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Correspondence 

Computation of Sensitivities for Noncommensurate 
Networks 

Abstract-The adjoint network approach to automated network 

design as presented by Director and Rohrer is extended for use in 

gradient calculations for noncommensurate networks. The networks 

can contain distributed elements such as uniform transmission lines 

and RC lines. An example investigates gradient computations for a 

, noncommensurate microwave network having 13variable parameters. 

In recent contributions [1 1, [2] Director and Rohrer discussed the con- 
cept of the adjoint network and its relevance to automated design of net- 
works in the frequency and time domains. Employing Tellegen’s theorem 
[3] they demonstrated how the gradient vector for a least-squares type of 
response objective function with respect to all existing (and nonexisting, if 
desired) elements could be evaluated from only two complete analyses, one 
of the given network and one of its topologically equivalent adjoint net- 
work. In the frequency domain [2] they considered both reciprocal and 
nonreciprocal lumped, linear, and time-invariant elements. ‘More recently 
[4], [5] it was shown how their approach could be implemented for least 
pth and minimax response objective functions [6], [7]. 

The purpose of this correspondence is to show how the adjoint network 
approach may be used to advantage in gradient calculations for a class of 
commensurate and noncommensurate networks in the frequency domain. 
The networks can contain the conventional lumped, linear, and time-in- 
variant elements and distributed parameter elements such as uniform 
transmission lines and RC lines. The results can then be incorporated into 
an automatic optimization algorithm in which such functions as gain, 
insertion loss, reflection coefficient, or any other desired response function 
San be optimized to meet least-pth or minimax performance specifications. 

Given a network for optimization its adjoint has to be found. For net- 
works consisting of lumped elements and commonly used uniformly dis- 
tributed elements falling within the broad class illustrated in Fig. 1, the 
derivation of the adjoint is very straightforward. 

Consider, for example, the uniformly distributed line shown in Fig. l(a). 
Using an equivalent circuit based on the impedance matrix for convenience 
and with the notation of Fig. l(a), 

v = ZI (1) 
where 

(2) 

(3) 

coth 8 csch 6 
cothO ’ .I (4) 

It is readily shown that for the adjoint element 

Y = z=m (5) 

where Y and @ are the adjoint network variables corresponding to V and 
I, respectively. Since ZT =Z for the reciprocal example under considera- 
tion, the adjoint element is, as expected, identical to the original one. 
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Fig. 1. Uniformly distributed elements with convenient representations. (a) Uniform line. 
(b) Short-circuited line. (c) Open-circuited line. 

It may also be shown by invoking Tellegen’s theorem that the expres- 
sion leading to the sensitivity based on the impedance matrix is in general 

ITAz=a-x (6) 

Using (4) and (6) we obtain 

Equation (7) contains the essential information needed to generate the 
partial derivatives of a response function with respect to changes in the 
adjustable parameters in the distributed element. 

Consider a lossless transmission line of length 1 and characteristic im- 
pedance Z. It is readily shown that with e=jbI where (using the usual 
notation) /I = o/c, (7) can be written as 

AZ VT@ BAl 0 1 y - 7 
smBI 

VT [ 1 0 1 @, (8) 

Consider a uniform RC line. Letting R be the total resistance and C 
the total capacitance of the section, 



175 CORRESPONDENCE 

TABLE I 

SENSITIVITY EXPRESSIONS FOR SOME LUMPED AND UNIFORMLY DISTRIBUTED LINE ELEMENTS 

Element 
Equation (for adjoint replace ‘I’ 

for Vand@forI) Sensitivity (component of G) Increment 

V = RI 
Resistor 

I=GV 

Inductor 

Capacitor 

v=&sr 
JW 

I = jwCV 

V = ZtanhOI 

Short-circuited uniformly distributed line 

I = Y coth 0 V 

V = Z coth 0 I 

Open-circuited uniformly distributed line 

I = YtanhOV 

Uniformly distributed line 

coth 0 csch 0 
v=z 1 I csch f3 coth 0 

where s is the complex frequency variable. Here 

AZ+-% 

A,=!&~. 

Equation (7) for a uniform RC line becomes 

- jwVY 

tanh f3 I@ 

Z sech’ i3 I@ 

- coth 0 VY 

Y csch’ 8 VY 

coth 0 IO 

- Z csch’ 8 IQ 

- tanh 0 VY 

- Y sech2 6 

- 1 
~ VT 
sinh 0 

coth 9 - csch 0 
I=Y 

- csch 8 coth 0 1 
V 

1 

ID A0 

AY 

sinh0 
IT [ 0 

Y A@9 
1 1 1 0 

which simplifies somewhat to 

AR 

AG 

AL 

Al- 

AS 

AC 

AZ 

AtI 

AY 

A0 

AZ 

A0 

AY 

A0 

AZ 

g .,-&v=[:, ( :jm)-g(V=*+&f’ 

(11) 

(12) 

0 1 I> m 
1 0 

! sinh I 0 sinh 1 0 0 0 1 ~ sinh 0 1~ 0 sinh 0 1 0 1 @D. (13) 

Tables I and II summarize the sensitivity components of a number of 
commonly used elements. They may all be derived in a manner similar to 
the one just outlined. A number of observations need to be made at this 
point. The sensitivities depend on various values of current and voltage 
associated with the original and adjoint networks and on some element 

values. Although it may be convenient to use impedance or admittance 
matrix equivalent .circuits in deriving the sensitivities, any suitable method 
of network analysis can be used in practice as long as the sign convention 
of Fig. 1 is strictly adhered to. Furthermore, it may be verified that 

V@ G IY (14) 

for the two-terminal elements and 

(16) 

for the two-port elements of Tables I and II, which allows some flexibility 
in the choice of sensitivity expressions. 

Referring to Fig. 2, suppose we have to minimize 

where L is the insertion loss between R, and R,, t is the desired insertion 
loss between R, and R,, R, is a set of discrete frequencies wd, and p is a 
positive integer, that is to say, to approximate a specified insertion loss 
function in a least-pth sense over a set of frequencies in the range of interest. 

IAh) L(o,J = - 2Olog,, __ 
I I 
v (jw,) (47 + m 
9 

(18) 
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TABLE II 

SENSITIVITY EXPRESSIONS FOR SOME SPECIAL CASES OF UNIFORMLY DISTRIBUTED LINE ELEMENTS 

Element 
Equation (for adjoint replace Y 

for VandcDforI) Sensitivity (component of G) Increment 

Short-circuited lossless transmission line 

V=jZtan@1 

I= -jYcot/?lV 

Open-circuited lossless transmission line 

V,= -jZcot/?ll 

I = jY tan /?I V 

Lossless transmission line 

V= -jZ 
[ 

cot p csc p1 

csc /I1 cot /.I1 1 1 

I= -jY 
L 

cot p - csc /?I 

- csc 81 1 cot p 
V 

j tan /?I IQ AZ 

jZp se2 /I1 I@ 

j cot j?l VY 

- jYg csc* pl VY 

- j cot /?I I@ 

jZp csc’ j?l IQ 

-jtan/IlVY 

- jYg se2 j31 VY 

f VW 
Z 

B po 1 
sin /I1 L 1 0 

ct, 

sin j?l 

Uniform RC line 
as for uniformly distributed line in 
Table I with Z = @ 

and tJ = m 

e -__ 
sinh 0 

Al 

AY 

Al 

AZ 

Al 

BY 

Al 

AZ 

Al 

AY 

Al 

0 AR 

so that 

vu = 1 (L(wJ - L(w,)lp-2[L(o,) - QOd)] 
f&i 

_ lo(log,, e) IL(h)VG(j~d) + Ww,jV~,(jo,) 

M&MC4 1 
original 

network 

= - 2om,, 4 c IL(a) - &%)lp-2 p&h) - Q%)l Q. 
n* adjoint 

oJvv\ LL 

(19) network 

where R,, R,, and V, are constant. One analysis of the network yields I,, 
L, and U. If, for the adjoint network, ‘I’,=0 then 

where YL is an appropriate adjoint excitation and G contains sensitivity 
components as shown in Tables I and II. Hence the components of VIJjq,) 
are obtained from analyses of both original and adjoint networks. 

Fig, 3 shows a noncommensurate network having 13 variable param- 
eters. An objective function of the form of (17) was chosen with t=O; 
p= 10; and 51,= (0.5, 0.6, 0.7, 0.8, 0.9, 1.0) GHz. For the element values 
given in Fig. 3, U = 3.04383 x 10’. 

Table III shows the components of VU estimated from l- and O.OOl- 
percent incremental changes in the parameters compared with those ob- 

Fig. 2. Network for insertion loss design. 

tained using (19) and the appropriate expressions from Tables I and II. 
In the incremental case the changes in insertion loss were calculated via 
changes in input impedance due to changes in parameter values. For the 
adjoint network approach it was found convenient for analysis purposes 
to calculate the voltages and currents in the original network associated 
with IL= 1 (see Fig, 2) and the voltages and currents in the adjoint network 
associated with 4= 1. By reciprocity, of course, the independent sources 
needed to produce these currents, namely, V, and Y,, are ‘equal. 

One of the attractive features of the adjoint network approach to 
computer-aided design is the relative ease with which gradients with re- 
spect to nonexistent or zero-valued lumped elements can be obtained. 
Thus elements may be grown from a short circuit or open circuit if the 
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TABLE III 

COMPARISONOFGRADIENTCOMPONENTSFORTHE 13 VARIABLENONCOMMENSURATENETWORKOBTAINEDBY 
INCREMENTALANDADJOINTNETWORK METHODS 

Element Gradient Components 

Type Parameter Value l-Percent Increment O.OOl-Percent Increment Adjoint Network 

Parallel capacitor C 2pF 1.416 x 10’ 1.3756 x 10’ 1.3755 x 10’ 

Parallel short-circuited line 
Y 0.0125 mho - 7.324 x 10’ - 7.3952 x 10’ - 7.3952 x lo9 
1 6cm 1.884x 10’ 1.8510 x lo7 1.8509 x 10’ 

Transmission line 
Z 25 Q - 1.166 x lo* - 1.2276 x 10’ - 1.2276 x 10s 
1 8 cm - 1.275 x lo7 - 1.3300 x lo7 - 1.3300 X 10’ 

Parallel inductor I- 0.1 (nH)- 1 -3.178x lo9 - 3.2166 x lo9 -3.2167 x lo9 

Parallel capacitor C 3 PF 6.563 x 10’ 6.5130 x lo7 6.5130 x 10’ 

Series open-circuited line 
Z 40 n 3.439 x 10’ 3.3764 x 10’ 

5 cm - 4.408 x 10s -4.5832 x 10s 
3.3763 x 10’ 

-4.5834 x 10’ 

Parallel capacitor C 4pF 3.296 x 10’ 3.2384 x 10’ 3.2384 x 10’ 

Transmission line 
Z 
I 

50 n -4.191 x 106 
l-cm 1.393 x lo* 

- 4.2482 x lo6 - 4.2483 x lo6 
1.3932 x lo8 1.3932 x 10’ 

Series inductor L 3nH 3.442 x lo6 3.3200 x lo6 3.3199 x lo6 

gradient, which i, a function of voltages and currents only, indicates an 
increase in element value. 

Unfortunately,. as Tables I and II show, things get more complicated 
with distributed elements. Consider a uniform line (Fig. l(a)). For B=O 
but Z # 0, the sensitivity with respect to Z is 

; VT@ = 0 

but the sensitivity with respect to 0 is 

1 -__ po 1 
sinh 0 [ 1 0 1 

(21) 

(22) 

where 

I = I, 

CD = a$ = - q 

v = VP = v, 

Y = Yp = Yq. 

Equation (22) is readily derived by means of an ABCD matrix description of 
the line. Observe that ZIQ is the sensitivity ofa zero-length short-circuited 
line and - VW/Z is the corresponding expression for an open-circuited 
line. Clearly, also 

ZI@ - y * 

i 

ZI@ Z-cr, 
-VY 
__ z-+0. (23) 

Z 

Furthermore, depending on the type of distributed element under con- 
sideration, as 8-O we can obtain appropriate lumped equivalent circuits. 
So, it does not seem obvious then what type of element is to be grown, 
whether lumped or distributed, from a knowledge only of currents and 

y 

-I 

0 0 

-*UT -ICm- 

Fig.3. Noncommensuratenetwork having 13variablesterminatedin 50and 1000. 

voltages. In practice, the physical constraints on circuit configuration may 
predetermine the allowable element types. 

Most published work to date on the computer-aided optimization of 
noncommensurate networks, in particular at microwave frequencies, 
indicates that direct-search methods of the pattern-search type have been 
widely employed [7]-[lo]. Following the results presented in this corre- 
spondence such networks may now be readily designed using efficient 
gradient methods of minimization. Furthermore, the computational in- 
efficiency and uncertainty inherent in the numerical estimation of partial 
derivatives by perturbation can be circumvented. 
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An Algorithm for Generating Constituent Matrices 
Abstract-A simple procedure for computer evaluation of the con- 

stituent matrices is introduced. The power of this procedure lies in the 

ease of generating the constituent matrices where the characteristic 

polynomial has a number of multiple-order zeros. 

Wehrhahn [I] and Karni [2]-[4] accomplish the evaluation of the 
constituent matrices from Frame’s algorithm. Their methods involve di- 
vision of two polynomials and the generation and recombination of a great 
many terms in order to obtain the needed partial fraction expansion to give 
the constituent matrices. 

The method described in this correspondence will accomplish the same 
result by an algorithm that involves addition, subtraction, and division of 
only two polynomials, the division known to be exact. 

Frame’s algorithm [5] will generate a matric function whose partial 
fraction expansion will give the needed constituent matrices 

F(s) Us”-’ + F,s”-* + ... + F,-, 
-= 
4s) S”+d,s”-‘+...+d, 

F(s) F(s) 
= (S - sl)j(s - sJ. (S - s,)q = ts - s,)jq,(s)’ 

(1) 

Note that capital letters represent matrices and small letters represent 
scalars. Expanding (1) in partial fraction form 

F(s) Z, Z2 
ts - sl)jql(s) = (s + (S - S$ + ” + 

where Z (Z,/(s - s,)) represents the rest of the partial fraction expansion due 
to the zeros of q,(s). 

Evaluating 

..=F(s) 
I 

q,(s) s=s, 

and subtracting from both sides of (2), we obtain 

F(s) - Z,q,(s) Z, Z2 zj-l Z, 

(S - s,)jq,(s) = (s + (s- s2) + + (S - s,)j- 1 + ’ (S - s,) 
~’ (3) 

Since the subtraction of ZjqI(s) from F(s) makes the numerator in (3) where Z’(s) is the function generated by (7) when n=j- 1. This allows the 

exactlv divisible bv (s-s, ), we obtain evaluation of all the constituent matrices without the problem of storing 

z.- =D,(s) 
J 1 

q,(s) s=s, 

Continuing the procedure j- 1 times, all the Zj terms can be found. 
Returning to(l), rewrite it in the form 

F(s) F(s) -= 
d(s) 6 - Q’qds) 

All of the Z, associated with the sk pole in (5) can be found by the same 
procedure. 

Generalizing the procedure, let 

F(s) _ F(s) 
4s) 6 - s,)G(s)’ 

Defining 

Zj(s) = F(s) and Zj = 3 
q,(s) s=s, 

then 

where 

z,- = F(S) - Zjqt(S) zj- l(s) 
J 1 

6 - S&i(S) s=s, q,(s) s=si 

zj- $) = F(S) - Zjqi(S) 
(s - SJ 

and 

z,_ = zj-l(s) - zj- 14i(s) zj-+) 

I 2 
=- 

6 - .%M) s=s, q,(s) s=sj 

Thus, starting with n=O, 

zj-” 235/ 

&) s=s, 

and 

zj-” = zj-“+lSsl - zj-n+14i(s) 

’ (s - SJ 
n#O 

(6) 

zj = F(s), n = 0. (8) 

As n goes from 0 to j- 1, all of the Zj associated with the si pole will be 
generated. Rewriting F(s)/d(s) as in (5) and using the generalized procedure 
will generate all the Z, associated with the pole sir. 

However, to save storage in the computer, instead of returning to (5), 
just start the generalized procedure over again on the expression 

F*(s) Z’(s) 
6 - S!Jqt(S) = (s - s,)%,(s) 

Zl z: z: Z* 
= (s + (s - Sk) + (s - k)2 + + & + z 

K: 
(s - k)’ 

the results of Frame’s algorithm. 

D,(s) us"-2 + L&s"-3 + '.. + D,-, 

q,(s)(s - s,)j-l = (s - s,)'-%,(s) 

Zt Z2 zj-l Z 
= (s+ ts - sl)z + “’ + ts _ s,)j-l + ‘cs - s,).(4) 

Given 

EXAMPLE 

r-13 -21 -11 
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