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Current Trends in Network Optimization

JOHN W. BANDLER, MEMBER, IEEE, AND RUDOLPH E. SEVIORA, STUDENT MEMBER, IIIEE

Abstracf—Some current trends in automated network design

optfilzation which, it is believed, will play a significant role in the

computer-aided design of lumped-distributed and microwave net-
works are reviewed and discussed. In particular, the adjoint network

approach due to Director and Rohrer for evaluating the gradient vec-

tor of suitable objective functions related to network responses that

are to be opttilzed is presented in a tutorial manner. The advantage

of this method is the ease with which the required partial derivatives

with respect to variable parameters, such as electrical quantities or

geometrical dimensions, can be obtained using at most two network

analyses. Least pth and minimax approximation in the frequency do-
main are considered. Networks consisting of linear time-invariant
elements are treated, including the conventional lumped elements,
transmission lines, RC limes, coaxial lines, rectangular waveguides,

and coupled lines. TO illustrate the application of the adjoint net-
work method, an example is given concerning the optimization in the

least #th sense using the Fletcher-Powell method of a transmission-

line tilter with frequency variable terminations previously considered

by Carlin and Gupta.

1. INTRODUCTION

A

S THE RECENT special issue on Computer-

Oriented Microwave Practices of the IEEE

TRANSACTIONS ON MICROWAVE THEORY AND

TECHNIQUES shows, microwave network optimization

is widely carried out using direct search methods, i.e.,

iterative optimization methods which do not employ

evaluation or estimation of derivatives. Murray-Lasso

and Kozemchak [1], for example, used pattern search

[2] to optimize the parameters of the transmission-line

network shown in Fig. 1. The problelm was to match

the 50-ohm characteristic impedance of a transmission

line to the complex input impedance of the transistor

specified at a discrete set of frequencies in the band of

interest. The ten parameters were the five lengths and

five characteristic impedances. A problem studied by

Bandler [3] was the optimization of multisection in-

homogeneous rectangular waveguide impedance trans-

formers (Fig. 2). The objective was, within certain con-

straints, to adjust the geometrical dimensions of the

sections such that the input and output waveguides

were matched over a given frequency band. In general,

all waveguides had different cutoff frequencies. Re-

sponses which were optimal in the Chebyshev sense,

i.e., minimax, were desired. The razor search method

[4] was employed to realize them. A modified version
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Fig. 1. Matching network optimized by
Murray-Lasso and Kozemchak [11.

Fig. 2. Inhomogeneous rectangular waveguide impedance
transformer optimized by Bandler [3].
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Fig. 3. Broad-band amplifier optimized by Trick and Vlach [5].

of Rosenbrock’s method [2] was used more recently by

Trick and Vlach [5] to optimize the broad-band ampli-

fier shown in Fig. 3 with, in general, complex frequency-

dependent terminations. A weighted least-squares type

of objective function was employed to achieve a flat

power gain with a reasonable reflection coefficient in

the band of interest.

These three examples (Figs. 1 to 3) are a good indica-

tion of the state of the art in automatic optimization by

computer of distributed networks in the microwave

region. In the absence of a reasonably simple and effi-

cient method of evaluating derivatives, direct search

methods were probably found preferable by the authors

instead of gradient methods of minimization. Consider,

for example, an m-section cascaded ne~work described
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by the A B CD matrix. Then

so that, if some jth parameter ~j appears in the nth

section [6]

(1)

In general, the functions involved are highly nonlinear,

containing transcendental expressions. If care is not

exercised to prevent reevaluation of expressions and

formulas already evaluated, it may not make much

difference in computing time whether analytic expres-

sions are available for the derivatives, the derivatives

are estimated numerically by differences produced by

small perturbations in the parameter values, or large

steps in the parameters are taken as in direct search

methods.

The essence of the adj oint network method originally

proposed by Director and Rohrer [7], [8] is that all

required partial derivatives of the objective function

may be obtained from the results of at most two com-

plete analyses of the network regardless of the number

of variable parameters and without actually perturbing

them. For design of reciprocal networks on the reflection

coefficient basis, for example, only one analysis yields

all the information needed to compute the derivatives.

The procedure is essentially an exact one, so the com-

ponents could be in analytic or numerical form.

1 I. TELLEGEN’S THEOREM

Tellegen’s theorem [9], [10], [11] is invoked to

simplify the necessary derivations. Let

[1
VI
V2

VA .—

~lb

contain all the branch voltages in a network and

-[1

il

i2
i~ .

‘ib

(3)

(4)

contain all the corresponding branch currents using

associated reference directions [10 ]. 1 Tellegen’s theorem

1 With associated reference directions, the current always enters a
branch at the plus sign and leaves at the minus sign.

‘d’ t353@4(3 (3-4+(3
(a) (b)

Fig. 4, Two networks having the same topology with
nodes and branches correspondingly numbered.

states that if v and i satisfy Kirchhoff’s voltage law

(KVL) and Kirchoff’s current law (KCL), respectively,

vTi = ~. (5)

The proof is rather straightforward [10, p. 422].

KVL requires that v = ATe, where A is the reduced

incidence matrix of the network and e is the node-to-

datum voltage vector. So

vTi = (ATe) Ti = eTAi.

But KCL requires that Ai = O. Therefore,

#i = ().

As a numerical example of Tellegen’s theorem con-

sider Fig. 4, which represents two networks having the

same topology. Let.

i=[3 –253 _3]T

refer, for example, to Fig. 4(a), and

V=[12236]T

to Fig. 4(b). Then

vTi=3—&+10+9— 18= O.

Observe that differences in elements or element values

between the networks are irrelevant. Thusj i may be

essentially arbitrary but subject to KCL and v arbitrary

subject to KT7L.

111. THE .\ DJOINT NETWORK

M[e need to define an auxiliary network which is

topologically the satne as the original or given network

which is to be optimized. This is called the adj oint net-

work. Let the variables V and 1 refer to the original
. ,.

network and V and I refer to the corresponding quan-

tities of the ad joint network. From (5)

vBTfB= o

I.’till = o (6)

where subscript B implies that the associated vectors

contain all corresponding complex branch voltages and

currents. Perturbing elements in the original network

and noting that Kirchoff’s laws and hence Tellegen’s

theorem are applicable to the incremental changes in

current and voltage, namely, AIB and AVB, respectively,

AVBT~B = O

AIBT~B = O (7)
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Fig. 5. (a) Multiport original element. (b) Adjoint element,
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Fig, 6. Represen~ati?n of multiport element or network for
apphcatlon of Tellegen’s theorem.

so that we have the useful form

AVBTfB –– AIBTfiB = O. (8)

In general, the network to be optimized will consist

of multiport elements (Fig. 5), particularly in the micro-

wave region. To see how Tellegen’s theorem may be ap-

plied, consider Fig. 6. Obviously, we can still think in

terms of network graphs with branch quantities related

through some appropriate matrix description. Suppose

we take the hybrid matrix description

[2‘[:x] (9)

where

I.

[1Ib

v.[1Vb
. [1

v,

v,

v, .

Perturbing the parameters of the element and neglecting

higher order terms

‘E x:] “0)
Substituting (10) in (8), the terms of (8) corresponding

to the element are

‘(KIT: :IT+[H[:: a)

which can be reduced to

(11)

[V.T I,T]
[

– A YT AMT ?a

1[1–AAT ($ZT lb
(12)

if

which defines the ad joint element. This definition causes

the terms of (8) relating to the element to be expressible

only in terms of the unperturbed currents and voltages

associated with the original and adjoint elements and

incremental changes in the elements of the matrix.

Terms containing incremental changes in current and

voltage have disappeared.

Table I summarizes these results and results for im-

pedance matrix, admittance matrix, and A B CD matrix

descriptions. They may be derived independently or as

special cases of the derivation for the hybrid matrix.

Two important special cases should be noted. ‘I’he first



1162 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, DECEMBER 1970

TABLE I

Matrix Type Original Element .%djoint Element Expression Yielding Sensitivity

—. —

Impedance V=ZI # = Zrf lTAzTf

Admittance I=YV ~ = yT~ _ vT~yTfi

Hybrid
[:J = [: xl ;, = -AT mlr] [

yT _MT
[v.TI,T]

[

– A Yy AMT P.

1[ 1– AAT AZT fb

ABCD
[;1 = [: ;1 [-.;:1 [21 ‘Ad: 2[-?1 [-:: ‘a [KI

[I’g 1,]

is that adj oint of a reciprocal element is identical to the

element itself. The second is that a one-port element

(resistor, inductor, etc.) is accounted for by Table I.

Suppose the original and adj oint networks are excited

by independent sources2 as indicated by Fig. 7. Let

Vv Q [Vl V2 . - . vm,,]~ (14)

be thew~-element voltage-excitation vector,

L Q [~nv+l 1.V+2 “ ‘ I.V+J (15)

be the n~-element current-excitation vector, so that
G,

Iv Q [III, . . - I.V]T (16)

and

VzQ [v.v+lV.v+?“ “ V.V+.l]* (17) O

II

● originol .

● I
. “v network

●

.

+

Vnv+nl
—

(a)

f,

●

‘f
adjoint

~v network

A“

respectively, are the corresponding response vectors.

Thus, subscript 1’ refers to voltage-excited ports and {h>

subscript 1 refers to current-excited ports. For the ad-

joint network, similar definitions from (14) through

(17) would be distinguished by A.

Terms of (8) associated with the port excitations and

responses are

But AVV = AI1 = O if the excitations remain constant.

Expression (18), therefore, reduces to

— AIvTpv + AVITfT. (19)

In summary, then, (8) consists of terms of the form

of (12) and similar ones as in Table I together with

(19) leading, in general, to

AIvT~v – AVIT& = GTA+ (20)

where G is a vector of sensitivities related to the ad-

j ustable network parameters contained in +. It is seen

that (20) relates changes in the port responses to changes

in parameter values, which is usually what we are in-

2 Appropriate zero-valued sources are placed, for convenience, at
ports which are not excited.

3+on~+I 2“”+1

I
●

●

●

Iu)

Fig. 7. (a) Excited arbitrary multiport network containing lumped
and distributed elements. (b) Topological y equi~,alent adj oint
network with corresponding port excitations.

terested in. The form of the right-hand side of (20) is a

direct consequence of the definition of the ad joint net-

work.

IV. DERIVATION OF SENSITIVITIES

Table II presents the results of applying the formulas

of Table I to a number of commonly used elements.

Consider, for example, an inductor. According to the

impedance formulas of Table 1, the expression yielding

the sensitivity is

IAZi = (ju If) AL. (21)

Taking the inductance L as the parameter, jwIf k

the sensitivity or component of G and AL is the pa-

rameter increment.

Now consider a uniformly distributed line as shown in

Fig. 8(a). The element is reciprocal, so that

[

coth O csch 0
ZT=Z=Z

csch 0 coth O1 (22)
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Fig.8. Uniforml.y distri.buted elements with convenient representa-

tions. (a) Umforrn hne. (b) Short-cu-culted hne. (c) Open-cir-
cuited line.

Fig. 10. Rectangular waveguide, (a) Geometrical
dimensions. (b) Circuit representation.

where Z is the characteristic impedance. CTsing the

same formula in Table I as for the inductor [12]

where a, b, and 1 are the width, height, and length, re-

spectively of the waveguide; hg is the guide wavelength

and h = c/f. I t is readily shown, neglecting higher order

terms, that([ coth O csch 0
ITAzTj = IT AZ

csch 0 coth 01
ZA8 csch 0 coth 0 ‘-

—

[ 1)
1

sinh % coth O csch 9

(27)

and

—-( sinhti[~~lZIY;$ ZI – lo—

AO 01.
—.%vTj_— VT [1 I.

z sinh O 10

(28)

(23)
Expression (23) for the rectangular waveguide then be-

comes

Corresponding expressions for the lossless transmission

line of length J with O =j~l and the uniform RC line

(Fig. 9) with Z = 4R/sC and O = dsRC are readily ob-

tained [12 ] and are shown in Table II.

Consider a rectangular waveguide operating in the

HIO mode, as shown in Fig. 10. The following model

may be used if the. restrictions outlined by Bandler

[3] are observed: Note that the voltages and currents do not necessarily

have to have any physical interpretation, their use is

only in being convenient variables for analysis.

Now consider a uniform lossless coaxial line with

(24)

(25)
1 z, 6!,

Z= —--lnx
21r -/C, ,

(30)
where

(26) where ZO = ~po/co, t, is the relative permittivity of the

medium, and do and di are the outer and inner diameters,
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TABLE II

SENSITIVITY EXPRESSIONS FOR SOME LUMPED AND L“NIFORMLY DISTRIBUTED ELEMENTS

Sensitivity Increment

Equation (component of G) (component of A+)

—— — —— ..— —
Element

——

Resistor

Inductor

Capacitor As

Ac

Transformer
An

‘=[-: w

[q= [: :1 [::1

Gyrator

Voltage controlled voltage source
4P

Voltage controlled current source 00
I=

[1
v

h o
A&n

Current controlled voltage source 00
Vy

[1
I

1’,,, 0
A/’m

Current controlled current source

t7=ZtanIi61

I= Ycoth%V

V= Zcoth OI

I=l”tanh OV

tanh e If

Z sech’ OIf

— coth o VP

Y cschz 8 VP

coth @If

–Z csch’ OI?

– tarrh o VP

– 1“ sechz 8 V?

AZ

AO

AY

Ae

AZ

AO

AY

Ati

Short-circuited uniformly

distributed line

Open-circuited uniformly

distributed line

V=z
[

coth O csch O

1
I

csch @ coth o
Uniformlv dktributed line AZ

Ae

I=Y
[

coth 9 — csch 0

1
v

—csch o coth @
A y

1 OIA_ _ p,
[1

v
sinh @ 10

AO

Short-circuited lossless

transmission line

V=jZtanpl I

l=–j Ycot@V

A.Z

Al

AT

Al

Open-circuited lossless

transmission line

V=–jZ cot&I

I =jP”tan (311’

A.Z

Al

A Y

Al

V=–jz
[

cot /31 Csc i31

1
I

Csc @ cot @
Lossless transmission line AZ
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TABLE II (Cont.)

Sensitivity Increment

Element Equation (component of G) (component of A+)

Al

Lossless transmission line

01,.—_!_ IT
[1

v
sin @ 1 0

Al

Rectangular wa~eguide operating

in II1o mode

as for Iossless transmission line with

Z = hi,, D replaced by& = 2rr/Ag,

where h~ = h/v’l — (X/2a) t

Aa

Ab

Al
&——

sin (3Ql

VTO1
[110’

[-

1

9
—

sinh 6’

[--- 1
e

l—
+ Vr sinh o

— f
e

1
sinh e

&VTUniform RC line as for uniformly distributed line with
——

z=
/’

——.
~~: and @= 4sRC

AR

AC

Adouniform coaxial line as for lossless transmission line with

1 z,
z=— - in ~ and L?= P04;

27r <E, ,

Adi

( Boa. & vTf+
sin 130dGl “[: w

—csch O PI,

1[ 1
–G[V,Bv,,] [_::;: .oth@ ;::

[
coth o — csch o

—C[rzp Y2*] _csch ~
coth 81[ 1r72q[

c coth e – C csch 0
I=c

1
v

– c csch e C coth O
Coupled lines

I(1) capacitance matrix description
where

c ~ CO1 + C12

-[

– C12

– cl, C02 + C12 1 [
1’ coth o —1’ csch @ -

—CVT
1

v
–1’ csch @ 1’ coth o

_ ;:h__ IF 01
[1

b
10

(see text for definitions of 1’, 1, and O)

AcIz

AO
(see text and Fig. 11)

[
Y.lf cot /31 - Y,w Csc /31

1=–j
– YM Csc f31 Yjf cot@ 1

Coupled lines

(2) even- and odd-mode description

for symmetrical arrangement

A Y.

where

and l~here Y, and Yo are the even-

and odd-mode admittances
_!_ IT

01
—

[1
&

sin (3 1 0
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respectively, of the line. Here,

o = JW;l (31)

where (30 is the free-space phase constant. Thus

ancl

Expression (23) for the coaxial line becomes

(33)

( /30<;1 o 1
— & vT~ + VT

2e, [ 1)
i. (34)

sin flodZ 1 10

Finally, consider the admittance matrix formulas of

Table I applied to the pair of coupled lines above a

ground plane [13 ], [14] shown in Fig. 11. The admit-

tance matrix description is

[1
Ilp

12p

[

C coth 0 – C csch 0
=C

II, – C csch 6 C coth 01

IZ,

where subscript P denotes the two ports formed between

each conductor and the ground plane at one end and q

the corresponding ports at the other end; subscript 1

refers to one conductor and 2 to the other. The matrix

C is given by

[

cl), + cl, – CM
c!&

– C12 C02 + cl? 1 (36)

the elements of which are defined in Fig. 11. Treating

CU, COZ,CIZ, and O as variables we have -

_ vT~yT~

—csch O P,,
_—

1[ 1
AcolC[L’IP~IQ][_:::: : coth 0 ~1,

coth 0 — csch e P2P
— 1[ 1ACOYG[V22 ‘2~1 [_ Csch o coth e 72,

[

1’ coth 0 – 1’ csch O
— CVT

1
~ACN

–1’ csch 0 1’ coth 0

c

[

– C csch 0 C coth 0
.— VT 1fiAe

sinh.9 C coth 0 – C csch O
(37)

where

Fig. 11. Coupled lines above a ground plane with
static capacitances per unit length.

=-: ‘1
The last term may be rewritten as

1 [1ol -
._IT VAO

sinh 0 1 0

where

00
o&

[100

and

10
lQ [101”

(38)

(39)

(40)

(41)

These results are summarized in Table II, along with

expressions based on the approach using even- and

odd-mode characteristic ad Inittances.

V. GRADIENT COMPUTATIONS

There are a number of ways in which the adjoint net-

work method can be used effectively in gradient compu-

tations.

Consider Figs. 12 and 13. Fig. 12 (a) depicts the situa-

tion when insertion 10SS or gain is to be optimized. Here

we are interested at some frequency in the partial de-

rivatives of IL with respect to the parameters and hence

Vl~. Fig, 13(a) is appropriate for design on the reflec-

tion coefficient basis. In this case we are interested at

some frequency in VI~. Suppose the adj oint networks

are excited as shown in Figs. 12(b) and 13(b). Then, for

Fig. 12, (20) can be reduced to

AIL~L = GTA+. (42)

Dividing by ~L we have

AIL = VILTAC$ = [1; G’ A+

from which

For Fig. 13, (2o) can be reduced to

AI,tia = GTA+.

(43)

(44)
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Fig. 12. Special case of Fig. 7 for insertion loss design.
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Fig. 13. Special case of Fig. 7 for reflection coefficient design.

Noting that (44) has the same form as (42) we get

1
vIg = ~ G. (45)

9

Observe that VIL in (43) and VI. in (45) are

evaluated from the currents and voltages present in the

unperturbed original and adjoint networks. At most,

two network analyses using any suitable method will,

therefore, yield the information required for the evalua-

tion. Of course, if desired, analytic expressions for the

partial derivatives could also be found by this ap-

proach. 8 It is interesting to note that for design of re-

ciprocal networks on the reflection coefficient basis we

are at liberty to set PO= Vu and use the results of just

one analysis at each frequency.

To relate VI~ or VIg to the gradient vector of suit-

able least flth or minimax objective functions [2 ]– [A ],

[6], [15 ]- [18] is a straightforward process [12]. In

anticipation of the numerical example (Section V1), we

will first consider discrete least ~th approximation

using the reflection coefficient. Let

3 It is debatable, however, whether any computational advantage
would, in general, be gained by deriving analytic expressions.

where p is the reflection coefficient between RQ and the

one-port network, fda is a Set of discrete frequencies @d,

and fi is any positive integer. Suppose it is required to

minimize U. In this case we are trying to approximate

zero reflection coefficient in a least ~th sense. For large

9 we would expect a nearly equal-ripple response to cor-

respond to the minimum of U [2].

Zin(jOJ,J – R. 2RQ
P(j%) = =l– ——–

Z~n(ja~) + R, Zin(j;J + R,

2RJo(joJd)
=1+ (47)

vg(j%~

so that

If, instead of minimizing (46), the problem is to mini-

mize a nonnegative independent variable U, subject to

u > g(w) = * [ /J(j6Jd)/‘, CJJd<: & (49)

then we have minimax approximation [2], for which

{

2R,
vg(OJd) = Re

)
‘— /J*(j-dd)v~Q(j@d) . (50)
v,(jk)

Finally, let us address ourselves to the approximation

problem considered by Director and Roh rer [8], gener-

alizing it to least P [19 ], [20]. Equation (2o) is readily re-

arranged to give

(51)
i=1 t=n~+l

since, neglecting higher order terms,

AIi = vIiTA+

AVi = VV~TA+.

Given, for example, the objective function

where

ei(+,ju) A wi(cJ)(~i(s),jcLI)—St(b)) (53)

where

{

1,(+, jti) ‘i = 1,2, . . . ,’W
Ft(+J,jOJ) Q (54)

v~(+,j~) i = ftv+ 1, . “ “ ,tiv+$zI

and Q defines the frequency range of interest. Here,

S@) is a desired complex Port response with w~(u) a
nonnegative real weighting function. In this case
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Kj(u) b +-4 + +<m -+ R,(u)
~-----~

z, z~ Zm

—-----~

(a)

~~

$z!E!!I?z:*

(b)

Fig. 14. Cascaded transmission lines terminated in
frequency variable resistances.

By comparing (51), (54), and (55) it is seen that by ar-

ranging for the adj oint network voltage and current

excitations to be given by

I ei(+,j~) lp-2wi(~)e,*(@,jti)

-{

Pi(jw) i=l,2, . . ..tzv
— (56)

– fi(ja) i=nv+l, . . ..nv+n~

we obtain

VU =fQRe [G) ,U (57)

If there is no excitation at a particular port the ap-

propriate source is obviously set to zero. If the response

at a particular port is not to be controlled the cor-

responding adj oint excitation should be zero. Elements

or parameters not to be varied during optimization do

not, of course, contribute to + or G.

VI. EXAMPLE

Carlin and Gupta [21] recently considered the opti-

mal design of filters with lumped–distributed elements

or frequency-variable terminations. Although any of

their design examples are amenable to computer-

oriented optimization techniques, let us discuss the

design of the symmetrical seven-section cascaded trans-

mission-line filter shown in Fig. 14(a).

The terminating impedances are real but frequency

dependent, specifically

R,(w) = R.(co) = 377/all – (f./’)’

where j is the frequency in GHz and

f. = 2.077 GHz.

Thus, the terminating impedances can be thought of as

rectangular waveguides operating in the Hlo mode with

cutoff frequency 2.077 GHz. Carlin and Gupta required

a passband insertion loss of less than 0.4 dB over 2.16

to 3 GHz and an edge to the useful band of 5 GHz.

They constrained all section lengths to be 1.5 cm so

that each section would be quarter wave at 5 GHz and

causing the maximum insertion loss to occur at that

frequency. The response of their design is shown in Figs.

r
30
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Fig. 15. The response of the seven-section filter whose configuration
is shown in Fig. 14. The authors’ response was optimized for min-
imum passband insertion 10SS.
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Fig. 16. Details of the passband insertion 10SS
of the seven-section filter.

15 and 16 and the values of characteristic impedance

in Table III.

A question of interest to the present authors is this:

how small can the passband insertion loss be made

under the constraints of the problem? (Note that the

question is trivial if the terminating impedances were

frequency independent or if the section lengths were

freely variable.)

The least @th objective function of (46) was set up

using 51 uniformly spaced points over the range 2.16

to 3 GHz and with @ = 10. Optimization was carried

out by the Fletcher–Powell method [22 ], the required

derivatives being evaluated from the results of one

analysis of the network of Fig. 14(b). To apply the ad-

joint network method a simple A B CD matrix analysis

algorithm employing the approach indicated in Fig.

14(b) was written. instead of fixing ~., it was found

more convenient to assume that lL = 1 and to calculate

the required currents and voltages including ~,. The

appropriate formulas from Table II were used (not

forgetting to reverse the currents at the j unctions when

necessary). The design parameter values of Carlin and

Gupta were used as starting values.
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TABLE III

COMPARISON OF PARAMETER VALUES FOR THE SEVEN-SECTION FILTER

Characteristic
Impedances Carlin and
(normalized)

Bandler and
Gupta [21] Seviora

z, 1476.5 1469.5
z, 733.6 763.2
z, 1963.6 1945.1
z, 461.8 558.7
z, 1963.6 1945.1
Zf, 733.6 763.2
Z7 1476.5 1469.5

The resulting response is plotted in Figs. 15 and 16

and the final parameter values are given in Table II 1.

Observe the almost equal-ripple behavior of the response

with a maximum insertion loss over the passband of

about 0.1 dB. It would appear then that under the de-

sign constraints imposed by Carlin and Gupta, a much

lower maximum passband insertion loss is probably not

achievable. This was verified more recently by apply-

ing a minimax approximation algorithm to the same

problem. A substantially equal-ripple response was ob-

tained with a maximum insertion loss of 0.086 dB. (The

algorithm uses the general philosophy behind the razor

search method [4] but relies on gradient information

generated by the adjoint network method.)

The reader should note that our design is not optimal

in the filtering sense required by Carlin and Gupta; to

achieve this one would want to maximize the stopband

insertion loss subject to a passband insertion loss less

than or equal to 0.4 dB. Allowing the section lengths to

vary might also improve the response somewhat.

VII. DISCUSSION

A nonexistent lumped element may be thought of as

an appropriate zero-valued element connected between

two nodes. Since the gradients depend only on voltages

between nodes and currents through branches, they

may be evaluated with respect to such nonexistent

elements. If an increase in element value is indicated,

the element can be grown from a short circuit or open

circuit, as appropriate. Thus, changes in topology can

be accommodated by this means. The adj oint network

method does not seem, however, to provide any clear

advantage over other methods as an aid to choosing the

best topology except possibly in computation time. A

direct search method, for example, can also investigate

changes with respect to zero-valued elements.

As the authors have found [12], it is not, in general,

obvious what kind of element should be grown, whether

lumped or distributed, when distributed elements are

also allowed. A knowledge only of the currents and

voltages is not really sufficient. Furthermore, a variety

of physical, economic, and other practical constraints

on circuit configuration will also affect the choice. How

would one decide, for example, whether a short-circuited

transmission line should be grown rather than a lumped

inductor?

Many circuit designers claim to have lhad success in

computer-aided network design using direct search

methods, so why should they adopt a gradient method?

Well, if it is steepest descent they are thinking of, they

are better off using the direct search methods. The

Fletcher–Powell method [22 ], on the other hand, is, at

the time of writing, still most widely acknowledged as

the most powerful unconstrained minimization method

available. Factors affecting the choice of’ an optimiza-

tion method undoubtedly include familiarity with a

particular program, the presence of constraints, the

type of approximation required (whether least @th or

minimax), the number of variables, and the available

computation system [23 ]. As far as approximation

methods are concerned, algorithms which should bene-

fit considerably from the adjoint network method of

evaluating derivatives are the minimax approximation

methods of Lasdon and Waren [6], [15], Ishizaki and

Watanabe [16 ], Osborne and Watson [24], and the

least @th approximation method of Temes and Zai

[17], [18].

Extensions of the ad joint network method to second-

order network sensitivities have been presented [25 ]–

[27 ]. The results may be used with those optimization

methods, such as the Newton method [2], which re-

quire second derivatives. However, since gradient

methods involving only first derivatives are generally

considered superior, it seems unlikely that widespread

application of these results will be seen in the very near

future.

VII I. CONCLUSIONS

The ease of implementation of the adlj oint network

method of evaluating partial derivatives and the im-

mediate savings in computation time for the computer-

aided design of circuits make it very attractive. A great

deal of the uncertainty and inefficiency inherent in the

numerical estimation of partial derivatives can be

eliminated.

It is believed that this approach will find very wide

application. Another very recent report in this area

and of interest to microwave engineers is available

[28 ]. There seems little doubt, from the circuit de-

signer’s point of view at any rate, that the introduction

of the ad joint network method by Director and Rohrer

is a turning point in computer-aided design.
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Ferrite Microstrip Phase Shifters with Transverse and

Longitudinal Magnetization

Afrstract-Phase shtits of opposing sign are produced in a finear

section of microstrip by transverse and longitudinal magnetization of
the ferrite substrate. Nonreciprocal phase shift is also produced by

the transverse magnetization. Theoretical calculations of phase shift
that account for both the diamagnetic effects and the tensor prop-
erties of the ferrite permeab~lty agree well with properly con-

structed experimental measurements. These measurements use
closed magnetic circuits to remove the nonuniform demagnetization
effects.

A lightweight reciprocal phase shifter has been constructed that

utilizes both transverse and longitudinal magnetization at low drive
power with closed magnetic circuits to obtain a high figure of merit.

INTRODUCTION

Experimentally observed properties of ferrite microstrip phase

shifters have been described in a number of published papers [1], [2].

Approximate theoretical analyses have also been presented that give

a partial explanation of some of the properties observed. Refinements

Manuscript received April 13, 1970; revised July 17, 1970. This PaPer was
presented at the 1970 International Microwave Symposium, Newport Beach, CaUf.,
May 11-14.

in both the theories presented and the experimental measurements

performed are required before reasonable correlation can be obtained

between them. Some of these refinements are described in this corre-

spondence. The discussion is limited to ferrite phase shifters that are

composed of linear sections of microstrip. The closely coupled

meander-line configurations are not considered.

LONGITUDIWJ, AND TRANSVERSE MAGNETIZATION

Previous investigations have been concentrated on the effects of

longitudinal magnetization (parallel to the microstrip) on the phase-

shifting properties of linear sections of microstrip. The effect of a

transverse magnetization in the plane of the substrate on the phase

velocity of the propagating fields has been assumed to be nil. As

shown by a comparison of Figs. 1 and 2, the application of an external

transverse magnetic field to the ferrite substrate generates a phase

shift of roughly the same size as that introduced by longitudinal fields.

The phase shift induced by transverse magnetization has both a

reciprocal and a nonreciprocal component. The composite phase shift

induced by transverse magnetization is in the direction opposite to

the phase shift generated by the longitudinal magnetization. Some

nonreciprocal phase shift has been previously reported [3] for widely

spaced meander lines, but the effect was attributed to coupling be-

tween the lines. The presence of the nonreciprocal phase shift in a

single linear section of microstrip is evidence of the fact that the


