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Electromagnetic Optimization
Exploiting Aggressive Space Mapping
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Abstract—We propose a significantly improved space mapping
(SM) strategy for electromagnetic (EM) optimization. Instead
of waiting for upfront EM analyses at several base points, our
new approach aggressively exploits every available EM analy-
sis, producing dramatic results right from the first step. We
establish a relationship between the novel SM optimization and
the quasi-Newton iteration for solving a system of nonlinear
equations. Approximations to the matrix of first-order derivatives
are updated by the classic Broyden formula. A high-temperature
superconducting microstrip filter design solution emerges after
only six EM simulations with sparse frequency sweeps. Further-
more, less CPU effort is required to optimize the filter than is
required by one single detailed frequency sweep. We also extend
the SM concept to the parameter extraction phase, overcoming
severely misaligned responses induced by inadequate empirical
models. This novel concept should have a significant impact on
parameter extraction of devices.

I. INTRODUCTION

N OUR RECENT pioneering work [1]-[4], we introduced

the concept of space mapping (SM) optimization. The
method combines the computational efficiency of empirical
engineering circuit models, accumulated and developed over
many years, with the acclaimed accuracy of electromagnetic
(EM) simulators. This facilitates a highly efficient approach to
attacking the demanding EM design process.

In our original formulation of the SM algorithm, an upfront
effort was needed in the EM space simply to establish full-
rank conditions leading to the initial mapping between the
optimization and EM spaces. Since such initial base points
are found by simple perturbation around the starting point in
the EM space, they are unlikely to produce a substantially
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better design than the starting point itself. Hence, that ap-
proach represents a time-consuming and possibly unproductive
effort.

In this paper, we present a significantly improved approach
to SM. The method employs a quasi-Newton iteration in
conjunction with first-order derivative approximations updated
by the classic Broyden formula [5]. From an initial estimate of
the EM solution, obtained by an empirical model optimization,
we target each costly EM analysis directly at achieving the
best EM design. The results are then immediately utilized to
improve the approximation. Using this approach, we expect
to obtain a progressively improved design after each iteration.
This procedure is based on an elegant theoretical formulation
and a simple implementation strategy.

One of the key steps in SM is the model parameter identi-
fication phase. The SM technique relies on determining pairs
of corresponding EM and empirical model points obtained by
parameter extraction optimization. Accordingly, we review the
appropriate theory and techniques used in traditional parameter
extraction. In addition, we describe algorithms based on the
idea of frequency space mapping (FSM) [6]. They offer a
powerful means of overcoming the problems caused by local
minima and model misalignment.

Our new theory and techniques are lllustrated through
the design of a low-loss narrow-bandwidth high-temperature
superconducting (HTS) microstrip filter [3], [4], [6]. We utilize
the user-friendly OSA90/hope optimization system with the
Empipe interface [7] to the Sonnet em field simulator [8].

In - Section II, we review the original SM technique. In
Section III, we introduce the theory and implementation of
our new aggressive SM approach. Section IV reviews tradi-
tional parameter extraction optimization and our new FSM
algorithms. Sections V-VIII'illustrate the design of the HTS
microstrip filter. Finally, Section IX contains our conclusion.

II. OVERVIEW OF THE ORIGINAL SPACE MAPPING METHOD

Let the behavior of a system be described by models in
two spaces: the optimization space, denoted by X, and the
EM (or validation) space, denoted by Xen,. We represent the
designable model parameters in these spaces by the vectors X5
and Xem, respectively. We assume that Xs and X, have the
same dimensionality, i.e., X,s € R™ and x., € IR™, but may
not represent the same parameters. '

The Xs-space model can be comprised of empirical mod-
els, or an efficient coarse-grid EM model. Typically, the
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X em-space model is a fine-grid EM model but, ultimately, can
represent actual hardware prototypes if time and resources per-
mit. We assume that the Xs-space model responses, denoted
by Ros(Xos), are much faster to calculate but less accurate
than the X.x-space model responses, denoted by Rem(Xem)-
' In SM optimization, we wish to find a mapping, P, from
the Xom-space to the X ¢-space,

(1)

Xos = P(xem)
such that

Ros(P(xem)) R~ Rem(xem)' 2)
We assume that such a mapping exists and is one-to-one within
some local modeling region encompassing our SM solution.
We also assume that, based on (2), for a given X, its image
Xos in (1) can be found by a suitable parameter extraction
procedure, and that this process is unigue.

We initially perform optimization entirely in X5 to obtain
the optimal design x.,, for instance in the minimax sense, and
subsequently use SM to find the mapped solution Xem in Xem
as

~H(x,)

once the mapping (1) is established. We designate X.r, as the
SM solution instead of x%,, since the mapped solution may
only be an approximation to the true optimum in Xepy.

The mapping is established through an iterative process. In
our original work [1-4], we obtained the initial approximation
of the mapping, P, by performing EM analyses at a prese-
lected set of, at least, m base points in X, around the starting
point, where m is the number of fundamental functions [1].
As the first base point we may select the starting point, i.e.,

A

Xem = P

@

x50 = Xoo,

assuming Xem and X represent the same physical parameters,

and the remaining m — 1 base points are chosen by perturbation
as

x@ =xQ+axi;Y, i=23,...m ©)

This is followed by parameter extraction optimization in Xs

to obtain the set of corresponding base points xgs) according to

— Rem (x| ©)

mini(n)ﬁze | Ros (x£2)

08

fori=1,2,...,m, where || - || indicates a suitable norm. The
additional m — 1 points apart from x$3) are required merely to
establish full-rank conditions leading to our first approximation
to the mapping. Hence, these EM analyses represent an upfront
effort before any significant improvement over the starting
point can be expected. With the high cost associated with each
EM analysis, the additional m — 1 simulations represent an
inefficient component of the algorithm.

2875

At the jth iteration, both sets may be expanded to contain,
in general, m; points which are used to establish the updated
mapping P, Since the analytical form of P is not available,
we use the current approximation PU) to estimate Xqp, in (3),
ie.,

xgﬁfﬂ) — P(j)nl(xzs). )
The process continues iteratively until the termination condi-
tion :

“Ros(xzs) - Rem (ngﬁl)) “ S € (8)
is §atisﬁed, where € is a small positive constant. If so,
PO is our desired P. If not, the set of base points in

(m;+1) : (m;+1)
Xem is augmented by Xem and, correspondingly, Xos
determined by (6) augments the set of base pomts in Xgs.
Upon termination, we set Xem = <t = p)” (xos) as
the SM solution.

III. AGGRESSIVE APPROACH TO SPACE MAPPING -

A. Theory

Consider an impoﬁant property of (8). When approach-
ing the SM solution, the Xcp-space model response
Rem(x(m3+1)) will closely match the optimal X,,-space
model response R,s(x}), within some tolerance e. Hence,
after performing an additional parameter extraction opti-

(m;+1) (m]+1)
mization in X, the resulting point Xgs = P(xe )
approaches the point x;;. Stated more precisely, as j — M,

i+1
ngS"J"’ ) *

— Xgg» OF

ngs”f“) — x:SH <nasj— M 9
where 7 is a small positive constant and M is the number of
iterations needed to converge to an SM solution.

Based on this observation, we can now introduce our new
aggressive approach. As in (1), we assume that the vector of
X s-space model parameters is a nonlinear vector function, P,
of the Xem-space model parameters. We define our goal by
setting 77 to 0 in (9). Hence, we consider the set of n nonlinear
equations of the form

f(Xem) =0 10
where
£(Xem) = P(Xem) — Xl (1)
and x*, is a given vector (optimal solution in Xos).

Let xgm be the jth })prox1mat1on to the solution of (10)
and £ written for f xem) The next iterate x5 is found
by a quasi-Newton iteration

xUHD = x0) + b9 12)
where h(?) solves the linear system
- BWOKh® = _f®, (13)
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B() js an approximation to the Jacobian matrix

e T (Xem) 1"
J(x)) = | 22 tem/ 14
) = [P (4
and is established based on results from all previous iterations.
In our implementation, B() is set to the identity matrix. The
approximation to the Jacobian matrix is updated by the classic

Broyden formula [5]
xth + b)) — £(xi) - BOWD r
hGTh@
(15)

Incorporating (13) into (15) gives a simp]iﬁéd updating for-
mula

BU+) — g 4 L

) L fGFDRG)T
G+ gy L2~
BV =BVt 5 5mho (16)
where £U+1) is obtained by evaluating (11) af x5 > using

the parameter extraction optimization described in (6).

This new approach is significantly more efficient than
our original SM. algorithm. The reason for this is that each
point xgﬂ' D s generated not merely as a base point for
establishing the mapping, but also as a step toward the SM
solution, which corresponds to solving the nonlinear system
of Eq. (10). Using the new method, we avert from performing
time-consuming and possibly unproductive EM analyses at
perturbations around the starting point (4). Instead, we begin
with a straightforward initial estimate and attempt to improve
the EM design in a systematic manner.

B. Implementation

We now present a straightforward implementation of our
new aggressive SM algorithm. First, begin with a point,
x’gséarg min{H (x.s)}, representing the optimal design in
Xos, where H(Xos) is some appropriate objective function.

Then, our algorithm proceeds as follows
&)

Step 0. Initialize x& = x%,, BV =1,

| £ = P(x()) — x5, j = 1.
Stop if [[f1)]| < .

Step 1. Solve BWh() = —£(0) for h(9.

Step 2. Set xZHY = x{) + h),

Step 3. Evaluate P(xgjn;L 1)).

Step 4. Compute fU+1) = P(xUF) — x*..
If [|[FUH+D ]| < 7, stop.

Step 5. Update BUY) to BU+D,

Step 6. Setj =37+ 1; goto Step 1.

C. Comments

In Steps 0 and 3, P(Xen) is obtained by parameter extrac-
tion as described in (6). In Step 2, xglf 2 may be snapped
to the closest grid point if the EM simulator uses a fixed-grid
meshing scheme. If this is the case, Step 5 should employ (15)
as the updating formula. The impact of a fixed grid on SM will

be investigated in further studies.
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IV. MODEL PARAMETER IDENTIFICATION

A. Review of Traditional Parameter Extraction

One of the key steps of SM involves parameter extraction
optimization in order to match responses. For each point Xem
we need to find a corresponding point Xos. Assuming that our
response of interest is a function of frequency, define the vector

Rem(Xom) 2 [Rom, (¥em)  Remy (Xem) -+~ Remy (Xern)]
' 17
where
Rem, (Xem) 2 Rem(Xem, wi),  i=1,2,...,k  (18)
represents the X,-space model response simulated at & fre-
quency points w;. For notational brevity, we use Rem (Xem, wi)
to denote a generic response function. In practice, a number of
different response functions (such as the scattering parameters
[S11| and |S21]) may be simultaneously involved in parameter
extraction. Also, define the vector

Ros (xos) é [Rosl (Xos) Rosz (Xos) o Ros;C (Xos)] r (19)
where
'ROSi (XOS) = Ros(xos, wi), 1=1,2,... ,bk 20)

represents the X s-space model response.
The extraction problem can be formulated by minimizing a
scalar objective function -

minimize H(Xs)
Xos

@n

where H is typically formulated as an £, norm of the vector
of error functions [9]

T
e(Xos) é [el(xos) eQ(Xos) el ek(xos)] (22)
where the individual errors are defined as
A )
ei(xos)zwi [Ros,- (Xos) - Remi (Xem)], 1=1,2,...,k
(23)

and w; are some nonnegative weighting factors. Note, in our
parameter extraction formulation, the vector xey and hence
Rem(Xem) are fixed while the elements in x4 are optimized.

One of our choices for the objective function is the novel
Huber norm [10], [11]

k
H(xos) = ¥ pr(€i(os)) (24)
=1
where
N A e?/2 if le;] < k
prle:) = {k|ei| k22 if e > k (25)
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which is robust against large errors and flexible w.r.t. small
variations in the data.

As noted earlier, parameter extraction is an important step in
SM. This can be a serious challenge, especially at the starting
point if the Xs-space model and X.,,-space model responses
are severely misaligned. By performing a straightforward
data-fitting optimization from such a starting point using the
traditional approach, the process may be trapped by local
minima [6]. To address this issue, we explore significant
enhancements to traditional parameter extraction.

B. A New Approach: Frequency Space Mapping (FSM, )

At a given point, typically we will observe a general
similarity between the responses Ros and R.n even if they
are severely misaligned. With this in mind, the parameter
extraction problem can be better conditioned if we align the
responses along the frequency axis first. Specifically, Rem is
kept fixed while we adjust R, in some appropriate manner.
This is accomplished by employing a reference angular fre-
quency w = wem and a transformed angular frequency wos
related by

Wos = P(w). (26)
For our purposes, a suitable mapping can be as simple as
frequency shift and scaling given by

Wos = OW + 6 27)
where o represents a scaling factor and § an offset.

This brings us to Phase I of our FSM approach. Here, we
need to determine o, and §,, which effectively aligns R and
R in the frequency domain. This is done by holding both
model parameters Xos and Xey, constant and optimizing only
the parameters o, and 6,. This is described by the following
optimization:

minimize ||Ros(Xos, 0o, 65) — Rem(Xem)||  (28)

To; %0

where || - || is typically the {3, £; or Huber norm.

Ros(Xos; 0o, 0o) represents the X s-space model response

with (20) replaced by

Ros, (Xos) Tos 60) 2 Ros(Xos, Towi +85), i=1,2,...,k.
(29)

In Phase 2 of our FSM approach, we optimize the Xs-
space model parameters X,s such that R, matches Re, while
again X, remains fixed. In addition, starting from ¢ = o,
and 6§ = 6, we force o and § to obtain the identity mapping
(¢ = 1 and 6§ = 0). We have developed three algorithms
to realize this goal: a sequential FSM algorithm (SFSM) and
two exact-penalty function algorithms (EPF), of which one is
based on the ¢; norm objective while the other is suitable for
minimax optimization.

In the SFSM algorithm, we perform a sequence of optimiza-
tions in which the frequency mapping is gradually reduced
to the identity mapping while x,s is optimized at each step.
Hence, at the jth iteration of the SFSM algorithm we set both
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o) and §U) and then optimize x) such that Ro. matches
R..,. This can be written as

mini(r})lize [Ros(x$2), o), 69 - Rem(Xem) ||

j=0,1,...,K (30)

where

(K —3)

@) =1 —
o + (0, —1) 7

(3D
and

6 =5 E—J)
6V =4, 7 32)
K is set to some integer and determines the number of steps
in the sequence. After the full sequence of optimizations,
%9 is the solution to the parameter extraction problem since
&) = 1 and §5) = 0. It should be clear that for larger values
of K we increase the probability of success in the parameter
extraction problem at the expense of longer optimization time.

In the EPF algorithms, we need to perform only one
optimization. "The ¢; norm version of the EPF formulation
is given by

minimize

Xos,0,8

{ ROS(XOS7 a, 5) - Rem(xem)Hl + O‘IIU - 1] + a2|5|}
(33)

where a1 and ap are suitably large positive weighting factors.
In the minimax version of the EPF formulation [12], we have

minimize{lrgaa[U(xos, o, 8), U(Xos, 0, ) —aigs]} (34)

Xos30)y
where

U(Xosy 7, 6) = ||Ros(Xos; 0, 0) — Rem(Xem)||, (35)
oc~1
1—-0

g(cr, 5) = §
-6

(36)

and o; > 0 for ¢ = 1,2,3,4. For both EPF formulations, the
values of a; are kept fixed and must be sufficiently large to
obtain the identity mapping in (27) and hence the solution to
the parameter extraction problem.

While the frequency transformation concept is familiar to
microwave engineers, particularly filter designers, here it is
defined in a novel way. Our FSM is established through an
iterative process and facilitates automated compensation for
inadequate modeling. This significantly improves robustness
of the parameter extraction phase of the overall SM technique
as needed in (6).

V. THE HTS FILTER

We consider the design of a four-pole quarter-wave par-
allel coupled-line microstrip filter, as illustrated in Fig. 1
[3], [41, [6]. L1, Ls, and L3 are the lengths of the parallel
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Lo Ly Ly

Sa

S2

Fig. 1. The structure of the HTS filter [3], [4], [6].

TABLE I
MATERIAL AND PHYSICAL PARAMETERS FOR THE OSA90/hope AND ern MODELS
OSAS0/hope em
Model Model Model
Parameter Parameter Parameter
Value Value
substrate dielectric constant 23.425 23.425
substrate thickness (mil) 19.9516 19.9516

shielding cover height (mil) ) 250
conducting metal thickness (mil) 1.9685E-2 0
substrate dielectric loss tangent 3.0E-5 3.0E-5
resistivity of metal ({im) 0 4.032E-8
surface roughness of metal (mil) 0 -
magnetic loss tangent - 0
surface reactance (03/sq) - 0
x-grid cell size (mil) - 1
y-grid cell size (mil) - 1.75

coupled-line sections and 51, So, and .S3 are the gaps between
the sections. The width W = 7 mil is the same for all the
sections as well as for the input and output microstrip lines.
The input and output line lengths are Ly = 50 mil. The
thickness of the lanthanum aluminate substrate used is 20 mil
and the dielectric constant is assumed to be 23.425. The design
specifications imposed on |Sa2;| are as follows

|S21| < 0.05
IS’ZlI >0.95

in the stopband
in the passband

where the stopband includes frequencies below 3.967 GHz
and above 4.099 GHz and the passband lies in the frequency
range [4.008 GHz, 4.058 GHz]. This corresponds to a 1.25%
bandwidth. Ly, Ly, L3, S1, S2, and S5 are considered as design
parameters. Lo and W are kept fixed.

We employ both analytical/empirical models available in
OSA90/hope and a fine-grid Sonnet emn model. The - HTS filter
empirical model is assembled from fundamental components
such as microstrip lines, coupled lines, and open stubs. The
OSA90/hope empirical model and Sonnet em model material
and physical parameters are listed in Table 1. They are fixed.
On a Sun SPARCstation 10, approximately 1 CPU hour is
needed by em to simulate the filter at a single frequency for
an on-grid point.

VI. EMPIRICAL MODEL DESIGN OF THE HTS FILTER

We started the design of the HTS filter using the
OSA90/hope empirical model. The minimax solution is listed
. in Table II (i). Fig. 2 shows the |S2;| and |Sj1| responses
after optimization. -

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 12, DECEMBER 1995

Fay
i\
e

1 L
i

[Sa1, {843} (@B)
8
T~

901 3945 3989 4088 4077 4421 4165
froquency (GHz)
(@)
0
VNN
o 1 \
25 I d
8 o I |
5 |
=
-1 '
125 ‘
15
5967 3968 4011 4033 4055 4077 4099
frequency (GHz)

®)

Fig. 2. The OSA90/hope empirical model responses after minimax optimiza-
tion. (a) |S21| (—) and |:S11| (- - -) for the overall band and (b) the passband
details of [S21].

TABLE II
EMPIRICAL MODEL DESIGN OF THE HTS FILTER

Minimax Minimax
P‘“{:“f‘f)‘e’ Solution Solution
)] (ii)
L, 188.33 137.4
L, 197.98 248
Ly 188.58 138.6
S, 21.97 17.35
S, 99.12 120.9
Sy 111.67 75.9

W and L, are kept fixed at 7 mil and 50 mil, respectively.

Next, we investigate the robustness of the empirical model
nominal solution. The same optimization variables, namely
Ly,Ly,L3, 81,5, and S3 as in the nominal minimax design
are selected. Again, Lo and W are kept fixed. We perform
a number of empirical model minimax optimizations, each
starting from a different starting point. We use 50 starting
points randomly spread around the minimax solution with
a 1% deviation. Fig. 3(a) plots the |S21| responses for all
50 starting points. The bar chart in Fig. 3(b) depicts the
Euclidian distances between the reference minimax solution
and the perturbed starting points. Fig. 4 shows the corre-
sponding diagrams after minimax optimizations and clearly
illustrates the existence of multiple minimax solutions for
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Fig. 3. (a)|S21] of the empirical model at 50 random starting points and (b)

the Buclidian distances between the perturbed starting points and the reference
minimax solution.
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Fig. 4. (a) |S21] of the empirical model at the 50 optimized solutions and

(b) the Euclidian distances between the optimized solutions and the reference
minimax solution.

the HTS filter. Table I (i) lists another minimax solu-
tion. The responses of the two solutions are nearly identical

2879

[S21 (dB)

4185
0 T~ ,ﬁ
10 i [
» }
2
=
40
50
60
3901 3945 3989 4033 4077 4121 4165
frequency (GHz)
(b)

Fig. 5. A comparison between (a) |S21] and (b) [S11| using the empirical
model and em at the two minimax solutions.
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Fig. 6. Re{S11} simulated using the empirical model ( ) and em (- - -)
at the starting point before parameter extraction optimization.

despite the large numerical deviation in the parameter val-
ues.

We perform EM analyses at the two minimax solutions.
The em results differ significantly from the empirical model
responses, as shown in Fig. 5. However, the two em analyses
exhibit strong similarity. Our aim then, is to use SM to
find a solution in the EM space which will substantially

reproduce the optimal performance predicted by the empirical
model.

VII. ILLUSTRATION OF FSM

A critical step in SM is parameter extraction optimization to
match the empirical model response to the EM model response.
At the starting point, the empirical and EM model responses
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Fig. 8. Visualization of the £1 norm versus two of the model parameters
Ly and L3; superimposed is the trace of the straightforward £; optimization.
The optimization converged to a local minimum instead of the true solution
represented by the valley near the front of the graph.
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Fig. 9. Re{S11} simulated using the empirical model (——) and em (- - -)
after Phase 1 of the FSM algorithm.

may be severely misaligned, as shown in Fig. 6. By performing
a straightforward #; optimization from such a starting point,
the extraction process can be trapped by a local minimum, as
illustrated in Figs. 7 and 8.

We apply our new FSM approach to overcome the difficul-
ties imposed by local minima. First, Phase 1 aligns R and
Ren along the frequency axis by optimizing the frequency
shift and scaling parameters while holding x.s and X, fixed,
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Fig. 10. Re{S11} simulated using the empirical model (——) and em
(- - -) after Phase 2 of the FSM algorithm.
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Fig. 11. The em simulated |S21 | response of the HTS filter at the solution
obtained using the aggressive SM approach (——). The OSA90/hope empir-
ical model solution (- - -) is shown for comparison. Responses are shown for
(a) the overall band and (b) the passband in more detail.

with Xos = Xem. The result is shown in Fig. 9. Next, we
perform Phase 2 employing the SESM algorithm with K = 5
to obtain both the identity mapping and the optimal values of
Xos. Fig. 10 depicts the resulting match.

VII. AGGRESSIVE SM OPTIMIZATION OF THE HTS FILTER

We perform SM optimization applying our new aggressive
SM algorithm with the Broyden update starting from the .
empirical model minimax solution listed in Table II (i). The
SM solution is listed in Table III. This SM result was obtained
using only 15 frequency points per EM frequency sweep. The
solution emerges after only 6 EM analyses (frequency sweeps).
Fig. 11 compares the filter responses of the empirical model
optimal design and the em simulated SM solution.
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TABLE I
RESULTS OF SM OPTIMIZATION

Parameter

(mil) SM Solution
L, 181
L, 201
Ly 180
8, 19.25
S, 80.5
S 84
Number of
EM Analyses 6

All parameter values are rounded to
the nearest grid-point. W and L, are
kept fixed at 7mil and 50 mil,
respectively.

IX. CONCLUSION

We have proposed a new automated space mapping ap-
proach incorporating the classic Broyden updating formula to
aggressively exploit every electromagnetic analysis. We have
described and applied our new approach to the electromag-
netic design of a high-temperature superconducting microstrip
filter. In addition, we have analyzed the robustness of the
empirical model nominal solution for this filter indicating the
existence of multiple minimax solutions. We have pioneered
the application of the space mapping concept to the parameter
extraction phase by developing new frequency space mapping
algorithms in order to overcome poor starting points induced
by inadequate empirical models. The application of frequency
space mapping significantly improves the robustness of the
parameter extraction process which is a key step in space
mapping optimizatjon.
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