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Abstract It is the purpose of this paper to show how first- and second—

. order sensitivities and gradients with respect to network parameters can be

evaludted directly in terms of wave variables. The concept of the adjoint
natwork is employed. The application of these ideas to computer-aided

. network optimization is indicated.

INTRODUCTION

There is considerable interest and activity currently in the computa-
tion of sensitivities for lumped [1], [2] and distributed [3], [4} networks
using the adjoint network approach in terms of currents and voltages.

These are often needed to cvaluate parameter space gradients in computer-
aided network optimization [1-5]. An advantage of the adjoint network
approach is that at most two network analyses are required for evaluation
of the gradient vecter regardless of the number of parameters. In certain
problems the need may arise for -second-order sensitivities and methods for
their evaluation have been suggested [6-8]. '

It is inconvenient if not impossible to work with currents and
voltages for certain classes of networks. In the microwave region, for
example, a wave description of networks is often preferable. There is
need; then, for sensitivities or gradients of networks in terms of wave

" variables. . Tt {is the nurpose of this naper to show how they mav he
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AN IDENTITY FOR SCATTERING VARIABLES

Let us assume we have a network which is composed of (in gencral) one-
port and multiport elements. Let the normalized incident and reflected
waves at every port be denoted a-and b, respectively (see Figure 1(a)).
Consider now a second network of the same topology aund corresponding
normalizations with corresponding variables denoted o and B8, respectively
(see Figure 1(b)). 1In the ensuing discussion we will need the following
identity relating the waves in both networks ’

I (oo, - a,8) = (b,a, - a.B.) 1).
11 i1 171 iEE i1 i1
where I is an index set relating to all (interior) ports and E an index set
relating to exterior ports. Since an exterior port is at the same time a
port of a network element, E is a subset of I. . That the above equation is
true is more or less obvious in the case when the connected port pairs are
normalized to the same level. However, (1) is valid even when the normal-
ization levels are arbitrary throughout the network. This can be seen,

for example, by writing first the scattering equation for an internal port
junction (Figures 1(a) and (b)) : )

This work was carried out under Grants A7239 and A5277 from the
NationaljResearch Council of Canada.
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where S; is the scattering matrix of the Junction, accounting for the
change in normalization across the junction. Substituting (2a) and (2b)
into the relevant terms of the left-hand side of (1) we have

»bp bq:] o] - [:ap 2, BP
o] L%

_ e A
b bq]v(§j - 8, ) B, ] - | , B ¢))
8
q

Since the junction (normalization step) is reciprocal (3) is equal to zero,
thus the left-hand side of (1) reduces to the sum over E, For an
alternative proof using voltage and current concepts see Penfield et. al.

[9].

Derivations in the following sections are based on a generalized
version of (1) [9], namely

7 (W b)a, = (L a)de) = ) ((Lb)a, - (L a,)g) (4)
fe1 1771 1774 1eE 1771 1771

vhere L-will be first-and second-order parameter space differential
operators. Proof of (4) follows similar lines to the proof of (1).

FIRST-ORDER SENSITIVITIES

Suppose a parameter ¢ in the original network is varied without ‘
affecting topology. Further, let it be contained in an ﬁ—pptt‘subnetwork

characterized by a scattering matrix § such that
b = Sa )

where b. and a are the appropriate n-element vectors. Then
B 38 3a
womEt i

The terms relating to this subnetwork on the left-hand side of (4) become

3s da
a'( 35 ) e+ Cap )t [§T2 -_é] )

(6)

which reduces to
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Equation (9) defines the corresponding subnctwork of the auxiliary or, in
current parlance, the adjoint network.

If all elements of the adjoint network are defined in this way

b, - oa - 28
By o By TRLRY:
L5 o -8 )=alq5) o 10y -

1eE

Then, by suitably terminating (and exciting) the network and its adjoint,
the sensitivity of the desired wave can be computed. So, for example, if
we are interested in the sensitivity of the ikth term of the overall
scattering matrix, the network is analyzed for a =1, a =0 for all j € E,

j # k (the latter is achieved by matched term;na%ions) and the adjoint

‘network excitations are zero except at the ith port, where a unit source

is applied. Then (10) reduces to*’

ab
ik i T 82 T P
Y = ¢ =a ( a¢ ) G . (11)

To evaluate the sensitivities one needs to know the partial deriva-
tives of subnetwork scattering matrices. For the majority of common
design components these can usually be found after some manipulation. As
it bappens, quite often 3$/3¢ can be expressed in terms of the original §
matrix which simplifies the evaluation of the gensitivities. Thus, for

example, for a plece of wavegulde of characteristic impedance Z using
roal narmalisarian. .

3s
d(57) e =z a-2"8). (12)

Or, the arbitrariness in the normalization level can be used to advantage

as demonstrated in the case of the sensitivity with respect to length of

a plece of transmission line or waveguide. If the input and output waves

are normalized on the impedance level equal to the characteristic

iwmpedance of the guide, then

88 ‘
g (57) a= a8 ’ ‘ (13)

where vy is the propagation constant of the waveguide.

*At the time of writing, it was brought to the authors' attention that
some similar results have been independently derived [10].
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SECOND-ORDER SENSITIVITIES

Consider two distinct non-topological parameters ¢ and ¢ in the
original network. Assume that they are contained in a subnetwork with
scattering matrix S§. Applying 3/3y to (6) we get

2 2 : 2

b 8y . @8s2a 222  2°a :
wa¢'wa¢§+%iﬁ+?3$+§wa¢' as
The terms relating to this subnetwork .on the left-hand side of (4) now
:pptopriately become
.2 S L2
o () -8 (o)
- 3Y 3¢ - Y 9
2. 2
3°s 3S da 9S 3a 97a
T 2 T°2° 92 T T g
( 3V 9¢ }E +.a 3¢ 3y +ta 3 36 + (ﬁ §-8 ) 3 30 ° (15)
Using (9), we can reduce (15) to
" .
3°S 3S 3a 39S da
T 2 T °2°% po2cd
a ( 3y 096 ) ata 36 9y + oy 9% (16)
If the whole aﬁxiliary network is defined in accordance with (9) and if
suitable terminations as described in the preceding section are applied
we obtain the counterpart of (11), namely,
. ) '
-————asik-aT(——-——a's' )a angae-l-qu—g-?—E— (¢%)]
9y 3¢ - 3 3¢ 7= = ¥p 3y <~ 3y 3¢ °
A SpeClal Case OL 1NLECESBL A8 WHEl’l § allud § are luvuibicel svaeiing oo
2 .2
3°s 3°s 3S da
- ik T ¢ = T = = :
—o e (Fatw 757 - a®
3¢2 3¢2 3¢ 3¢

If ¢ belongs to a subnetwork with a scattering matrix 8¢ and ¢ belongs
to a subnetwork with a scattering matrix SW’ it may readily be shown that

2
3°S 3S, da 9SS, 3da
ik T =% =¢ T =y =y
W oe %3¢ av T %Iy 36 . (19)

where subscripts ¢ and ¢ denote quantities related to the appropriate sub-
networks.

COMPUTATION OF PARTIAL DERIVATIVES

The results of the previous sections can be readily exploited in the
evaluation of the gradients of practically any wave-based objective
function with respect to a variety of parameters including frequency. The
procedure is fairly well-known and is discussed in detail in a number of
references [2-6], [11].
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EXAMPLES

Convenient examples to test the ideas of this paper were provided by
the resistively terminated cascade of transmission lines shown in Figure 2.
Two-section and three-section 10:1 quarter-wave transformers optimum over
100Z bandwidth were chosen. Their responses are also shown .in Figure 2.
The numerical values of the parameters of the two-section design were taken
from reference [12] and of the three-section design from reference [13].

Tables I and II show the cowponents of the gradient vecter of the
magnitude of the reflection coefficient p at 0.5 GHz estimated from 1% and
.01% incremental changes in the parameters compared with those obtained
from the results of this paper using one network analysis. Gradient
calculations at other frequencies were also made by the preseat method.
They were used by the first author in {llustrazting the neceasary conditions
for a minimax optimum in another paper presented. at this conference [14]). -

CONCLUSIONS

This paper has shown how first- and second-order sensitivities and
gradients with respect to network paramcters can be evaluated directly in
terms of wave variables, without recourse to voltages and currents. The
method employs the concept of the adjoint network. As a resuvlt, the same
benefits in terms of ease of implementation and computational. efficiency
as discussed by previous authors should be enjoyed. Efficient gradient
methods of minimization can thus be employed in the optimal design by
computer of networks for which the wave description is more nzatural or
preferable. :
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Figure 1. Two networks of the same topology and
with corresponding port normalizations.
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TABLE I

COMPARISON OF GRADIENT COMPONENTS OF THE REFLECTION COEFFICIENT
OF THE 2-SECTION TRANSFORMER AT 0.5 GHz (|p| = 0.4286)

5:;‘:3::“1' Gradient componenté
17 C 01% adjoint
increment increnent network
£y = 7.49482 em  -7.4397 x 1072 -7.3337 x 1072 -7.3326 x 1072
Z, = 2.2361 . @ -1.8250 x 1071 -1.8254 x 107 -1.8254 x 107}
-7
2, = 7.49482 em  -7.3745 x 10 "2 12,3330 x 107% -7.3326 x 1072
Z, = 4.4721 2 9.0050 x 10 -2 9.1260 x 1072 9.1272 x 1072
TABLE 11
COMPARISON OF GRADIENT COMPONENTS OF THE REFLECTION COEFFICIENT
OF THE 3-SECTION TRANSFORMER AT 0.5 GHz (|p] = 0.1973)
5:;i:§ter Gradient components
1% .01 2djoint
increment increment. network
L. = 7.49482 cm  -4.4498 x 1072 -4.3777 x 107%  -4.3770 x 10°¢
1 -1 Y -1
Z) = 1.63471 0 -4.3461 x 10 ~4.3555 % 10 -4.3556 x 10
£, = 7.49482 cn  -9.1695 x 1072 -9.1294 x 1072 -9.1289 x 1072
Z, = 3.16228 9 6.7 x 4 -6.5 x 107° 4.0 x 1077
£, = 7.49482 cm  -4.3545 x 10‘2 -4.3767 x 107°  -4.3770 x 1072
Z, = 6.11729 2 1.1543 x 1071 1.1638 x 1071 1.1639 x 1071
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