Device statistical modelling and

verification

Optimization Systems Associates of Ontario, Canada has specialized in microwave CAD using
statistical modelling and yield-driven design. In this paper John Bandler, Radek Biernacki, Qian
Cai and Shao Hua Chen describe modelling of active devices based on "indirect” or "direct”
determination of the statistical distribution of the model.
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cost analysis, and conse-
quently optimization. In
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determine a device model
whose parameters are de-
scribed as random vari-
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example of various graphi-
cal plots generated by
HarPE is shown in figure 1,
including DC I-V curves, the
Smith charts and polar plots
of S parameters, histograms
and a Monte Carlo sweep.

Indirect statistical

modelling
The indirect statistical model-
ling technique consists of
two stages. In the first stage
each of the devices repre-

the model responses due
to random variations of the
model parameters must re-
flect the actual distribution of device
responses. The latter is character-
ized by multi-device measurement
data (measurements taken on a
number of supposedly identical de-
vices). Therefore, statistical model-
ling is a process of matching the
statistical distribution of the model to
that of the measurement data. The

Figure 2:
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Illustration of indlirect statistical modelling.

advanced statistical modelling
methods described here are based
on OSA's pioneering work [1-6].

In this paper we present two techni-
ques for statistical modelling of active
devices. The first, a two-stage, indirect
method is based on multi-device para-
meter extraction followed by statistical
postprocessing of the resulting sam-

sented by the multi-device
measurement data is mod-
eled individually in a deter-
ministic fashion. Parameter extraction
optimization is invoked for each of the
outcomes to fit the simulated re-
sponses to the corresponding mea-
surement data set. Such parameter
extractionis carried out for all data sets
in the multi-device measurements and
results in as many device models as
the number of data sets in the mea-
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surement dala. They form a sample of
device models, with different para-
meter values for different outcome
models. Statistical postprocessing of
those different parameter values leads
to a single, consolidaled model whose
parameter values are described by
the means, standard deviations and
the correlation matrix. For non-
Gaussian distributions, a discrete dis-
tribution function (DDF) approximation
to the marginal distributions [6] is used
to enhance model accuracy. Figure 2
illustrates the two stages of indirect
statistical modelling.

Novel statistical modelling

In direct statistical modelling, the
model parameler statistics are ob-
tained directly instead of from post-
processing a set of individually
extracted models. The whole multi-
device measurement data is utilized
simultaneously in a statistical fashion
by generaling the distribution of the
measured device responses. The
statistics of the model parameters
are determined by fitting the distribu-
tions (CPDs or histograms) of the
model responses to those of the
measurement data. To obtain the
distributions of the model responses
we employ Monte Carlo simulation.
Model parameters are randomly
generated according to the para-
meter distribution and the resulting
distribution of model responses is
found. The fitting is carried out in a

alternatively to carry out complete
statistical modelling independently.
However, each has its own advant-
ages and disadvantages.

Indirect statistical modelling is
straightforward and easy to use. No
initial statistics need to be guessed
at. However, it relies on the un-
iqueness of the parameter extraction
process and, therefore, the resulting
slatistical models may not reflect the
actual distribution of measurement
data, even if the fit of the simulated
responses to the corresponding
measurements for individual device
models is excellent. Direct statistical
modelling, on the other hand, is
based on a solid mathematical foun-
dation and, therefore, should prove
more reliable and robust than the
indirect method. However, the initial
parameter statistics need to be as-
signed and the parameter distribu-
tion types guessed. It may be justi-
fied to assume normal distributions in
the case of physical or process para-
meters, but it may not be correct for
equivalent circuit models. All of that
may affect the solution. Also, a good
starting point is important to reduce
the computation time and assure
successful optimization.

A practical approach is to combine
the two methods. We use the indirect
method first to obtain an initial statisti-
cal model and then apply the direct
method to improve the model accur-
acy. For efficiency, the initial modelling
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may be carried out with a small num-
ber of devices.

Statistical model
verification

Two practical methods for model veri-
fication are statistical comparison [4,5]
and yield verification [2]. The former
compares lhe statistics of the model
responses generated by Monte Carlo
simulation with the statistics of the
measurement data. The latter checks
the consistency between yield pre-
dicted by statistical models and the
yield estimated by the actual device
data.

Visual comparisons of distribu-
tions may also be used for effective
and quick model validation. HarPE
provides useful graphical displays
where the histograms or CPDs of the
model responses and the corre-
sponding data including the mean
values and standard deviations can
be shown in the same diagram.

Statistical modelling of
GaAs MESFETs
Consider statistical modelling of a
GaAs MESFET using a physics-
oriented model which we call the KTL
(Khatibzadeh-Trew-Ladbrooke) mod-
el. The KTL model combines the
advantages of the Khatibzadeh and
Trew model [7] and the small-signal
Ladbrooke model [8] while overcom-
ing their respective shortcomings. Its
attractive statistical properties have
already been presented in

single optimization. Direct
statistical modelling using
CPD fitting is depicted in
figure 3.

The optimization vari-
ables include the parameter
statistics, for example, the
mean values and standard
deviations in the case of
normal distributions, or the
nominal values and toler-
ances in the case of uniform
distributions (other types of
distributions can also be
applied). The initial para-
meter statistics and distri-
butions need to be as-
sumed at the starting point.
At the solution we obtain the
parameter statistics leading
to the best match of the
corresponding CPDs or
histograms.
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The KTL small-signal
equivalent circuit follows
Ladbrooke  model
el includes the intrinsic FET
parameters, L, Z, a, Ng,
Vbo: Vsat Ho: € Lao, 8o, Tors
loor Tog, @nd the Ilnear ex-
trinsic elements, L , Lg
Rd' Ls’ Rs' Gds' qus' gev
Cge Where L is the gate
length, Z the gate width, a
the channel thickness, Ny

CPDs pf . L
modelp the doping density, Vi, the
responses | zero-bias barrier potential,

Vg the saturation value of
electron drift velocity, pg
the low-field mobility of
GaAs, ¢ the dielectric con-
stant, Lgo the inductance
from gate bond wires and

Each of the two ap-

pads, a, the proportionality

proaches can be applied

Figure 3: Direct statistical modelling using CPD matching.
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L Lg
Gate 9 pan] Parameter  Mean o(%) Parameter Mean (%)
Lum) 0.4685 357  Cy(pF) 0.0547 158
a(um) 0.1308 519 Cgu(pF) 0.0807  5.92
Ny(m?) 2.3x10" 325  CglpF) 0.0098  6.22
==Cde Vea(m/s) 105x10°  2.27  C,(pF) 24231 403
po(m’Vns)  65x10° 2,16 Z(um) 300 &
Lao(nH) 0.0396 109 : 12.9 *
Rs(Q) 1.2867 432 v,,o(V) 0.6 s
Ry(Q) 39119 191 rgy(QV) 0.35 4
Y Ry(€2) 81718 077  155(V) 7.0 4
s Lg(nH) 00659 574  r1og(Q) 2003  *
Ls(nH) 0.0409 5.49 R 1.0 *
el 1/2) 39x10°  1.78
Source d gt
Figure 4 (above): The small- S/gna/ equivalent circuit of the © denotes slandard deviation
KTL model, where I4 = g,,V,€ * Assumed fixed (non-statistical) paramelers
Table 1: Optimized KTL model para/neier slatistics

ros the filting coelficients

[1,3,5].
The bias-dependent 1.2
small-signal paramelers

name|Yv G Cqs' qu' Ri' (e}
ro and t, as shown'in figure
4 are derived using the
modified Ladbrooke formu-
lae once the DC operaling
point is obtained using the
Khatibzadeh and Trew
model [3].
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FET data which is obtained 005
by aligning wafer measure-
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figure 6. We can see that
after optimization the histo-
gram matching between
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is also improved.
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Slatistical fluctuations in the
manufacturing process
cause variations in device
parameter values, and con-
sequently in device perfor-
mance. The ultimate pur-
pose of statistical modelling
is to characterize devices
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and the corresponding data at 1 1GHz before optimization
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analysis and optimization.
We have presented two
approaches to statistical
modelling: indirect and dir-
ect. By combining the two

the frequencies from 1 to
21GHz with a 2GHz step
under the bias condition of
Vgs =-0.7Vand Vg, = 5V.
We first use multi-device
parameler extraction and
slatistical  postprocessing
based on 15 devices to ob-
tain the initial parameler sta-
tistics including the mean
values, slandard devialions
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methods we can obtain ac-
curate statistical device
models. This has been de-
monstrated on the example
of statistical modelling of a

and the correlation matrix.
Then, the initial model is

o
~0.39
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RS2

GaAs MESFET using the
KTL model: Model verifica-
tion has been illustrated by
comparing the distributions
(CPDs and histograms) of
the model responses and
those of the data.

It should be pointed out

optimized using the direct
approach of CPD fitling. We
consider 16 statistical paramelers
with normal distributions. This results
in 32 optimization variables, namely
all the means and standard devia-
tions. The statistical KTL model para-
meter values afler optimization are
listed in table 1. The CPDs of the real
part of S,, (RS21) at 11GHz from the
data and from the slatistical KTL mod-

38

«muéé’uv:( Ploté dumislscive prdbesbility uufmsuuon P b ilnllé}rkip’o‘ﬁi’e T
rPE . " S | R SR R R R !

that measurement errors

el before and afler optimization are
shown in figure 5. We can see that
after optimization the CPD malching
between the data and the KTL model
is significantly improved. The histo-
grams of the imaginary part of S,,
(1S21) at 11GHz from the data and
from the statistical KTL model before
and afler oplimization are shown in

may significantly affect ac-
curacy of the resulting statistical
model. If the measurement data con-
tains some wild points (eg, due to
faulty devices) they may severely
degrade the resulting model and
should be removed. A robust ap-
proach using the Huber function has
been proposed to automatically
handle such errors [9].
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Figure 6: Histograms of the simulated 1S21 (the imaginary part of S, ) and the corresponding data at 11GHz, before
optimization (shown left), and after optimization (right).

Our advanced algorithms together
with a number of state-of-the-art opti-
mizers including 1, I, (the least
squares) and Huber, and aided by
useful statistical displays imple-
mented in HarPE, provide a com-
plete environment for statistical
modelling. The extracted statistical
models can be used, for example, in
0OSA90/hope [10] for vyield-driven
and cost-driven circuit design.
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