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Current Trends in Network Optimization

JOHN W. BANDLER, MEMBER, IEEE, AND RUDOLPH E. SEVIORA, STUDENT MEMBER, IEEE

Abstract—Some current trends in automated network design
optimization which, it is believed, will play a significant role in the
computer-aided design of lumped-distributed and microwave net-
works are reviewed and discussed. In particular, the adjoint network
approach due to Director and Rohrer for evaluating the gradient vec-
tor of suitable objective functions related to network responses that
are to be optimized is presented in a tutorial manner. The advantage
of this method is the ease with which the required partial derivatives
with respect to variable parameters, such as electrical quantities or
geometrical dimensions, can be obtained using at most two network
analyses. Least pth and minimax approximation in the frequency do-
main are considered. Networks consisting of linear time-invariant
elements are treated, including the conventional lumped elements,
transmission lines, RC lines, coaxial lines, rectangular waveguides,
and coupled lines. To illustrate the application of the adjoint net-
work method, an example is given concerning the optimization in the
least pth sense using the Fletcher-Powell method of a transmission-
line filter with frequency variable terminations previously considered
by Carlin and Gupta.

I. INTRODUCTION

S THE RECENT special issue on Computer-
A Oriented Microwave Practices of the IEEE
TRANSACTIONS ON MICROWAVE THEORY AND
TECHNIQUES shows, microwave network optimization
is widely carried out using direct search methods, i.e.,
iterative optimization methods which do not employ
evaluation or estimation of derivatives. Murray-Lasso
and Kozemchak [1], for example, used pattern search
[2] to optimize the parameters of the transmission-line
network shown in Fig. 1. The problem was to match
the 50-ohm characteristic impedance of a transmission
line to the complex input impedance of the transistor
specified at a discrete set of frequencies in the band of
interest. The ten parameters were the five lengths and
five characteristic impedances. A problem studied by
Bandler [3] was the optimization of multisection in-
homogeneous rectangular waveguide impedance trans-
formers (Fig. 2). The objective was, within certain con-
straints, to adjust the geometrical dimensions of the
sections such that the input and output waveguides
were matched over a given frequency band. In general,
all waveguides had different cutoff frequencies. Re-
sponses which were optimal in the Chebyshev sense,
i.e., minimax, were desired. The razor search method
[4] was employed to realize them. A modified version
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Fig. 1. Matching network optimized by
Murray-Lasso and Kozemchak [1].
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Fig. 2. Inhomogeneous rectangular waveguide impedance
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Fig. 3. Broad-band amplifier optimized by Trick and Vlach [5].

of Rosenbrock’s method [2] was used more recently by
Trick and Vlach [5] to optimize the broad-band ampli-
fier shown in Fig. 3 with, in general, complex frequency-
dependent terminations. A weighted least-squares type
of objective function was employed to achieve a flat
power gain with a reasonable reflection coefficient in
the band of interest.

These three examples (Figs. 1 to 3) are a good indica-
tion of the state of the art in automatic optimization by
computer of distributed networks in the microwave
region. In the absence of a reasonably simple and efhi-
cient method of evaluating derivatives, direct search
methods were probably found preferable by the authors
instead of gradient methods of minimization. Consider,
for example, an m-section cascaded network described
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by the A BCD matrix. Then

A: B m rA; B;
e, o)l o) o
C: D, 1 LC:  D;
so that, if some jth parameter ¢; appears in the nth
section [6]
d [Ag B;‘J
a¢] Cg Dt
04, 0B,
1rd, B; d; dp; ki A4, B;
) |l e
—iLC; D;Jl aC, 90D, |:ii1LC: Dy
9¢;  0¢;

In general, the functions involved are highly nonlinear,
containing transcendental expressions. If care is not
exercised to prevent reevaluation of expressions and
formulas already evaluated, it may not make much
difference in computing time whether analvtic expres-
sions are available for the derivatives, the derivatives
are estimated numerically by differences produced by
small perturbations in the parameter values, or large
steps in the parameters are taken as in direct search
methods.

The essence of the adjoint network method originally
proposed by Director and Rohrer [7], [8] is that all
required partial derivatives of the objective function
may be obtained from the results of at most two com-
plete analyses of the network regardless of the number
of variable parameters and without actually perturbing
them. For design of reciprocal networks on the reflection
coefficient basis, for example, only one analysis yields
all the information needed to compute the derivatives.
The procedure is essentially an exact one, so the com-
ponents could be in analytic or numerical form.

II. TELLEGEN’S THEOREM

Tellegen’s theorem [9], [10], [11] is invoked to
simplily the necessary derivations. Let

_7)1_\
V2
vag - 3)
L5
contain all the branch voltages in a network and
i
. i2
NE @)
L 7|

contain all the corresponding branch currents using
associated reference directions [10].1 Tellegen’s theorem

1 With associated reference directions, the current always enters a
branch at the plus sign and leaves at the minus sign.
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Fig. 4. Two networks having the same topology with
nodes and branches correspondingly numbered.

states that if v and 7 satisfy Kirchhoff's voltage law
(KVL) and Kirchoff’s current law (KCL), respectively,

vli = 0. (5)
The proof is rather straightforward [10, p. 422].
KVL requires that v=ATe, where A is the reduced

incidence matrix of the network and e is the node-to-
datum voltage vector. So

Vi = (ATe)Ti = eT Ai.
But KCL requires that A7 =0. Therefore,
vii = 0.
As a numerical example of Tellegen’s theorem con-

sider Fig. 4, which represents two networks having the
same topology. Let.

i=[3 —2 5 3 =3
refer, for example, to Fig. 4(a), and
v=1[1 2 2 3 67

to Fig. 4(b). Then
vii=3—-1+104+9—18 = 0.

Observe that differences in elements or element values
between the networks are irrelevant. Thus, 7 may be
essentially arbitrary but subject to KCL and v arbitrary
subject to KVL.

I1I. THE ADJOINT NETWORK

We need to define an auxiliary network which is
topologically the same as the original or given network
which is to be optimized. This is called the adjoint net-
work. Let the variables 1V and [ refer to the original
network and V and [ refer to the corresponding quan-
tities of the adjoint network. From (5)

Vills =0
Is™Vs =0 (6)

where subscript B implies that the associated vectors
contain all corresponding complex branch voltages and
currents. Perturbing elements in the original network
and noting that Kirchoff’'s laws and hence Tellegen’s
theorem are applicable to the incremental changes in
current and voltage, namely, Al and AV, respectively,

AVETI: =0
ATV =0 Q)
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Fig. 5. (a) Multiport original element. (b) Adjoint element.

Fig. 6. Representation of multiport element or network for
application of Tellegen’s theorem.

so that we have the useful form
AVBTiB — AIBT]'}B = 0 (8)

In general, the network to be optimized will consist
of multiport elements (Fig. 5), particularly in the micro-
wave region. To see how Tellegen’s theorem may be ap-
plied, consider Fig. 6. Obviously, we can still think in
terms of network graphs with branch quantities related
through some appropriate matrix description. Suppose
we take the hybrid matrix description

v -1 200 ®
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where

V.
vl
v, :

Perturbing the parameters of the element and neglecting
higher order terms

L] =L 2[00
*laae aells]

Substituting (10) in (8), the terms of (8) corresponding
to the element are

AV, 71, ALV,
[AVb:l [ij - [Alb] [I‘/:J
AL [V, AV L
Z[AVb:l |: jb] +|:AIb:I l:“f’b]
AV,J'TY AT [V, 'TAY  A477
~(Lan] e 2 #1aT [ane 52])
-V, INZ LA
[ ij+ [Alb] [—ffj

(11
which can be reduced to
—AY? AMT[V,
[V.T IbT]|: :H:A :| (12)
—AAT oZT | LI
if
1, Yr MV,
AR I
Ve — AT zr {1,

which defines the adjoint element. This definition causes
the terms of (8) relating to the element to be expressible
only in terms of the unperturbed currents and voltages
associated with the original and adjoint elements and
incremental changes in the elements of the matrix.
Terms containing incremental changes in current and
voltage have disappeared.

Table I summarizes these results and results for im-
pedance matrix, admittance matrix, and A BCD matrix
descriptions. They may be derived independently or as
special cases of the derivation for the hybrid matrix.
Two important special cases should be noted. The first
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TABLE 1

Matrix Type Original Element

Adjoint Element

Expression Yielding Sensitivity

Impedance V=2zI V=2zf 17azff
Admittance I=7YVv I=ymy —VTAYTV
I, Y Aq[V. A YT —MT[V, —AYT AMT[V,
Hybric v ] =lar 200 ] ARy v w Dy aze ] [5]
v M zllr v, —~AT  Z I, —a4r Azr LE,
¢ ’ 7 1 4 B 1% A4 —AC T
ABCD “]=[A B][ h] p]=*_““4[ ][ ‘ﬂ UQQ[ ][f]
I, ¢ piL-1, i, AD—-BCLC pib-I, —~AB  ADJLY,

is that adjoint of a reciprocal element is identical to the
element itself. The second is that a one-port element
(resistor, inductor, etc.) is accounted for by Table I.

Suppose the original and adjoint networks are excited
by independent sources? as indicated by Fig. 7. Let

Ve AViVee Va7 (14)
be theny-element voltage-excitation vector,
It & [Lngir Tz -+ - Toggn|” (13)
be the #;-element current-excitation vector, so that
) WS D PR o (16)
and
Vi [Vapsr Vagrs -+ - Vigang 7 17)

respectively, are the corresponding response vectors.
Thus, subscript V refers to voltage-excited ports and
subscript I refers to current-excited ports. For the ad-
joint network, similar definitions from (14) through
(17) would be distinguished by ~.
Terms of (8) associated with the port excitations and
responses are
AVl — ALYy + AV7E — ALV (18)
But AV, =AI;=0 if the excitations remain constant.
Expression (18), therefore, reduces to
— ALYy + AV (19)
In summary, then, (8) consists of terms of the form
of (12) and similar ones as in Table 1 together with
(19) leading, in general, to
ALTVy — AVTI; = GTA$ (20)
where G is a vector of sensitivities related to the ad-
justable network parameters contained in ¢. It is seen
that (20) relates changes in the port responses to changes
in parameter values, which is usually what we are in-

* Appropriate zero-valued sources are placed, for convenience, at
ports which are not excited.

. original o
o Iny network M
o
an Vn,*ng I”v*”]’.
(2)
T,
+
Y U +1 T
Vi n ny*!
P adjoint :
e Iny network o
e s
,\7nv ( ) Vny*ng Lny+hg
(b)

Fig. 7. (a) Excited arbitrary multiport network containing lumped
and distributed elements. (b) Topologically equivalent adjoint
network with corresponding port excitations.

terested in. The form of the right-hand side of (20) is a
direct consequence of the definition of the adjoint net-
work.

IV. DERIVATION OF SENSITIVITIES

Table 1T presents the results of applying the formulas
of Table I to a number of commonly used elements.
Consider, for example, an inductor. According to the
impedance formulas of Table I, the expression vielding
the sensitivity is

I1AZT = (jo IDAL. (21)
Taking the inductance L as the parameter, jwll is
the sensitivity or component of G and AL is the pa-
rameter increment.

Now counsider a uniformly distributed line as shown in
Fig. 8(a). The element is reciprocal, so that

(22)

. cothd csch @
ZT=Z=Z[ ]

csch 8 cothé
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Fig. 8. Uniformly distributed elements with convenient representa-
tions. (a) Uniform line. (b) Short-circuited line. (c) Open-cir-
cuited line.

where Z is the characteristic impedance. Using the
same formula in Table I as for the inductor [12]

N coth@ csch @
ITAZT] = IT<AZ|: ]
csch @ cothé
YA, [csch # coth 6]>T}
sinh 6 Lcoth 8 «c¢sché

AZ A TO 1 T,
:<——ZI———*|: ]ZI)I
Z sinhe[1 O

Af 0 17~
. VT[ ]z.
sinh 6 10
Corresponding expressions for the lossless transmission
line of length !/ with 0 =36/ and the uniform RC line
(Fig. 9) with Z=+/R/sC and 8 =+/sRC are readily ob-
tained [12] and are shown in Table I1I.

Consider a rectangular waveguide operating in the
Hiy mode, as shown in Fig. 10. The following model

may be used if the. restrictions outlined by Bandler
[3] are observed:

-— VII — (23)

7 =0\, (24)
2xl .
6= = ja (25)
Ag
where
A
P (26)

T V= (20>
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Fig. 9. Uniformly distributed RC line.
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Fig. 10, Rectangular waveguide. (a) Geometrical
dimensions. (b) Circuit representation.

where a, b, and / are the width, height, and length, re-
spectively of the waveguide; ), is the guide wavelength
and A=c¢/f. It is readily shown, neglecting higher order
terms, that

BN,
AZ = NAb — —L Aa (27)
1ad
and
Ba\,?
AB = jB,Al 4 j— 3" Aa. (28)
a

Expression (23) for the rectangular waveguide then be-
comes

gt ~ Byl 0 17~
— A — VTI—{——‘h—VT[ :|I>
443 sin B,1 10

Ab  ~ B,Al 0 17,
+ — VI — — vr I: :| I
b sin 3,1 10

(29)

Note that the voltages and currents do not necessarily
have to have any physical interpretation, their use is
only in being convenient variables for analysis.

Now consider a uniform lossless coaxial line with

1 Z d
Z=— 212 (30)

27 Ve d;
where Zo=+/po/€o, € is the relative permittivity of the
medium, and d, and d; are the outer and inner diameters,
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TABLE Ii
SENSITIVITY EXPRESSIONS FOR SOME LUMPED AND UNIFORMLY DISTRIBUTED ELEMENTS

Sensitivity Increment
Element Equation (component of G) (component of Ad)
Resistor 7 =RI I AR
I=GV -y AG
Tnductor V =jwll jwlf AL
1 1.
I =—TV -V AT
Jw Jw
1 1.
‘Capacitor V=—S5I —1II AS
Jw Jo
I = juCV —jVV aC
Transformer v p:l [ 0 n] [Ip]
= Vel + 1V, An
I, —n 04 LV, or e
, 0 2 2
Gyrator V= [ “ I Iply — Il Aex
—a 0
Voltage controlled voltage source Iy 0 01V, L=
1-L oJL7] Tl =
Ve v 0 Iq
Volt trolled t ¢ 0 0 N
oltage controlied current source 7= [ ] v —v,7, Agm
gm0
o 0 0 N
Current controlled voltage source V= [ 0] I i, An
Tm
Current controlled current source V. 0 0717 o
rrent contro Iren b I: ,,:|=I: :Il:{;] —1,7, A8
I, g8 01LV,
Short-circuited uniformly V =ZtanhgTl tanh ¢ 1T AZ
distributed line Zsech?0 1] A9
I=YcothoV —cothg V'V AY
Y cschzo VYV Af
Open-circuited uniformly V=2Z2Zcothol coth 0 77 AZ
distributed line —Z csch29I] A
I=YtanhgV —tanh 8 VT AY
— ¥ sech?o VT Y
i . coth# csch @ 1 a
Uniformlv distributed line V=2 [ ] I —VTI AZ
csch 8 coth @ Z
L yr [O 17 Af
sinh 6 10
cothf —csch @ 1
I= Y[ — =1V 2
—csch @ coth 6 14 Al
1 0 17 .
_ I ]
sinh 6 1 0 v 40
Short-circuited lossless V =jZtan Bl 1 jtan Bl [l I AZ
transmission line 778 sec? L IT Al
I=—jYcotBlV jeot BIVYV AY
—7 B csc? Bl 14% Al
‘Open-circuited lossless V=—3ZcotBlI —jcot gt IT AZ
transmission line jZ8 csc? BL IT Al
I =jV tan LV —jtan BLVV AV
—jVBsec BLVV al
ot B csc Bl 1 .
Lossless transmission line V=—jZ [C 8 B — VI AZ
csc Bl cot Bl VA
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TABLE II (Cont.)

Sensitivity Increment
Element Equation (component of G) (component of Ad)
- -VT[ Al
sin 8l
tpl — 1 1 .
Lossless transmission line —JjY [ coth osc 6 ——=IV AY
—csc Bl cot I Y .
[ 1] v al
sin ﬂl 0
B
. . P . . A% sinBgl | &
Rectangular waveguide operating as for lossless transmission line with T aa vr 8,0 I Aa
a
in 1730 mode Z = bny, Breplaced by By = 27 /A, L
sin Byl
here A, = A — 2 1. 4
where &, = A/+/1 — (A/2q) R Ab
b
0 17 .
- ,ﬁ" vr [ 7 Al
sin Bgb 10
I~ 4}
1 e
. . . . . 1 sinh 8 | o
Uniform RC line as for uniformly distributed line with ET vT 9 I AR
R I = _
Z=1/~~ and 8 = +/sRC L sinh ¢
sC _
[}
1 sinh 6 |
— — V1 I AC
2C 6 1
|_sinh ¢
. - e 1 2
Uniform coaxial line as for lossless transmission line with g viI Ado
[
1 Z do do In —
— and 8 = r d,
“a Ve g 8= .
— —~——~d— vrf Ad;
0
dIn —
",
- 17 -~
_ ﬁo\/ € I: ] 7 Al
sin Bov/ erl 0
1 o &l 0 174
——~(VTI+—-——.B°\/6_ VT[ ]I) Aer
2er sin Bov/erd 10
coth® —csch@ I71p
SR Bt o B
c[ » IQ] —csch @ coth8 LV, "
Counled Ii I Ccoth8 —C csch 0:[ v c[V v ] [ coth® —csch 0:“:172,,] AC
upled lines = — 2 A
oup 1 R o —C csch @ C coth 6 ] csch g coth 1LV 2
(1) capacitance matrix description
where
- the —1"csch 6 o
ca I:Cm + Ciz Cu :I ey |: " co csc ] v ACus
—Cia Coz + Cr2 —1/ csch 6 1’ coth
(see text and Fig. 11) .t [ 1:] P 20
smh [/ 0

(see text for definitions of 1’, 1, and 0)

—flp "!_ f?p_
Yarcotpl —Yarcscpl 1 T,+1
Coupled lines —7 [ i CoLp i csc ——yr| T AY,
L. —YucscBl Y cot Bl 2Y, Tig+ 1o
(2) even- and odd-mode description I,
for symmetrical arrangement where Ffz N f::,:
a — R 7 _ 1’-
Yuo— Ve ¥o Yo ¥ :I — —1—— vr {2p S AY,
- V.— Y, Y.+ 7, 2Y, Lig — oy
j L I 1g 4
and where Y. and ¥, :are the even- B ITl: ]V Al
and odd-mode admittances sin 87
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respectively, of the line. Here,

0 = juv/erl (31)
where (¢ is the free-space phase constant. Thus
Ad Ad, Ae
AZ =2 - — (32)
do do 2er
d() In— dz In —
( i d;
and
J— j,BolAér
A6 = jBov/e Al + . (33)
]ﬁo\/é e

Expression (23) for the coaxial line becomes

Ad Ad, N &, Al 0 17.
Od B o | V- Wﬂem VTL 0]1
sin %
dolns 4= Ve
4 d;
Ao [ . & | 0 17.
- <VTI—|— Ve fover L VT[ }1) (34)
2e, sin 8o\ e [ 10

Finally, consider the admittance matrix formulas of
Table 1 applied to the pair of coupled lines above a
ground plane [13], [14] shown in Fig. 11. The admit-
tance matrix description is

Ilp le

I, Ccoth® —Cecschdf| Vs, _
= ¢ :| (33)

Iy, —Ccsché Ccothd || Vy,

Izg V?q

where subscript  denotes the two ports formed between
each conductor and the ground plane at one end and ¢
the corresponding ports at the other end; subscript 1
refers to one conductor and 2 to the other. The matrix

C is given by
—Cr il
COZ + lel

the elements of which are defined in Fig. 11. Treating
Cot, Coz, Cis, and 8 as variables we have

c A

|:C01 + Ciz

_Cy (36)

—VTAYTV
[V v ]l: cothd —csch G:i [1711,] AC
T el ) csch 6 coth @ qu -
(Vs Vo] [ cothf —csch 0] [1721,] AC
—¢ . R
whi _csch g coth 0]V, ’
1’ cothd —1'csch6
i CVT [ } VAC12
—1" ¢sch 6 1’ coth @
¢ —C csch @ C cothéT
- VT [ ] VA8 37
sinh 6 Ccothé —Ccsché
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“T T

Fig. 11. Coupled lines above a ground plane with
static capacitances per unit length.
where
A [ ! ﬁl} (38)
—L-1 1l
The last term may be rewritten as
1 0 17 -
—— Ir [ ] VAb 39
sinh @ 1 0
where
00
oal, o (10)
0 0
and
1o [1 O] (41)
—lo 1]

These results are summarized in Table II, along with
expressions based on the approach using even- and
odd-mode characteristic admittances.

V. GRADIENT COMPUTATIONS

There are a number of ways in which the adjoint net-
work method can be used effectively in gradient compu-
tations.

Consider Figs. 12 and 13. Fig. 12(a) depicts the situa-
tion when insertion loss or gain is to be optimized. Here
we are interested at some frequency in the partial de-
rivatives of I with respect to the parameters and hence
VI;. Fig. 13(a) is appropriate for design on the reflec-
tion coefficient basis. In this case we are interested at
some frequency in VI, Suppose the adjoint networks
are excited as shown in Figs. 12(b) and 13(b). Then, for
Fig. 12, (20) can be reduced to

ATV = GTA. (42)

Dividing by V1 we have
AIL = VITAp = [I% GT} Ad
from which
v = Ai G. (43)
Vi

For Fig. 13, (20) can be reduced to

ALV, = GTAS. (44)
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Fig. 12. Special case of Fig. 7 for insertion loss design.
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Fig. 13. Special case of Fig. 7 for reflection coefficient design.

Noting that (44) has the same form as (42) we get

1
vi, == G.

Vs

(45)

Observe that VI. in (43) and VI, in (45) are
evaluated from the currents and voltages present in the
unperturbed original and adjoint networks. At most,
two network analyses using eny suitable method will,
therefore, yield the information required for the evalua-
tion. Of course, if desired, analytic expressions for the
partial derivatives could also be found by this ap-
proach.? It is interesting to note that for design of re-
ciprocal networks on the reflection coefficient basis we
are at liberty to set V,=7V, and use the results of just
one analysis at each frequency.

To relate VI or VI, to the gradient vector of suit-
able least pth or minimax objective functions [2]-[4],
[6], [15]-[18] is a straightforward process [12]. In
anticipation of the numerical example (Section VI), we
will first consider discrete least pth approximation
using the reflection coefficient. Let

1
U=2 ? | p(Gwa) |7, wg & U (46)
L

3 It is debatable, however, whether any computational advantage
would, in general, be gained by deriving analytic expressions.
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where p is the reflection coefficient between R, and the
one-port network, @, is a set of discrete frequencies wq,
and p is any positive integer. Suppose it is required to
minimize U. In this case we are trying to approximate
zero reflection coefficient in a least pth sense. For large
$ we would expect a nearly equal-ripple response to cor-
respond to the minimum of U [2].

) Zin(jwa) — Ry 2R,
p(jws) = - = L~ e
Zin(]wd) + R, Zin(]“’d) + R,
_ ZRQIg‘(jwﬁ (a7)
Va(]“’d)
so that

vU = 3 Re { | p(Gea) |720*(jwa) Vo(jwa) }

=ERe{ 2R,

Qg V, (_7 wa)

If, instead of minimizing (46), the problem is to mini-
mize a nonnegative independent variable U, subject to

U > glwd) = 3] p(od) |2,  wa € Q (49)

then we have minimax approximation [2], for which

| s [ Ga s (69

2R, _
Ve(w) = Re{ —p*<jwd>vfg<jwd>}. (50)

Vg(jwd>
Finally, let us address ourselves to the approximation
problem considered by Director and Rohrer [8], gener-
alizing it to least p [19], [20]. Equation (20) is readily re-
arranged to give

ny ny+ng

G=2VvlLi— > LvV; (51)
i==1 1=ny+1
since, neglecting higher order terms,
AT; = VITAD
AV, = VViTA(]).
Given, for example, the objective function
ny+nr 1 .
U= f — | e($, jw) |? de (52)
=1 e P
where
ei(¢, jw) 2 wi(w) (Fi(d, jo) — Si(jw)) (53)
where
Ii(y.w) 1.:1,2,"‘,1’!}’
ra {00 (58)
Vild,jw) i=mnr+ 1, -, ny + nr

and Q defines the frequency range of interest. Here,
S;:(jw) is a desired complex port response with w:(w) a
nonnegative real weighting function. In this case

nytnr
VU= X% f Re { [ e, jo) [P~wilw)
p=1 Q

-e*(&, jo) VFi($, jw)} dw.  (55)
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Fig. 14. Cascaded transmission lines terminated in
frequency variable resistances.

By comparing (51), (54), and (55) it is seen that by ar-
ranging for the adjoint network voltage and current
excitations to be given by

| 6i($, jw) |7~ 2wi(w)e* (¢, jw)

Pije)  i=1,2-,m
- v (56)
—1(jw) t=m+ 1, ,mr +ur
we obtain
vU =fRe (G} do. 37)
2

If there is no excitation at a particular port the ap-
propriate source is obviously set to zero. If the response
at a particular port is not to be controlled the cor-
responding adjoint excitation should be zero. Elements
or parameters not to be varied during optimization do
not, of course, contribute to ¢ or G.

VI. EXAMPLE

Carlin and Gupta [21] recently considered the opti-
mal design of filters with lumped—distributed elements
or frequency-variable terminations. Although any of
their design examples are amenable to computer-
oriented optimization techniques, let us discuss the
design of the symmetrical seven-section cascaded trans-
mission-line filter shown in Fig. 14(a).

The terminating impedances are real but frequency
dependent, specifically

Ry(w) = Ri(w) = 377/v/1—=(f./f)?
where f is the frequency in GHz and
f, = 2.077 GHz.

Thus, the terminating impedances can be thought of as
rectangular waveguides operating in the Hi, mode with
cutoff frequency 2.077 GHz. Carlin and Gupta required
a passband insertion loss of less than 0.4 dB over 2.16
to 3 GHz and an edge to the useful band of 5 GHz.
They constrained all section lengths to be 1.5 cm so
that each section would be quarter wave at 5 GHz and
causing the maximum insertion loss to occur at that
frequency. The response of their design is shown in Figs.
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Fig. 15. The response of the seven-section filter whose configuration
is shown in Fig. 14. The authors’ response was optimized for min-
imum passband insertion loss.
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Fig. 16. Details of the passband insertion loss
of the seven-section filter.

15 and 16 and the values of characteristic impedance
in Table I11.

A question of interest to the present authors is this:
how small can the passband insertion loss be made
under the constraints of the problem? (Note that the
question is trivial if the terminating impedances were
frequency independent or if the section lengths were
freely variable.)

The least pth objective function of (46) was set up
using 51 uniformly spaced points over the range 2.16
to 3 GHz and with p=10. Optimization was carried
out by the Fletcher—Powell method [22], the required
derivatives being evaluated from the results of one
analysis of the network of Fig. 14(b). To apply the ad-
joint network method a simple 4 BCD matrix analysis
algorithm employing the approach indicated in Fig.
14(b) was written. Instead of fixing V,, it was found
more convenient to assume that /=1 and to calculate
the required currents and voltages including V,. The
appropriate formulas from Table II were used (not
forgetting to reverse the currents at the junctions when
necessary). The design parameter values of Carlin and
Gupta were used as starting values.
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TABLE III
CoOMPARISON OF PARAMETER VALUES FOR THE SEVEN-SECTION FILTER

Characteristic

Impedances Carlin and Bandler and

(normalized) Gupta [21] Seviora
Zy 1476.5 1469.5
Zs 733.6 763.2
Zs 1963.6 1945.1
n 461.8 558.7
Zs 1963.6 1945.1
Zs 733.6 763.2
Zy 1476.5 1469.5

The resulting response is plotted in Figs. 15 and 16
and the final parameter values are given in Table III.
Observe the almost equal-ripple behavior of the response
with a maximum insertion loss over the passband of
about 0.1 dB. It would appear then that under the de-
sign constraints imposed by Carlin and Gupta, a much
lower maximum passband insertion loss is probably not
achieveable. This was verified more recently by apply-
ing a minimax approximation algorithm to the same
problem. A substantially equal-ripple response was ob-
tained with a maximum insertion loss of 0.086 dB. (The
algorithm uses the general philosophy behind the razor
search method [4] but relies on gradient information
generated by the adjoint network method.)

The reader should note that our design is not optimal
in the filtering sense required by Carlin and Gupta; to
achieve this one would want to maximize the stopband
insertion loss subject to a passband insertion loss less
than or equal to 0.4 dB. Allowing the section lengths to
vary might also improve the response somewhat.

VII. Discussion

A nonexistent lumped element may be thought of as
an appropriate zero-valued element connected between
two nodes. Since the gradients depend only on voltages
between nodes and currents through branches, they
may be evaluated with respect to such nonexistent
elements. If an increase in element value is indicated,
the element can be grown {rom a short circuit or open
circuit, as appropriate. Thus, changes in topology can
be accommodated by this means. The adjoint network
method does not seem, however, to provide any clear
advantage over other methods as an aid to choosing the
best topology except possibly in computation time. A
direct search method, for example, can also investigate
changes with respect to zero-valued elements.

As the authors have found [12], it is not, in general,
obvious what kind of element should be grown, whether
lumped or distributed, when distributed elements are
also allowed. A knowledge only of the currents and
voltages is not really sufficient. Furthermore, a variety
of physical, economic, and other practical constraints
on circuit configuration will also affect the choice. How
would one decide, for example, whether a short-circuited
transmission line should be grown rather than a lumped
inductor?
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Many circuit designers claim to have had success in
computer-aided network design using direct search
methods, so why should they adopt a gradient method?
Well, if it is steepest descent they are thinking of, they
are better off using the direct search methods. The
Fletcher—Powell method [22], on the other hand, is, at
the time of writing, still most widely acknowledged as
the most powerful unconstrained minimization method
available. Factors affecting the choice of an optimiza-
tion method undoubtedly include familiarity with a
particular program, the presence of constraints, the
type of approximation required (whether least pth or
minimax), the number of variables, and the available
computation system [23]. As far as approximation
methods are concerned, algorithms which should bene-
fit considerably from the adjoint network method of
evaluating derivatives are the minimax approximation
methods of Lasdon and Waren [6], [15], Ishizaki and
Watanabe [16], Osborne and Watson [24], and the
least pth approximation method of Temes and Zai
[171, [18].

Extensions of the adjoint network method to second-
order network sensitivities have been presented [25]-
[27]. The results may be used with those optimization
methods, such as the Newton method [2], which re-
quire second derivatives. However, since gradient
methods involving only first derivatives are generally
considered superior, it seems unlikely that widespread
application of these results will be seen in the very near
future.

VIII. CONCLUSIONS

The ease of implementation of the adjoint network
method of evaluating partial derivatives and the im-
mediate savings in computation time for the computer-
aided design of circuits make it very attractive. A great
deal of the uncertainty and inefficiency inherent in the
numerical estimation of partial derivatives can be
eliminated.

It is believed that this approach will find very wide
application. Another very recent report in this area
and of interest to microwave engineers is available
[28]. There seems little doubt, from the circuit de-
signer’s point of view at any rate, that the introduction
of the adjoint network method by Director and Rohrer
is a turning pointin computer-aided design.
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Ferrite Microstrip Phase Shifters with Transverse and
Longitudinal Magnetization

Abstract—Phase shifts of opposing sign are produced in a linear
section of microstrip by transverse and longitudinal magnetization of
the ferrite substrate. Nonreciprocal phase shift is also produced by
the transverse magnetization. Theoretical calculations of phase shift
that account for both the diamagnetic effects and the tensor prop-
erties of the ferrite permeability agree well with properly con-
structed experimental measurements. These measurements use
closed magnetic circuits to remove the nonuniform demagnetization
effects.

A lightweight reciprocal phase shifter has been constructed that
utilizes both transverse and longitudinal magnetization at low drive
power with closed magnetic circuits to obtain a high figure of merit.

INTRODUCTION

Experimentally observed properties of ferrite microstrip phase
shifters have been described in a number of published papers [1], [2].
Approximate theoretical analyses have also been presented that give
a partial explanation of some of the properties observed. Refinements

Manuscript received April 13, 1970; revised July 17, 1970. This paper was
presented at the 1970 International Microwave Symposium, Newport Beach, Calif.,
May 11-14,

in both the theories presented and the experimental measurements
performed are required before reasonable correlation can be obtained
between them. Some of these refinements are described in this corre-
spondence. The discussion is limited to ferrite phase shifters that are
composed of linear sections of microstrip. The closely coupled
meander-line configurations are not considered.

LoNGITUDINAL AND TRANSVERSE MAGNETIZATION

Previous investigations have been concentrated on the effects of
longitudinal magnetization (parallel to the microstrip) on the phase-
shifting properties of linear sections of microstrip. The effect of a
transverse magnetization in the plane of the substrate on the phase
velocity of the propagating fields has been assumed to be nil. As
shown by a comparison of Figs, 1 and 2, the application of an external
transverse magnetic field to the ferrite substrate generates a phase
shift of roughly the same size as that introduced by longitudinal fields.
The phase shift induced by transverse magnetization has both a
reciprocal and a nonreciprocal component. The composite phase shift
induced by transverse magnetization is in the direction opposite to
the phase shift generated by the longitudinal magnetization. Some
nonreciprocal phase shift has been previously reported [3] for widely
spaced meander lines, but the effect was attributed to coupling be-
tween the lines. The presence of the nonreciprocal phase shift in a
single linear section of microstrip is evidence of the fact that the



