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Abstract— We offer space mapping (SM), a fundamental
new theory to circuit optimization utilizing a parameter
space transformation. This technique is demonstrated by the
optimization of a microstrip structure for which a convenient
analytical/lempirical model is assumed to be unavailable.
For illustration, we focus upon a three-section microstrip
impedance transformer and a double folded stub microstrip
filter and explore various design characteristics utilizing an
electromagnetic (EM) field simulator. We propose two distinct
EM models: coarse for fast computations, and the corresponding
fine for a few more accurate and well-targeted simulations.
The coarse model, useful when circuit-theoretic models are
not readily available, permits rapid exploration of different
starting points, solution robustmess, local minima, parameter
sensitivities, yield-driven design and other design characteristics
within a practical time frame. The computationally intensive
fine model is used to verify the space-mapped designs obtained
exploiting the coarse model, as well as in the SM process
itself.

1. INTRODUCTION

E present a new theory and results applicable to cir-

cuit optimization with accurate electromagnetic (EM)
simulations driven by powerful gradient-based optimizers.
We go far beyond the prevailing use of stand alone EM
simulators, namely, validation of designs obtained using ana-
lytical/empirical circuit models. We embark on the feasibility
of efficient, automated EM optimization applicable to arbitrary
geometries. Feasibility of performance-driven and yield-driven
circuit optimization employing EM simulations has already
been shown in previous pioneering works [1], [2]. The main
focus of this paper is a fundamental new theory which we call
space mapping (SM).

The hierarchy of models to choose from includes: sim-
plified continuous models, detailed continuous models, dis-
crete coarse models, discrete fine models and, ultimately,
actual hardware measurements. The continuous or analyti-
cal/fempirical models usually employ circuit theory whereas
the discrete models are based on EM field theory. In general,
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the circuit-theoretic models are simple and efficient, but may
lack the necessary accuracy or have limited validity range. The
field-theoretic models are more complex and CPU intensive
but can be significantly more accurate. Furthermore, the field-
theoretic models are applicable to general geometries. Thus,
when deciding on a model, the designer must consider the
existence, complexity, accuracy, cost and time associated with
each model. Also, different models could be used at different
stages of the design process.

In this paper, we concentrate on a mathematical link be-
tween the discrete coarse and the discrete fine EM field models.
EM simulation time can be significantly reduced if a coarse
model is employed. This may decrease the accuracy of EM
analysis but qualitative and often quite accurate quantitative
information about the behavior of the circuit can be exploited.
The coarse model allows us to explore different optimization
starting points, solution robustness, local minima, parameter
sensitivities and statistics, and other design characteristics
within a practical time frame. As design data accumulates we
attempt to analytically align the coarse model with the more
accurate fine model.

We introduce the SM technique to direct the bulk of CPU
intensive optimization to the coarse model while preserving
the accuracy and confidence offered by the fine model. The
SM optimization technique requires very few fine model
simulations in the design process. SM is a general approach
and can be used to align other models in the hierarchy. For
example, in [3], an advanced application of this concept is
described in the design of a high-temperature superconducting
quarter-wave parallel coupled-line microstrip filter. There, an
EM model is used as the fine model and an analytical/empirical
circuit equivalent model is used as the “coarse” model.

To show the benefits of coarse modeling, we carry out
nominal optimization of a three-section microstrip impedance
transformer [2], [4]. We verify the design with the fine model.

To illustrate the SM technique, we perform SM nominal
optimization of a double folded stub microstrip filter [5]
using the coarse model and verify the results with the fine
model. Encouraged by good consistency of the results we
use the coarse model to perform the otherwise very CPU
demanding analysis of robustness of our optimized solution.
Subsequently, we proceed with SM yield optimization of
the filter. For comparison, we perform direct fine model
yield optimization. In our work we utilize the OSA90/hope
optimization environment [6] with the Empipe [7] interface to
the em field simulator from Sonnet Software [8].
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In Section II, we explore the theory of our new SM
technique. In Section III, we demonstrate the use of coarse
modeling and fine model verification in designing a three-
section microstrip impedance transformer. Section IV illus-
trates the SM technique applied to the design of a double
folded stub microstrip filter. Sections V and VI contain results
of exploiting the coarse model in robustness analysis of mini-
max design and in SM yield optimization. Finally, Section VII
contains our conclusions.

II. THEORY

Consider an optimization problem for a given set of design
specifications. The behavior of the system may be described by
two distinct models, namely, a coarse model and a fine model.

Let us define an [-dimensional vector of fine model param-
eters as

bf = [prrds2. .. dn"

and a k-dimensional vector of coarse model parameters as

be = [perdber - .. der]” - )

Also, let R¢(¢y) denote the fine model response at ¢¢. This
response is assumed to be accurate but CPU intensive to
obtain. Similarly, let R.(¢.) denote the coarse model response
at ¢.. This response is generally less accurate but faster to
compute.

The key idea behind the SM optimization technique is the
generation of an appropriate transformation

¢ = P(¢y) 3

mapping the fine model parameter space to the coarse model
parameter space such that

(D

IRf(dr) — Re(de)ll < € )
within some local modeling region around the optimal coarse
model solution ¢7, where || - || indicates a suitable norm and

¢ is a small positive constant. Though not necessary, it is
desirable that P is invertible. If so, once the transformation
(3) is established, the inverse transformation

dr =P7M¢?) 5)

is used to find the fine model solution ¢ ¢ which is the image
of ¢} subject to (4).

Finding P is an iterative process. We begin with a set of
fine model base points By = {¢},¢%,...,¢F}. The initial
m base points are selected in the vicinity of a reasonable
candidate for the fine model solution. For example, if ¢y
and ¢, consist of the same physical parameters (k = [)
then the set By can be chosen as ¢} = ¢% and some local
perturbations around qb}. Once the set By is chosen, we
evaluate the fine model responses Rf(qﬁje),i =1, 2,...,m.
Next, we find, by parameter extraction, the coarse model set
B. = {¢},¢2,...,¢7} such that (4) holds for each pair of
corresponding base points in By and B.. Using these initial
sets, we establish P;.
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Fig. 1. Flow chart for the space mapping (SM) optimization technique.

At the jth iteration both sets contain m; base points which
are used to establish P;. To check if P; is the desired P, we
compute d)}"JH using the inverse transformation Pj_1

o7 =P (el (©)
and evaluate Rf((b}"’H). If
\lRf(¢}nj+l) —Re(oo)l < e Q)

then ¢ *1 is the desired fine model solution ¢; and we have
the transformation P = P;. If (7) does not hold, we expand
By by q&}"ﬁl and B, by ¢ ™" extracted subject to (4). Using
the new sets By and B, P, is found. This procedure is
repeated until (7) holds. Fig. 1 shows a flow chart for this
procedure.

We define each of the transformations P; as a linear com-
bination of some predefined and fixed fundamental functions

f1(¢f)rf2(¢f)7f3(¢f)v'”-,fn((bf) (8)
as
¢ci = Z a’isfs(gbf) 9)
s=1

or, in matrix form
| b = P;(¢5) = A, f(5)

where A ; is a k x n matrix, f(¢y) is an n-dimensional vector
of the fundamental functions and m; > n. Consider the
mapping P; for all points in the sets By and B.. We have

(6 62 ... 0] = A [18)) F@D) - S(9f)]- any
Define

.(10)

C=[ptg?...om]" (12)
and

T
D = [f(6})/(@#)... F&])] - (13)
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Fig. 2. Tlustration of space mapping: (a) setting ¢ = ¢, (b) generating five base points around cﬁ}, (c) performing coarse model parameter extraction

to match the fine model responses at all base points, (d) applying the inverse transformation to obtain the fine model point d)}"j R ¢"’f, (e) performing
coarse model parameter extraction to obtain ¢7, (f) applying the updated inverse transformation to obtain & ;o= q’z?,.

Then (11), augmented by some weighting factors defined
by an m; X m; diagonal matrix W, where

W = diag{w,} (14)
can be rewritten as
WDAT = WC. (15)
The least-squares solution to this system is
AT = (D"WTWD) 'DTWTWC. (16)

Larger/smaller weighting factors emphasize/deemphasize
the influence of the corresponding base points on the
SM transformation.

The SM optimization process is illustrated graphically in
Fig. 2. We start by setting the first fine model base point ¢} to
the optimal coarse model solution ¢}. We then select five addi-
tional base points in the vicinity of ¢S}. Parameter extraction is

carried out on all six fine model base points to generate the cor-
responding six coarse model base points. Using these two sets
of points, a transformation is found and used to generate the
next fine model base point qﬁ}. This point does not satisfy con-
dition (7), and so the corresponding coarse model base point ¢7
is extracted. Using the expanded sets, another fine model point
¢J§ is obtained from the new transformation. This point satisfies
condition (7) and thus the transformation is established.

III. NOMINAL OPTIMIZATION OF A
THREE-SECTION MICROSTRIP TRANSFORMER

We consider the design of a three-section 3:1 microstrip
impedance transformer shown in Fig. 3 [2], [4]. The source
and load impedances are 50 and 150 {2, respectively. The
design specifications imposed on the magnitude of the input
reflection coefficient are as follows:

lSlll g 0.11 for 5 GHz S f S 15 GHz.
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Fig. 3. The three-section 3:1 microstrip impedance transformer.
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Fig. 4. |S11| of the three-section transformer at the minimax solution as
simulated by the coarse model (- - -) and verified by the fine model (—).

The error functions are calculated at frequencies from 5 GHz
to 15 GHz with a 0.5 GHz step. The substrate is taken as
0.635 mm thick with relative dielectric constant of 9.7. The
widths of the transformer sections, Wi, Wy and Wj, are
considered as optimization variables. The lengths, L1, L2 and
Lj, are fixed.

We perform minimax design using a coarse model. The -
and y-grid sizes for the numerical EM simulation are chosen as
Az, = 0.1 mm and Ay, = 0.05 mm. On a Sun SPARCstation
10, 25 CPU minutes are needed to simulate the transformer.
This includes automatic response interpolation carried out
to accommodate off-the-grid geometries. The maximum of
|S11| is decreased from 0.28 at the starting point to 0.09 at
the minimax solution. To verify the coarse model design we
perform fine model simulation at the coarse model minimax
solution. The fine model uses grid sizes of Az; = 0.02 mm
and Ay; = 0.01 mm. The fine model verification takes about
3 days.

Fig. 4 shows the |S11| responses of the transformer at the
coarse model nominal design together with the fine model
verification. It can be seen that the coarse model response
closely approximates the fine model response. Clearly, in this
case, the coarse model can be reliably used in place of the
fine model.

Fig. 5 illustrates the interpolation needed to accommodate
responses at off-the-grid points. In particular, it shows the
coarse model response at the nominal solution together with
responses at four on-the-grid points used to approximate the
response at the off-the-grid nominal point. In the case of direct
fine model optimization this geometrical interpolation would
require a significant amount of CPU time.
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Fig. 5. Coarse model |51 | simulation of the transformer at the off-the-grid
minimax solution (—) approximated from four | S11 | responses (- - -) obtained
at on-the-grid points surrounding the minimax solution.
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Fig. 6. The double folded stub microstrip filter [5]. ny and n: indicate the
input and output port reference planes, respectively.

IV. COARSE MODEL AND. SM OPTIMIZATION
OF THE DOUBLE FOLDED STUB FILTER

We optimize the double folded stub filter of Fig. 6 [5]. The
design specifications are
|321| > -3dB for

|S21| < —30 dB for

f<9.5GHzand f > 16.5 GHz
12 GHz < f < 14 GHz.

The error functions are computed at 9 and 15 frequency points
taken with a 0.25 GHz step in the stopband and passbands,
respectively. The substrate is taken as 5 mil thick with relative
dielectric constant of 9.9. The three designable parameters are
Ly, Lo, and S. Parameters W, and W are fixed at 4.8 mil.

The z- and y-grid sizes for the coarse model simulation are
chosen as Az, = Ay. = 4.8 mil. The fine model simulation
used to verify the coarse model results uses grid sizes of
Azy = Ays = 1.6 mil. For the coarse model case, the time
needed to simulate the filter at a single frequency is about
5 CPU seconds on a Sun SPARCstation 10. This includes
automatic response interpolation carried out to accommodate
off-the-grid geometries. The corresponding time for the fine
model is approximately 70 seconds. The starting point, as well
as the coarse model minimax solution are listed in Table L
The |S21| responses of the filter before and after coarse model
minimax optimization are shown in Fig. 7 as simulated using
the coarse model.

The corresponding fine model response does not satisfy the
design specifications. To further refine the solution we applied
our new SM optimization technique. The refined SM solution
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TABLE 1
NOMINAL DESIGN OPTIMIZATION
Parameter Before Coarse Model  SM Refined
(mil) Optimization Solution Solution
L, 90.0 91.5 93.7
L, 80.0 85.7 85.3
N 48 4.1 4.6
W, and W, are kept fixed at 4.8 mil.
5
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Fig. 7. |S21] of the double folded stub filter before (- - -) and after (—)

minimax optimization; both simulated using the coarse model.
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Fig. 8. |S21| of the double folded stub filter at the coarse model minimax
solution (- - -) and at the SM refined solution (—); both simulated using the

fine model.

is listed in Table I. Fig. 8 shows the |S2;| response at the
coarse model minimax solution and at the refined SM solution
both simulated using the fine model. Fig. 9 shows the | S|
match between the coarse model minimax solution simulated
using the coarse model and the SM solution simulated using
the fine model. The responses compare very well proving
high accuracy of the SM transformation. The main advantage
of the SM method is that it requires very few fine model
simulations. The SM technique needed only eight fine model
simulations to establish a mapping with the resulting match

of Fig. 9.
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Fig. 9. |S21] of the double folded stub filter at the minimax coarse model
solution as simulated using the coarse model (- - -) and at the SM refined
solution as simulated using the fine model (—).

TABLE 1II
FINE MODEL BASE POINTS
Base Point L, L, §

¢ 91.482 85.735 4,139
2 96.056 85.735 4.139
3 91.482 90.021 4.139
4 91.482 85.735 4.800
5 86.908 85.735 4.139
f“ 86.908 81.448 4.800
! 93.981 85.324 4579
¢ 93.693 85.314 4.590

All parameter values are in mils. ¢,7 and ¢f° are generated using
subsequent SM transformations. éf“ is the SM refined solution ;}

TABLE III
EXTRACTED COARSE MODEL BASE POINTS

Base Point Ly Ly s

é}! 86.392 86.102 4.129

¢ 94.694 85.774 3.762

¢> 97.242 90.854 2.791

é* 87.462 86.209 4.502

¢S5 85.092 86.072 3.704

A 85.002 82.387 3.912

7 92.096 85.701 4.163

All parameter values are in mils.

In the parameter extraction phase, various optimizers in-
cluding the #;, ¢, and the novel Huber [9] optimizer were
used to ensure a good match. A subjective criterion based on
visual inspection was used to determine the best fit between the
corresponding fine and coarse model responses. An automated
approach to incorporate (4) in this process is yet to be
developed. Tables II and III list the fine and coarse model base
points used. Fig. 10 illustrates the parameter extraction process
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Fig. 10. |S21| match between the coarse (—) and fine (o) models of the

double folded stub filter for the pair of base points ¢ and @ (a) before, and
(b) after parameter extraction.

showing the match before and after parameter extraction for
a pair of base points.

V. ROBUSTNESS ANALYSIS OF THE NOMINAL SOLUTION

For the double folded stub filter we investigate the ro-
bustness of the coarse model nominal solution. The same
optimization variables, namely, L;, Ly and S, as in the nom-
inal minimax design are selected. W and Wy are kept fixed.
We perform a number of coarse model minimax optimizations,
each starting from a different starting point. We use 30 starting
points randomly spread around the minimax solution within a
+20% deviation.

Fig. 11(a) plots the |So;| responses for all 30 starting
points. The bar chart in Fig. 11(b) depicts the Euclidian
distances between the minimax solution and the perturbed
starting points. Fig. 12 shows the corresponding diagrams
after minimax optimizations. In Fig. 13, we visualize the
optimization trajectories taken by the minimax optimizer by
showing lines identifying corresponding starting points with
optimized solutions for each optimization. These lines are
shown for different pairs of designable parameters.

Out of the 30 optimizations, 28 converged to the reference
minimax solution. This indicates that the optimized nominal
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Fig. 11. (a) |S21| of the double folded stub filter at 30 random starting
points, and (b) Euclidian distances between the starting points and the
reference minimax solution.

solution is robust. This study has been confirmed using other
families of starting points and with other gradient optimizers.
A similar analysis with the fine model would be prohibitively
time consuming.

VI. YIELD OPTIMIZATION OF THE
DoUBLE FOLDED STUB FILTER

For Monte Carlo estimation we assume a uniform
distribution with 0.25 mil tolerance on all five geometrical
parameters. Yield optimization is performed using the
techniques described in [2]. The optimizable parameters are
Li, Ly, and S. W; and W, are fixed at 4.8 mil. Monte
Carlo yield estimated from 250 statistical outcomes using
the 4.8 mil coarse model at the coarse model minimax
solution is 71%. After coarse model yield optimization
using 200 outcomes, the estimated yield is increased to
81%. We then utilize the 1.6 mil fine model to verify the
yield at the coarse model nominal and centered solutions.
The yield estimated by the fine model is 0% in both cases.
This shows the potential pitfalls of relying on coarse-model-
only design. Fig. 14(a) shows the |S21| Monte Carlo sweep
simulated using the fine model at the coarse model centered
solution.
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Fig. 12. (a) [S21| of the double folded stub filter at the 30 optimized
solutions, and (b) the Euclidian distances between the optimized and the
reference minimax solution; note that 28 optimizations converged to the
reference minimax solution.

Next, we apply the SM concept to yield optimization. The
Monte Carlo yield at the starting point (the SM solution)
estimated from 250 outcomes and using the fine model is
9%. At each iteration of SM yield optimization, 200 outcomes
are generated in the fine model parameter space. Then, the
outcomes are mapped, using the forward SM transformation
defined by (3) and established in the process of nominal design,
into the coarse model parameter space. The mapped outcomes
are simulated using the coarse model and the responses are
used in the yield optimization. At the solution, the yield is
verified using the fine model with 250 outcomes. The yield is
increased to 24%. Fig. 14(b) shows the |Ss;| Monte Carlo
sweep simulated using the fine model at the SM centered
solution.

The SM. yield optimization is compared with direct fine
model yield optimization, which produced a comparable yield
of 30%. Both solutions are listed in Table IV.

Subsequently, at the SM and fine model centered solutions
we perform fine model Monte Carlo analyses with relaxed
design specifications. Two cases are considered. For case (a),
both the upper and lower specifications are relaxed by 0.5 dB.
For case (b), both specifications are relaxed by 1 dB. Yields
for the modified specifications are listed in Table V. They are
remarkably similar.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 12, DECEMBER 1994

105

Ly
3

35

Fig. 13. Visualization of the trajectories taken by the minimax optimizer
for each of the randomly generated starting points. Lines connect starting
points (+) with the corresponding optimized solutions (-) for different pairs
of variables.

TABLE 1V
YIELD OPTIMIZATION
Parameter Before Yield SM Yield Fin;irggdel
(mil) Optimization  Optimization . 0 vion
L, 93.7 92.0 91.8
L, 85.3 85.0 85.1
s 46 5.0 4.9
Fine Model
Yield 9% 4% 30%

Uniform tolerances of 0.25 mil are assumed on all five geometrical
parameters. Yield estimation is based on 250 outcomes. 200
outcomes are used in yield optimization.

VII. CONCLUSIONS

We have presented results involving coarse model nominal
design of a three-section microstrip impedance transformer and
a double folded stub microstrip filter. For the double folded
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coarse model, and (b) SM yield optimization; both simulated using the fine
model.

TABLE V
FINE GRID YIELD ESTIMATION FOR RELAXED SPECIFICATIONS
Yield at the Solution of
Case SM Nominal SM Yield Fine Model
Design Optimization Yield Optimization
(@) 63% 87% 88%
(b) 81% 97% 96%
Case (a): the lower specification is $;= -3.5 dB and the upper

specification S, = -29.5 dB.
Case (b): S,=-4dB, S, =-29 dB.

stub filter we have also performed SM nominal optimization
and statistical design centering. The statistical design centering
was carried out in three different ways: 1) using the coarse
model only, 2) using the space mapping transformation, and
3) using the fine model only. In addition, we have analyzed
the robustness of the coarse model minimax solution for this
filter. In all our experiments, the fine model verifications
demonstrate that coarse models can provide useful qualitative
and quantitative information about the performance of a circuit
within a practical time frame.
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We have presented a new theory describing the novel SM
optimization technique, a significantly more efficient alterna-
tive to traditional optimization. The SM approach exploits the
speed of an efficient coarse model and blends it with a few
slow but highly accurate fine model evaluations to effectively
perform nominal and yield optimization. In this presentation
we used EM simulations with different grid sizes for both the
coarse and fine models. Coarse grid EM simulation is particu-
larly attractive for structures for which analytical/empirical or
circuit-theoretic models are not readily obtainable. In principle,
however, the SM technique can align any pair of models
from the hierarchy of available models, including hardware
measurements. When existing analytical/empirical models are
used as the “coarse” model [3], SM revitalizes the wealth and
stretches the validity of these models beyond their originally
assumed ranges. The SM technique is the key to design
with time consuming simulators since it directs the bulk of
CPU intensive optimization to the faster coarse models while
preserving the accuracy of the fine models. Only a few fine
model simulations may be needed in the entire design process.
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