component. (c) Third harmonic component. (d) dc

TABLE V

BIAS–INPUT-FREQUENCY MEASUREMENT COMBINATIONS
FOR THE NUMEtUCAL EXAMPLE OF CASE 3

Pin = -15, -10, -5, 0, 5, 10 dBm

fl=0.2GIiz f ~=6.OG1iz fl=i OGHz

S3ixs 1 (-0.373,2) (-0.372,2) (-0.372,2)

Bias 2 (-1.072,6) (-1.073,6) (- 1.069,6)

where fl means fundamental frequency and the number

pairs in the brackets are the bias voltages (VGB,VDB)

earities of the model and improve model reliability when

used in nonlinear large-signal model parameter extraction.

A computer program. called HarPE, has been developed

by Optimization Systems Associates Inc. It offers a user-

‘/

friendly implementation of the technique presented in this

paper to the microwave community.

APPENDIX

RELATIONSHIP BETWEEN I~o AND VBC

For the drain-to-gate diode of the Materka and Kacprzak

FET model (see Fig. 3), we have

i~=l~oexp[a~(o~–ol–V~c)]. (Al)

This can be rewritten as

i~=l~oexp[a~(O~– Ul)] “exp[–a#’~c] (A2)

or

i~=l~oexp[a~(u~–ul)] (A3)

where

ljo = l~oexp [ – CY~V~c]. (A4)
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Fig. 5. Agreement between the dc characteristics of the modified

Materka and Kacprzak model and the simulated measurements (from

the Curtice model) in case 2. V~ is from – 1.75 V to 0.25 V in steps of
0.25 V, and V~ is from O to 10 V. (Curtice uses ~n and V&,

respectively.) Solid lines represent the (Materka) model, and the circles

represent the measurements.
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Fig. 6. Agreement between the (Materka) model responses and the

measurements from Texas Instruments at fundanumtaf frequency 0.2

GHz, and bias point V~B = – 0.373 V and V~B = 2 ~. (This bias point

has been included in the optimization.) Solid lines represent computed
model responses. Circles, triangles, and squares denote fundarnentaf,

second harmonic, and third harmonic measurements, respectively.

It is clear that for a given value of ljO there is no unique

solution for lBO and ~Bc. In other words, only one of the

two parameters lBO and ~Bc is independent. Therefore, we

can fix P’BC and optimize lBO during parameter extraction.
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