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Abstract—We introduce a novel approach to ‘‘robustizing’’
circuit optimization using Huber functions: both two-sided and
one-sided. Advantages of the Huber functions for optimization
in the presence of faults, large and small measurement errors,
bad starting points, and statistical uncertainties are described.
In this context, comparisons are made with optimization using
f;, & and minimax objective functions. The gradients and Hes-
sians of the Huber objective functions are formulated. We con-
tribute a dedicated, efficient algorithm for Huber optimization
and show, by comparison, that generic optimization methods
are not adequate for Huber optimization. A wide range of sig-
nificant applications is illustrated, including FET statistical
modeling, multiplexer optimization, analog fault location, and
data fitting. The Huber concept, with its simplicity and far-
reaching applicability, will have a profound impact on analog
circuit CAD.

I. INTRODUCTION

NGINEERING designers are often concerned with the

robustness of numerical optimization techniques, and
rightly so, knowing that engineering data is, with few ex-
ceptions, contaminated by model/measurement/statistical
erTors.

The classical least-squares () method is well known
for its vulnerability to gross errors: a few wild data points
can alter the least-squares solution significantly. The ¢,
method is robust against gross errors [1], [2]. We will
show, however, that when the data contains many small
errors (such as statistical variations), the £, solution can
be undesirably biased toward a subset of the data points.
This indicates that £, is not suitable, in general, as a sta-
tistical estimator.

Neither the £, nor the £, method has flexible discrimi-
natory power to recognize and treat differently large (cat-
astrophic) errors and small (soft) errors. We introduce the
Huber function [3]-[5], which appears to be a hybrid of
the ¢, and ¢, measures. Compared with £, the Huber so-
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lution is more robust w.r.t. large errors. Compared with
f,, the Huber solution can provide a smoother, less biased
estimate from data that contains many small deterministic
or statistical variations. We demonstrate the benefits of
this novel approach in FET statistical modeling, analog
fault location, and data fitting.

We extend the Huber concept by introducing a ‘‘one-
sided”” Huber function for large-scale optimization. For
large-scale problems, systematic decomposition tech-
niques have been proposed (e.g., [6], [7]) to reduce com-
putational time and prevent potential convergence prob-
lems. In practice, the designer often attempts, by
intuition, a ‘‘preliminary’’ optimization with a small
number of dominant variables. The full-scale optimiza-
tion is performed if and when a reasonably good point is
obtained.

With a reduced number of variables, the optimizer may
not be able to reduce all the error functions at the same
time. For instance, the specification may be violated more
severely at some sample points (such as frequencies) than
at the others. In such situations, the minimax method is
preoccupied with the worst-case errors and therefore be-
comes ineffective or inefficient. We demonstrate, through
microwave multiplexer optimization, that the one-sided
Huber function can be more effective and efficient than
minimax in overcoming a bad starting point.

We present a dedicated, efficient, gradient-based algo-
rithm for Huber optimization and show, by comparison,
that generic optimization methods, such as quasi-Newton,
conjugate gradient, and simplex algorithms, are not ade-
quate when directly applied to minimizing the Huber ob-
jective functions. The gradients and Hessians of the Huber
objective functions are derived and their significance is
discussed.

II. THEORETICAL FORMULATION OF HUBER FUNCTIONS
The Huber optimization problem is defined as [3], [4]

m

minimize F(x) 2 2 ox (f;(®)

x j=1

(1)
wherex = [x; x, * - x,,]T is the set of variables and p,
is the Huber function defined as

2/2 if | fl <k
pk(f) = 2 .
k| fl — k*/2 if | f| >k

where k is a positive constant and f;, j = 1, 2, -, m,
are error functions.
The Huber function p; is a hybrid of the least-squares
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(&) (when | f| < k) and the ¢ (when | f| > k) functions.
As illustrated in Figs. 1 and 2, the definition of p, ensures
a smooth transition between f, and ¢ at | f| = k. This
means that the first derivative of p; w.r.t. fis continuous.

The ¢, is robust against gross errors in the data [1], [2].
Since the Huber function treats errors above the threshold
(i.e., | f| > k) in the § sense, it is robust against those
errors, i.e., the solution is not sensitive to those errors.
The choice of k defines the threshold between ‘‘large’’
and ‘‘small’’ errors. By varying k, we can alter the pro-
portion of error functions to be treated in the ¢, or ¢, sense.
Huber gave a look-up table [3] from which k can be de-
termined according to the percentage of gross errors in the
data. If k is set to a sufficiently large value, the optimi-
zation problem (1) becomes least squares. On the other
hand, as k approaches zero, p,/k will approach the ¢,
function.

A. Gradient and Hessian

To further our insight into the properties of the Huber
formulation, we derive the gradient and Hessian of the
Huber objective function as follows.

The gradient vector of the Huber objective function F
w.r.t. x is given by

VF = j_zZl v, f] 3)
where
. o (£ (X)) {Jj(x) if | )] < k @
Yy, = —————— =
S ALY tk if| £ >k
L [3f@ af 3f@7"
Ji :[ ax, ax, dx,, } )

The structure of (3) is very similar to the gradient of £,
(least squares), which is

VF,, = ,‘Z:. Lf- ©)

By comparing (3) with (6), we can see that »;, namely
the first derivative of p, w.r.t. f;, serves as a weighting
factor in the Huber gradient. For | fi| < k, », is defined
in (4) as f;, which is the same as in the £, gradient given
by (6). For | f;| > k, »; is held constant at the value of f;
at the threshold. In other words, the Huber gradient can
be thought of as a modified ¢ gradient, where the gross
errors are reduced to the threshold value.

The Hessian matrix of the Huber objective function F
w.r.t. x can be expressed as

H= 2 @ffi"+nfp) ™
where
COfx) (1 £ < k
Y“= 5w o i ®
3f; (x) 0 if|f()] >k
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Fig. 1. The {, and & objective functions in the one-dimensional case. The

¢, function is rescaled and shifted in accordance with the corresponding part
in the Huber function. It has the form F = k| f| — k*/2. The £, function
has the form F = /2.

x 10 &
X
k%2

Fig. 2. The Huber, ¢, and f, objective functions in the one-dimensional
case. The strikes and dots represent the discrete points on the ¢ and 4,
curves, respectively, in Fig. 1. The continuous curve indicates the Huber
objective function.

fl &= ©
Comparing (7) with the ¢, Hessian matrix given by

H, = EI i fi"+ 51 (10)

we can see that »; serves as a weighting factor to reduce
the contribution of gross errors in the data to the Hessian
matrix.
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B. One-Sided Huber Function

We present an extension of the Huber concept by intro-
ducing the ‘‘one-sided’’ Huber optimization defined as

minimize F(x) £ ZJ] o (fi(x) (11)
x /1=
where
0 iff<0
ol (f) ={f*/2 ifo<f<k (12
kf—k*/2  iff > k.

This one-sided Huber function is tailored for design op-
timization with upper and/or lower specifications. f is
truncated when negative because the corresponding de-
sign specification is satisfied.

The gradient vector of the one-sided Huber objective
function F w.r.t. x is given by

VF= % (13)
j=
where

0 iff, <0

v 2 O0f . X

v = =13f if0<f <k (14)

af;

k if f, > k.

The Hessian matrix of the one-sided Huber objective
function is given by

H= ,:Zl d £ f;7+ v ) (15)
where
0 iff=<0
. _ o o
df =57 =)1 fo<f=k (16)
"olo iff >k

III. A DEDICATED ALGORITHM FOR HUBER
OPTIMIZATION

We present a dedicated, efficient algorithm for mini-
mizing the Huber objective functions, both one- and two-
sided. We have implemented this algorithm in the CAD
system OSA9O/hopeTM [8] as a new standard feature and
used it to generate the numerical results presented in this
paper.

The numerical algorithms proposed for solving (1) are
of the trust region type. We calculate a sequence of points
{x,} intended to converge to a local minimum of F. At
each iterate x,,, a linear function /; is used to approximate
the nonlinear function f;, j = 1,2, + - - , m, and thus a
linearized model L, of F is constructed. This model is a
good approximation to F within a specified neighborhood
N, of the pth iterate x,,. This neighborhood N, is intended
to reflect the domain in which the /; approximations of the
f; are valid.
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Assume a tentative step k is being searched at the pth
iterate x,,. If the search is successful, we go on to the next
iteration, i.e., x, . = x, + h. The problem is formulated
as

m

minimize L, (h) £ L(h, x,) = _ZI pi(i(h, x,))  (17)
h J=

where
Li(h, x,) & fi(x) + [ff @) R (18)
subject to the constraint k € N,,, where
N, & {x|lx = x| =8} (19)

and where ||+ || denotes the Euclidean norm.
The difference between the Hessians of the true Huber
objective function (7) and this linearized model is the term

m
Z vifi -
j=1
This error in approximating the true Hessian (7) is smaller
than in the ¢ case, namely,

by
p:

We solve the foregoing problem (17) using an algo-
rithm similar to that of Madsen and Nielsen for the linear
Huber problem [9]. This method is based on the fact that
L, is a combination of quadratic functions which are linked
together in a smooth manner. Therefore, a Newton itera-
tion is very efficient, and can be proved to find the solu-
tion after a finite number of steps. The solution to this
linear problem is denoted by h,.

The trust region radius 9, is updated in each iteration.
We propose the usual updating scheme for trust region
methods (e.g., see Moré [10]). This is based on the ratio

. F(x,) — F(x, + h))
i L,(0) — L,(h,)

i.e., the ratio between the decrease in the nonlinear func-
tion and the decrease in the local approximation. If r, is
close to 1 then we can afford a larger trust region in the
next iteration. On the other hand, if r, is too small, the
the trust region must be decreased.

The new point x, + h,, is only accepted if the objective
function F decreases by a factor no less than s;. Other-
wise, another tentative step is calculated from x, using a
decreased trust region. A more precise step-by-step de-
scription of the algorithm follows.

Step 1: Given xgand 6g > 0. Let 0 < 5, < 1 < s3.
(These constants are chosen according to our experience.
The algorithm is not sensitive to small changes in these
constants.) Set the iteration count p = 1.

Step 2: Solve the trust region linearized subproblem to
find the minimizer A, of (17) subject to (19).

Step 3: f F(x, + h,) < (1 — spF(x,), letx, .| = x,
+ h,; otherwise let x, , | = x,,.

Step 4: If r, = 0.25, reduce the size of the trust region

(20)
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Fig. 3. f,, & and Huber solutions for data fitting in the presence of errors.
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by letting 6,.; = 8,s,; or if r, = 0.75, increase the size
of the trust region by letting 6, ., = J,53; otherwise keep
the trust region size unchanged by letting 6, ., = 4.

Step 5: If the convergence criteria are satisfied, stop;
otherwise update the iteration count by letting p = p + 1
and repeat from Step 2.

It has been proved in [4] that this algorithm obeys the
usual convergence theory for trust region methods.

IV. CompARISON OF {;, &, AND HUBER METHODS IN
DaTa FITTING

To illustrate the characteristics of the £, {, and Huber
solutions for data fitting problems in the presence of large
and small errors, we consider the approximation of N by
the rational function

Xt + X2t2
1 + x5t + x412

for0 <t =< 1[2]. Jris uniformly sampled at 0.02, 0.04,
.-+, 1. We deliberately introduced large errors at 5 of
the sample points and small variations to the remaining
data. The £, & and Huber solutions are obtained by op-
timizing the coefficients x;, x, x3, and x4 in (21) to match
the sampled data using the respective objective functions.
The results are shown in Fig. 3. A portion of Fig. 3 is
enlarged in Fig. 4 for a clearer view of the details.

As expected, the least-squares solution suffers signifi-
cantly from the presence of the five erroneous points. On
the other hand, the ¢, solution, according to the optimality
condition, is dictated by a subset of residual functions
which have zero values at the solution. In a sense, all the
nonzero residuals are viewed as large errors. This ten-
dency towards a biased ¢, solution, as dramatized in our
example, is undesirable if we wish to model the small
variations in the data.

The Huber solution features a flexible combination of
the robustness of the £, and the unbiasedness of the 4. In
fact, the Huber solution is equivalent to an ¢, solution with
the gross errors reduced to the threshold value k. In our
example, & is chosen as 0.04 according to the magnitude
of the small variations in the data.

Fx,n = @2n
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Fig. 4. An enlarged portion of Fig. 3.

V. HUBER ESTIMATOR FOR STATISTICAL MODELING OF
DEVICES

One approach to statistical modeling of devices [11]-
[13] is to extract the model parameters from a sample of
device measurements and then postprocessing the sample
of model parameters to estimate their statistics (means,
statistical deviations, and correlations).

To estimate the mean of a parameter by optimization,
we define the error functions as

fe)y=96-¢, j=12,-+-,N (22
where ¢’ is the extracted parameter value for the jth de-
vice and N is the total number of devices. Similarly, to
estimate the variances, we define

];(Va) = V¢ - (¢j - 6)2,

where V, denotes the estimated variance from which we
can calculate the standard deviation o,. The model param-
eters we use are extracted from the measurements of 80
FETs [14].

When the postprocessing is done using a least-squares
estimator, problems will arise if the measurements con-
tain gross measurement errors and/or involve faulty de-
vices. For example, consider the run chart shown in Fig.
5 of an extracted model parameter, namely the FET time-
delay 7.

Most of the extracted values of 7 are between 2 and 2.5
ps, but there are a few abnormal values due to faulty de-
vices and/or gross measurement errors. These wild points
will severely affect the & estimator. In fact, the other
model parameters extracted from those faulty devices also
have abnormal values. In our earlier work [11], [12] using
the £, estimator, the abnormal data sets were manually ex-
cluded from the statistical modeling process.

The Huber function can be used as an automatic robust
statistical estimator. The threshold value k is chosen to
reflect the normal spread of the parameter values (e.g.,
we chose k = 0.25 ps for 7).

ji=12--,N (23
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Fig. 5. Run chart of the extracted FET time-delay 7.
TABLE 1
ESTIMATED STATISTICS OF SELECTED FET PARAMETERS
Parameter” @ (&) ¢ (Huber) PX(23% a,(6) g, (Huber) 0,3
L (nH) 0.04387 0.03464 0.03429 94.6 percent 21.8 percent 17.4 percent
Gps (1/KQ) 1.840 1.820 1.839 28.6 percent 6.3 percent 4.9 percent
Ipss (MA) 47.36 47.53 47.85 14.0 percent 12.7 percent 11.3 percent
7 (ps) 2.018 2.154 2.187 26.3 percent 5.8 percent 3.4 percent
Cyo (pF) 0.3618 0.3658 0.3696 8.2 percent 4.6 percent 3.5 percent
K, 1.2328 1.231 1.233 15.5 percent 10.8 percent 8.7 percent

“L¢ represents the FET gate lead inductance, Gpg the drain-source conductance, Ipgs the drain saturation current, 7 the time-delay, C,, and K, are
parameters in the definition of the gate nonlinear capacitor.
bg¥ denotes ¢, estimates after 11 abnormal sets are manually excluded [11].

Table I lists the means and standard deviations of a se- TABLE 11
lected number of model parameters we have obtained us- ESTIMATED STATISTICS FOR DIFFERENT VALUES
ing the ¢, and the Huber estimators (the Materka and Kac- OFk
przak FET model [15] is used). For comparison, we also k 7 o,
list the results obtained using the ¢, estimator after the
abnormal data sets are manually excluded. 0.15 2.168 4.4 percent
. . . 0.2 2.161 5.1 percent
The impact of the abnormal data points on the £, esti- 0.225 2.157 5.4 percent
mates of the standard deviations is especially severe. 0.25 2.154 5.8 percent
Compared with £¥, the Huber estimator does not require 5275 v o2 iﬁiﬁi
manual manipulation of the data and is more appropriate 0.5 2.122 9.6 percent
when there are data points that cannot be clearly classified 1 2.079 15.7 percent
as normal or abnormal. ) 2.018 26.3 percent
It should also be noted that although {; is effective for
individual device parameter extraction, it is not, in gen-
eral, suitable for statistical postprocessing. The f, esti- 100
mate (median) depends on the order rather than the actual T

values of the sample.

To illustrate the dependence of the Huber estimates on
the threshold &, we list in Table II the estimated statistics
of the parameter 7 for different values of k. We can also
define N; as the number of ‘‘small errors,’’ i.e., the car-
dinality of the set { f;| | f;| < &}, at the solution of Huber
optimization for each value of k. Fig. 6 depicts N, versus
k, where N is expressed as a percentage of the total num-
ber of devices N. The ‘‘knee’” on the curve corresponds
to a solution that includes a majority of functions as 0 0 0.25 0.5 0.75 1
‘*small errors.’” The value of k at the ‘‘knee’’ is consis- k
tent with our choice. Figs. 7 and 8 depict N, for two other Fig. 6. Percentage of *‘small errors’* for the FET time-delay 7 versus the
parameters, namely Lg and C,g, respectively. threshold k.
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Fig. 7. Percentage of ‘‘small errors’” for the FET gate lead inductance Lg
versus the threshold k.
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Fig. 8. Percentage of ‘‘small errors’’ for the FET model parameter Cyg
versus the threshold k.

VI. APPLICATION TO ANALOG FAULT LOCATION

The ¢, method has been applied successfully to the
problem of fault location in analog circuits [1], [16], [17].
Typically, a faulty circuit contains only a few faults and
possibly many small tolerances for the other elements.
Also, the measurements taken on the faulty circuit are
usually insufficient for complete parameter identification
and, therefore, a robust optimization procedure is needed.

The fault location problem can be formulated as the ¢
optimization [1]

minimize 2 |Ax;/x{| (24)
x i=1

subject to

Vi - V=0

where ¥ = [x, x, - - x,]" is a vector of circuit param-
eters and x° represents the nominal parameter values. Ax;
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3
7
Fig. 9. The resistive mesh circuit.
= x; — x° represents the deviation of the ith parameter

from its nominal value. V7, - - - , Vi are K measure-
ments on the circuit under test (e.g., voltages measured
at accessible nodes under one or more excitations). Vi,
-, V% are the calculated circuit responses.
Instead of the constrained optimization problem (24)
we use the Huber method to minimize the following pen-
alty function

n+K
minimize _Zl pr(f(x)) (25)
x 7=
where
fix) = Ax/x), i=1,2,",n
foei®) = B(Vi =V, i=12—+-+,K(26)
and 8;,i = 1,2, - + -, K, are appropriate multipliers for

the penalty terms.

Consider the resistive mesh network shown in Fig. 9
[11, [16]. The nominal element values are G; = 1.0 with
tolerances ¢; = +0.05,i = 1,2, - - -, 20. Node 12 is
taken as the reference node, and nodes 4, 5, 8, and 9 are
assumed to be internal and inaccessible for measurement.
The voltage measurements at the other nodes are used for
fault location. .

The actual parameter values of a faulty network are
listed in Table III. Two faults are assumed in the circuit,
namely G, and Gyg. A single excitation (a dc current
source) is applied to node 1. Simulated voltage measure-
ment data is obtained by circuit simulation using the ac-
tual parameter values. The nominal parameter values are
used as the starting point for optimization. The results
from the £, optimization and Huber optimization are com-
pared in Table ITI. The threshold k for the Huber function
is chosen as 0.05, commensurate with the tolerances of
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TABLE II1
FAULT LOCATION OF THE RESISTIVE MESH CIRCUIT

Percentage Deviation

Nominal Actual

Element Value Value Actual A Huber
G, 1.0 0.98 -2.0 0.00 -0.11
G, 1.0 0.50 -50.0° —48.89 —47.28
G, 1.0 1.04 4.0 0.00 —2.46
G, 1.0 0.97 -3.0 0.00 —-1.18
Gs 1.0 0.95 -5.0 -2.70 -3.16
G 1.0 0.99 -1.0 0.00 -0.06
G, 1.0 1.02 2.0 0.00 -0.19
Gg 1.0 1.05 5.0 0.00 -0.41
Gy 1.0 1.02 2.0 2.41 3.75
G 1.0 0.98 -2.0 0.00 0.39
Gy, 1.0 1.04 4.0 0.00 -0.37
G, 1.0 1.01 1.0 2.73 1.32
Gy 1.0 0.99 -1.0 0.00 -0.26
G, 1.0 0.98 -2.0 0.00 -0.50
Gs 1.0 1.02 2.0 0.00 -0.05
G 1.0 0.96 —-4.0 -3.36 -2.67
G; 1.0 1.02 2.0 0.00 -0.61
G 1.0 0.50 -50.0¢ -50.09 —-47.33
Gy 1.0 0.98 -2.0 —1.41 —3.81
Gy 1.0 0.96 —4.0 —4.40 -4.72
“Faults.

the elements. The penalty multipliers 3; in (26) are set to
1000, sufficiently large to ensure that the nonlinear con-
straints (circuit equations) are satisfied.

We tested this example for four other different starting
points. The Huber approach correctly located the faults in
all the cases. The ¢, method was successful in three of the
cases, but failed in one of the cases (trapped in a different
local minimum).

VII. ONE-SIDED HUBER OPTIMIZATION FOR CIRCUIT
DESIGN

In a large-scale design problem, we often wish to op-
timize a small number of dominant variables in order to
obtain a good starting point for the following full-scale
optimization.

We consider a five-channel 12 GHz multiplexer with a
total of 75 optimizable variables including waveguide
manifold spacings, channel filter coefficients, and input/
output couplings [18]. We know that the multiplexer re-
sponses are highly sensitive to the spacing lengths, which
are initially set to half the wavelength corresponding to
the channel center frequencies. The common port return
loss and individual channel insertion loss responses at the
starting point are shown in Fig. 10.

We first try to optimize a small number of dominant
variables. We select the spacings and the channel input
transformer ratios (10 variables) and consider a lower
specification of 20 dB on the common port return loss.
The minimax solution with these variables is shown in
Fig. 11 and the one-sided Huber solution is shown in Fig.
12. The worst-case errors in these two figures are similar.
Since the worst-case errors cannot be further reduced by
changing the selected variables, the minimax optimizer
gains nothing from directing effort elsewhere. Using one-
sided Huber optimization, on the other hand, we were able
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Fig. 10. Multiplexer responses at the starting point, showing the common

port return loss (solid line) and the individual channel insertion losses
(dashed line).

12.16 12.22

~ 0 S —
a RN P A IV Vs y
2 \ W A \
2 10 I'\N L\/‘\ ﬁ =
o
.g V\/ N
4 20 i
= Al
g 7 . .
g 30 |/ A \
/ FATIAY F 1 i 3 P \ A
! RN T U \
§ / fo VS VR
40 ! A LR §7 \/ \
11.98 12.04 12.1 12.16 1222

frequency (GHz)

Fig. 11. Multiplexer responses after the minimax optimization with 10
variables: spacings and channel input transformer ratios; the common port
return loss (solid line) and the individual channel insertion losses (dashed
line). This result hardly improved upon the starting point shown in Fig.
10.
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Fig. 12. Multiplexer responses after the one-sided Huber optimization with
10 variables: spacings and channel input transformer ratios; the common
port return loss (solid line) and the individual channel insertion losses
(dashed line). This result is significantly better than the minimax solution
of Fig. 11.
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Fig. 13. Multiplexer responses after the minimax optimization with the
full set of 75 variables, showing the common port return loss (solid line)
and the individual channel insertion losses (dashed line).

to obtain a good starting point for subsequent optimiza-
tion. The one-sided Huber optimization took 28 min on a
Sun SPARCstation 1+.

From the solution shown in Fig. 12, we increase the
number of variables from 10 to 45, include an upper spec-
ification of 2 dB on the channel insertion loss, and restart
the one-sided Huber optimization. Then a minimax op-
timization with the full set of 75 variables is performed,
resulting in the multiplexer responses shown in Fig. 13.

VIII. CoMPARISON OF DEDICATED AND GENERIC
ALGORITHMS

Since the Huber objective function is continuous and
has a continuous gradient, it may be tempting to conclude
that it is a straightforward matter to formulate the objec-
tive function and then minimize it by a generic algorithm,
such as a quasi-Newton or direct search method.

We conducted a comparison between our dedicated al-
gorithm (Section III) and three generic algorithms avail-
able in the OSA90/hope™ system: quasi-Newton, con-
Jjugate gradient, and simplex search.

The first test case is to estimate the mean value of the
FET parameter 7 as described in Section V. Only one vari-
able is involved in this case, and all the algorithms under
test converged to the correct solution. Table IV lists the
number of function evaluations required by each algo-
rithm from four different starting points. It shows that our
dedicated Huber algorithm is more efficient than the ge-
neric ones.

We also attempted to apply the generic algorithms to
the data fitting problem of Section IV, which involves four
variables. None of them is able to find the correct solution
unless starting very close to the solution. It attests to the
need for the dedicated algorithm for solving multidimen-
sional problems.

As derived in Section II, the Hessian of the Huber ob-
jective function is discontinuous wherever one of the error
functions (f;) crosses the threshold value. This may pose
a serious problem for generic algorithms that explicitly
rely on the continuity of the Hessian matrix.
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TABLE IV
NUMBER OF FUNCTION EVALUATIONS REQUIRED BY DIFFERENT
ALGORITHMS"

Starting Point

Algorithm 1.5 2 2.25 3
Dedicated Huber 4 4 4 4
Quasi-Newton 8 5 5 7
Conjugate-gradient 13 13 11 14
Simplex 26 16 16 24

“The optimization problem is to estimate the mean of FET parameter 7
using the Huber objective function.

IX. CoNCLUSIONS

We have introduced the unique Huber concept and pre-
sented novel results for analog circuit CAD. We have
demonstrated that the Huber concept is consistent with
practical engineering intuition. It should have a profound
impact on modeling, design, fault diagnosis, and statis-
tical processing of circuits and devices. We have ex-
ploited the robustness of Huber optimization, supported
by strong numerical evidence. The similarities and differ-
ences between the Huber and £, ¢, and minimax objective
functions have been discussed in a practical context. We
have created the one-sided Huber function as an extension
to accommodate upper and lower specifications in circuit
optimization. A dedicated algorithm for Huber optimiza-
tion has been presented. It has been shown by comparison
to be more effective and efficient than generic minimiza-
tion algorithms.
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