
770 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997

Electromagnetic Optimization of 3-D Structures
John W. Bandler,Fellow, IEEE,Radoslaw M. Biernacki,Fellow, IEEE,Shao Hua Chen,

Senior Member, IEEE,Louis W. Hendrick, and D̆zevat Omeragić, Member, IEEE

Abstract—This paper discusses novel techniques and method-
ologies suitable for automated electromagnetic (EM) design of
arbitrary three-dimensional (3-D) structures. In the context of
parameterization of arbitrary 3-D structures, the authors outline
the concept of the geometry capture technique. The authors
present efficient response interpolation with repect to optimizable
parameters—the key to effective automation. The authors’ for-
mulation is based on the maximally flat quadratic interpolation
(MFQI) technique and provides gradient estimation essential to
efficient optimization. The authors address the issue of storing
the results of expensive EM simulations in a dynamically up-
dated database, integrated with the interpolation technique. The
automated EM optimization process is illustrated by the design of
waveguide mitered bends. The authors also apply the aggressive
space mapping (SM) technique to the optimization of multistep
waveguide transformers.

Index Terms—Design automation, electromagnetic analysis,
finite-element methods, optimization methods, waveguide
bends.

I. INTRODUCTION

T ECHNOLOGICAL revolutions in the field of microwave
and communication systems are pushing requirements

for further circuit compaction and the exploitation of
electromagnetics-based computer-aided design (CAD). Further
innovative designs may be achieved using powerful three-
dimensional (3-D) full-wave electromagnetic (EM) simulators
in conjunction with sophisticated optimization algorithms
[1]. EM simulators, whether stand-alone or incorporated into
software frameworks, will not realize their full potential to
the designer unless they are optimizer-driven to automatically
adjust designable parameters. The advancement of computer
technology and development of appropriate algorithms and
techniques make possible the use of fully 3-D simulators first
in validation and then in the optimization process [2]. The use
of the field-theoretic approach in design strongly complements
conventional CAD using circuit simulators. Combined use
of both is rapidly becoming common practice for first-pass
success design.
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For practical EM optimization, several key factors in the
development of efficient CAD software have been identified
[3], [4]. Besides what are considered common CAD software
necessities, such as user-friendly interfaces, efficient numerical
algorithms, and open architecture, the software designer and
the advanced user of optimization software must have efficient
tools for interprocess communication, methodologies for de-
sign parameterization, geometrical interpolation and modeling
techniques, and efficient database organization and handling.

New techniques, such as geometry capture [5] and space
mapping (SM) [2], [6], [7], in conjunction with efficient
interpolation, intelligent database, and Datapipe architecture
establish a solid foundation for efficient optimization of 3-D
structures. SM has to be “aggressive,” since computational
costs are extremely high, while geometry capture has to be
fully implemented in 3-D. Recent advances in these two
techniques are discussed elsewhere in more detail [8], [5].

This paper is devoted to optimization concepts and al-
gorithms suitable for automated EM optimization of 3-D
structures. Section II provides the background relevant to
the implementation of various optimization concepts to 3-D
design. It is followed in Section III by an outline of the authors’
approach addressing the critical issue [9] of parameteriza-
tion of geometrical structures in automated EM optimization.
Section IV describes the interpolation technique which is a
key to effective automation and efficient optimization. Called
maximally flat quadratic interpolation (MFQI), it is applied
here to the creation of interpolation models of EM responses of
3-D structures. Complete formulas for the linear and quadratic
case are presented. In Section V, the authors give details of
the gradient estimation process, based on their interpolation
method. The database organization and implementation is
discussed in Section VI.

Following the theoretical concepts, Sections VII and VIII
offer EM design optimization of waveguiding structures to
illustrate the methodologies. As an illustration of practical
3-D design including geometry capture, the authors present
results of successful optimization of WR-75 mitered bends.
Waveguide transformers are optimized using the automated
aggressive SM. The results presented in this paper have been
obtained using Empipe3D [10], which uses the optimiza-
tion engine of OSA90/hope [10] to drive the commercial
high-frequency structure simulators (HFSS) [11] and Ansoft’s
Maxwell Eminence [12]. The paper concludes with sugges-
tions for further development.

II. BACKGROUND ON EM OPTIMIZATION OF 3-D STRUCTURES

The implementation of optimization-related algorithms is
dependent on the particular EM field solver used. Impor-
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tant techniques for solving 3-D EM fields are based on:
the finite-element method (FEM)—commercial simulators in-
clude HFSS [11], Maxwell Eminence [12], MagNet [13],
MicroWave Lab [14]; the integral equation (boundary-element)
method (IE/BEM) [15], [16]; the transmission-line method
(TLM) [17]; the finite-difference time-domain method (FDTD)
[18], [19]; the mode-matching (MM) method [20], [21]; and
the method of moments (MoM) [22], [23]. Each of these
methods has its own advantages and disadvantages and is
suitable for a specific class of problems [24].

Two approaches are available to implement optimization
using full-wave 3-D EM simulators [25]. The first is the
exploitation of commercial EM software packages such as
HFSS or Maxwell Eminence inside the optimization loop
of a general purpose optimization program. In microwave
monolithic integrated circuit (MMIC) design, circuit opti-
mization packages such as HP-EEsof’s Touchstone [26] and
OSA90/hope are routinely used. OSA90/hope provides users
the opportunity of interfacing external simulators using UNIX-
based Datapipe technology. Through the Empipe software [10]
OSA90/hope is interfaced to Sonnet Software’s [27], a
widely used full-wave EM simulator based on the MoM,
created for the design of predominantly planar structures. The
interfacing to truly 3-D simulators based on FEM, TLM, and
MM has been recently reported [1], [2]. This represents a
major advance in CAD.

The second approach is based on formulating optimization
at a lower level, i.e., using properties of a numerical approx-
imation method in order to derive corresponding sensitivity
matrices to be used in the optimization process. Sensitivity of
the design could be based on differentiation of base equations
obtained after discretization of differential or integral operators
using the FEM [28], [29] or the MoM [30], [31]. Another
possibility is the adjoint network concept [32]–[34]. It provides
an elegant approach to computing derivatives of objective
functions, requiring only one full simulation to evaluate gra-
dients for reciprocal structures. Its efficiency increases with
the number of optimization variables; it, therefore, has the
potential of reducing the central processing unit (CPU) time
significantly.

Both variants of the adjoint approach are still under develop-
ment and a subject of research. Ideas are already implemented
in two-dimensional (2-D) low-frequency magnetics [35]–[38]
and to optimize the design of certain waveguiding structures
[25], [29], [39], [40]. In the microwave area, Sorrentino and
his collaborators integrated the adjoint network technique with
the MM [32], [33]. They basically applied the circuit theory
concept directly to the MM formulation based on a generalized
admittance matrix formulation [33]. Dyck, Lowther, and Free-
man derived a Tellegen’s theorem for field equations [34], and
applied the adjoint variable concept to the 2-D low-frequency
inverse problem. All referenced work [25], [28]–[40] is mostly
academic. There does not appear to be a general purpose
commercial software package based on the adjoint network
method.

In the optimization process of low-frequency magnetic
devices, the problem of finding a global minimum is being
addressed. Global optimization techniques such as simulated

annealing, genetic algorithms, fuzzy systems, and an artifi-
cial intelligence approach have been attempted. The ease of
implementation makes them attractive, but their efficiency is
questionable. Extremely high computational costs have to be
justified even for 2-D potential problems, since the number of
simulations is of the order of 10–10 . These methods could
be used to localize the global minimum, and then efficient
gradient-based methods should be used. The choice of the
starting point for optimization is another important aspect of
CAD, with the possibility of the application of knowledge-
based methods and neural networks [41].

When FEM-based simulators are used, the geometry of
the structure being adjusted is discretized using automatic
mesh generators, independently in each step. As a conse-
quence, estimated gradients of response functions may appear
to be discontinuous. In order to achieve smooth gradients,
parameterization could be integrated with the mesh generation
stage. An efficient technique has been implemented for 2-D
geometries [25].

III. PARAMETERIZATION OF 3-D STRUCTURES

As the optimization process proceeds, revised structures
must be automatically generated. Moreover, each such struc-
ture must be physically meaningful and should follow the
designer’s intention with repect to allowable modifications and
possible limits. EM simulators deal directly with the layout
representation of circuits in terms of absolute coordinates
which are not directly designable parameters. Therefore, one
must be able to relate geometrical coordinates of the layout to
the numerical parameters for optimization.

In order to take full advantage of superior accuracy of EM
simulators and their ability to solve arbitrary geometries, the
microwave designer expects to be able to optimize increasingly
more complex structures. Geometrical parameterization is thus
needed for every new structure and it is of utmost importance
to leave this process to the user. Naturally, EM simulator users
wish to be able to designate optimizable parameters directly
within the graphical layout representation. To provide a tool
addressing such structure parameterization the authors have
developed the geometry capture technique, described in detail
elsewhere [5].

Using geometry capture, optimizable parameters of an arbi-
trary EM structure are captured from a set of EM simulator’s
project (geometry and material description) files created by
the user. These projects include a nominal project and number
of perturbed projects, representing incremental changes for
each optimization variable. The geometry capture technique
facilitates automatic translation of the values of user-defined
designable parameters to the layout description in terms of
absolute coordinates. During optimization, this translation is
automatically performed for each new set of parameter values
before the EM simulator is invoked.

IV. RESPONSEINTERPOLATION

The 3-D structure parameters are discretized in order to
improve the efficiency of the design optimization process.
The responses obtained at discrete values of parameters are
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interpolated. The benefits of this approach include efficient
gradient evaluation, handling of tolerances, efficient model
evaluation in Monte Carlo analysis, and yield-driven design
[42].

The vector of structure parameters (all designable, or
optimization, variables) can be written as

(1)

which may also include material parameters in addition to
geometrical parameters.

Numerical EM simulation is performed at discrete values
of structure parameters

(2)

where is a discretization step, and is an integer, typically
positive. Equation (2), for all values of , defines the dis-
cretization grid in the space of structure parameters. It should
not be confused with the meshing scheme for FEM, FDTD,
MoM, etc., and is independent of that scheme unless a fixed
mesh is imposed on the physical structure.

The discretization matrix is defined as

diag (3)

For off-grid structure parameter values interpolation of circuit
responses is performed. Let one of the responses of interest
be denoted by . It is assumed that is real, e.g.,
magnitude of scattering parameter . To interpolate the
response the structure needs to be simulated at base
points defined by theinterpolation base matrix

(4)

where represents a given point (vector) of designable
(optimization) variables, with components given by (1). To
emphasize the fact that the simulation results at the base points
are obtained from an EM solver the responses will be denoted
by , e.g., . As in [3], is called thecenter base
point, which is the grid point nearest to the current point
as determined by

(5)

where therelative deviation matrix is defined as

diag (6)

with its entries constrained by the inequalities

(7)

and . and can be easily determined
using the “floor” function as

(8)

and, then

(9)

For convenience, therelative deviation vector is defined as

(10)

The remaining points in the interpolation base (column vectors
in ) are defined by means of therelative interpolation base
matrix

(11)

where the vectors are all different from0, different from
each other, and composed of1, 1, or 0 entries. The base
points in , by definition, are related to the center base point
and the vectors through the expressions

(12)

The selection of and of the number of additional base
points depends on the interpolation scheme to be consid-
ered.

A validity region for the current interpolation base (4)
shall be defined. If the point moves outside the current
validity region a new interpolation base (possibly overlapping
with the current one) needs to be selected.

Following [3], one considers the class of interpolation
problems where the interpolating function can be expressed
as a linear combination of somefundamental interpolating
functionsin terms of deviations with repect to the center base
point, so that

(13)

where contains the interpolation coefficients andis the
vector of the fundamental interpolating functions. In the cur-
rent implementation are considered two interpolation schemes:
1) linear and 2) MFQI [43], [44].

For the linear interpolation one may define the fundamental
interpolating functions as

(14)

and, given (and correspondingly ), the relative interpola-
tion base is selected as

sign (15)

Here . The validity region , in this case, is the
corresponding multidimensional quadrant of the region defined
by the inequalities (7), i.e.,

(16)

Fig. 1(a) illustrates in two dimensions the selection of the base
points according to (15), as well as the corresponding validity
region. For (13) to hold exactly at all the base points (15), i.e.,

, one has the equations

(17)

or, in the matrix form , where
is defined by (18) at the bottom of the next page.

After solving (17) for and substituting into (13) one has

(19)
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(a)

(b)

Fig. 1. The interpolation base points (shaded) needed for interpolation of
an off-grid point (solid). Shaded rectangles are the corresponding validity
regions. (a) Linear interpolation. (b) MFQI.

where one takes advantage of since
is a diagonal matrix with 1 and 1 entries.

For the MFQI scheme, one may select the relative interpo-
lation base by setting

(20)

where1 is the identity matrix. Here . In this
case, the validity region is established by the inequalities (7).
Fig. 1(b) illustrates in two dimensions the selection of the base
points according to (20), as well as the corresponding validity
region. From earlier developments on MFQI [44] it is known
that by this selection the mixed second-order terms will be
conveniently set to zero in this type of interpolation. Therefore,
the fundamental interpolating functions can be defined as

(21)

where diag , or, in the form applicable to (13), as

(22)

If the interpolation coefficient vector is partitioned as

(23)

where and are the subvectors of corresponding to the
linear and quadratic terms, respectively, then the system of
equation at all the base points defined by (20) can be written
as

(24a)

(24b)

where and are shown in (25) and (26), at the
bottom of the next page. The solution of (24) is

(27a)

(27b)

which, after substituting to (13), gives

(28)

or

(29)

The interpolation schemes combining linear and MFQI inter-
polations and using the number of base points
can also be derived using the similar approach.

V. GRADIENT ESTIMATION

To apply gradient-based optimizers, one needs to provide the
gradients of the objective function. This involves evaluation
of the gradients of . Since the fundamental interpolating
functions are known, their gradients are available in analytical
form. Therefore, from (5) and (13), one can calculate the
gradient of for the optimizer from the gradients of as

(30)

For the linear interpolation case

sign (31)

and

(32)

in the case of MFQI.
Some optimizers may request perturbed simulation in the

vicinity of the nominal point , say at , in order to
estimate the gradient by perturbation, instead of using the
gradient at directly. For linear interpolation the perturbation
technique will produce the same results as (30) as long as
the interpolation base for the calculation of is kept the
same as that of . This can be easily enforced even if

(18)
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Fig. 2. Geometry of the optimized WR-75 mitered bend.

Fig. 3. Definition of the optimization variabled.

falls outside the validity region of . In the case of quadratic
interpolation, using (29) at may provide a different result
from (32). As the exact gradient (32) is available, a modified
response at can be easily evaluated from the linearized
interpolating function at as

(33)

further simplifying to

(34)

This formula, when used in gradient estimation by perturba-
tion, will produce the same result as (32).

VI. THE INTEGRATED DATABASE OF SIMULATION RESULTS

For an effective optimization process, it is necessary to
efficiently utilize the results of EM simulations and to avoid
repeated simulations. To achieve this, a database of already

Fig. 4. Brute-force approach:d varied from 0.05 to 0.35 in.

Fig. 5. Response of the optimal bend with a single-section miter:
dopt = 0:2897 in.

simulated base points together with the corresponding re-
sponses is maintained.

Given an off-grid point, the validity region has to be
determined by computing the center base pointand the
relative deviation vector using (8) and (9). The corresponding
interpolation base (4) is generated using relative interpolation
base matrices, defined by (15) or (20), depending on the
interpolation technique. The interpolation base has to be
checked against the stored database. Such EM simulation is
invoked only for base points not present in the database. A
simulation is followed by the update of the database. Results
for base points already present in the database are simply
retrieved and used for interpolation. After necessary responses
are computed, response difference vectors , defined by
(18) for the linear case and (25) and (26) for the MFQI case,
are generated. Then, interpolation of responses, based on (19)
or (29), is performed, subsequently followed by computation
of gradients using either (31) for the linear model or (32) for
the MFQI.

(25)

(26)
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(a) (b)

(c) (d)

Fig. 6. Additional optimized geometries with optimization variables marked. (a) Two-section miter. (b) Three-section miter. (c) Four-section miter, Case
A. (d) Four-section miter, Case B.

When a specific is zero, one excludes the corresponding
base point from the interpolation base. From (19) and (29)
it is obvious that the contribution of these base points to the
interpolation formula is equal to zero.

VII. A UTOMATIC DESIGN OPTIMIZATION OF MITERED BENDS

As an illustration of fully 3-D EM optimization, results for
waveguide bends are presented. The bend is a simple EM
structure, used to change the direction of a waveguide run.
The geometry of the single-section-plane mitered bend [45]
is sketched in Fig. 2. Symmetrical bends were analyzed, with
the standard WR-75 as the input and output waveguides. The
bend angle was kept fixed at 90. In this analysis all edges
are sharp, although in a practical design, corners may have
a round shape. The design specification is set for return loss
over the full bandwidth, namely,

return loss dB for GHz GHz.

The FEM appears to be the most suitable EM method for
analyzing waveguide bends [45], capable of handling arbitrary
geometries, including those with rounded edges.

First, a brute-force design of the structure shown in Fig. 2
was performed. The optimization variable, the position of
the miter, is defined in Fig. 3. Projects for various values
of the parameter were “manually” generated and Maxwell
Eminence was run for each project. Fig. 4 shows results for

varied from 0.05 to 0.35 in with a step of 0.05 in. None of
the designs satisfied the specifications, and from the diagram
one can see that a significant portion of computational effort
could be saved. More bluntly, hours of computation time were
considered wasted.

A. Single-Section Miter

Automated design optimization is performed using Em-
pipe3D on a Sun SPARCstation 10 with 32 Mbytes RAM.
A standard gradient-based minimax optimization has been
performed. The starting value of the design parameter was
taken as in. It was allowed to change between 0–0.375
in, with the discretization step in. The solution,

in, was reached after 14 iterations. The total
CPU time was about 23 h, when the convergence criterion
for Maxwell Eminence (the allowable delta) was set to
10 using no more than nine adaptive steps. Relaxing the
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TABLE I
MULTISECTION MITERED BENDS SUMMARY OF OPTIMIZATION RESULTS

convergence criterion, or coarse grid meshing, would speed
up the computations at the expense of reduced accuracy.

It is important to note that 14 iterations were performed
using only nine Maxwell Eminence simulations, for which the
computed parameters were linearly interpolated using (19).
The response of the optimal structure is presented in Fig. 5. It
is clear, however, that the design goal could not be achieved.

B. Further Refinement of the Design

The next step in the design process was to refine the
geometry and change the number of bend sections. The number
of sections were increased up to four, as is depicted in Fig. 6.
The optimization variables used are also illustrated in the same
figure. Three cases were considered for the four-section miter.
First, only the distances and were changed from Fig. 6(c),
while the angle was kept fixed at . In the second
optimization was also used as a design variable, but the
design response was not sensitive with repect to change in
at the specified parameter value. The third set of results was
obtained by redefining the optimization variables, as shown
in Fig. 6(d). The latter two cases with three optimization
variables are referred to as cases A and B.

Fig. 7 shows the optimal geometries for the mitered bends,
while Fig. 8 indicates how the corresponding reflection coeffi-
cient of optimal one-, two-, and three-section miter meets the
specification. It is clear that the two-section miter provides an
excellent performance, with return loss well above 40 dB.

The number of sections was then increased to four. The sim-
ulation results were almost identical for cases A and B. Fig. 9
presents the responses of the optimal structures. The optimal
geometries are practically the same and indistinguishable from
the optimized two-section mitered bend. In all cases, the return
loss responses are far above 40 dB. The authors believe that
the difference in results is due to the numerical approximation
method and interpolation.

VIII. SM OPTIMIZATION OF WAVEGUIDE TRANSFORMERS

Other waveguiding structures which were optimized are
multistep waveguide transformers. They are classical examples
of microwave design optimization [46]. Fig. 10 depicts a
typical two-section waveguide transformer. Three designs,
of two-, three-, and seven-section transformers, respectively,

Fig. 7. Geometries of optimal multisection bends. Optimal geometries for
all simulation cases of four-section bends are practically identical and are
indistinguishable from the optimal two-section bend.

were successfully performed using the automated SM strategy.
The variables are the heights and lengths of the waveguide
sections.

The SM concept [6] establishes a relation between models
in two distinct spaces, namely the optimization space and the
EM space. One assumes that the optimization space model is
much faster to evaluate but less accurate than the EM model.
It can be an empirical model or a coarse-resolution EM model.
A procedure of fully automating the aggressive SM strategy
[7] using a two-level Datapipe architecture has been presented
in [2].

Table I summarizes the simulation results.
First, one applies the SM strategy to two empirical mod-

els—an “ideal” model which neglects the junction discontinu-
ity effects and a “nonideal” model which includes the junction
discontinuity [46]. Figs. 11–13 show the responses before and
after SM optimization. The numbers of iterations required to
reach the solutions by SM are seven, six, and five, respectively.

The commercial 3-D structure EM simulator HFSS [11]
was then embedded into the automated SM optimization loop.
The two-section waveguide transformer shown in Fig. 10 is
optimized. In this case, however, HFSS is used as the fine
EM model while the coarse model is the same as in the
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Fig. 8. Comparison of responses of optimal one-, two-, and three-section
mitered bends.

Fig. 9. Responses of optimal two- and four-section bends. The return losses
are well above 40 dB (this is already at the simulator’s noise level).

Fig. 10. A typical two-section waveguide transformer.

previous examples, i.e., the “ideal” analytical model. Four
variables are involved, namely the heights and lengths of
the two waveguide sections. The solution shown in Fig. 14
requires ten SM iterations (hence, ten HFSS simulations).

IX. CONCLUSION

The authors have examined theoretical concepts and for-
mulations relevant to EM optimization of arbitrary structures
based on 3-D field simulation. The efficient linear and MFQI
interpolation of EM responses have been presented. Using
derived interpolation formulas, gradient estimation becomes

Fig. 11. VSWR response of a two-section waveguide transformer simulated
using the nonideal model before and after SM optimization. The response
after seven SM iterations is indistinguishable from the optimal ideal response.

Fig. 12. VSWR response of a three-section waveguide transformer simulated
using the nonideal model before and after SM optimization. The response after
six SM iterations is indistinguishable from the optimal ideal response.

Fig. 13. Voltage standing-wave ratio (VSWR) response of a seven-section
waveguide transformer simulated using the nonideal model before and after
SM optimization. The response after five SM iterations is indistinguishable
from the optimal ideal response.

straightforward. The concept of the intelligent database has
been explained. Details of integration of the database sys-
tem with the authors’ interpolation technique have been pre-
sented.

The successful EM optimization of 3-D devices, such as
waveguide transformers and mitered bends has been performed
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Fig. 14. VSWR response of a two-section waveguide transformer simulated
by HFSS before and after ten SM optimization iterations. Also shown is the
optimal ideal response.

by driving the commercial 3-D full-wave simulators HFSS and
Maxwell Eminence in an optimization loop.

The work in EM optimization of 3-D structures is still
considered to be in the early pioneering stages. Much work
remains to be done, particularly in the area of design sensi-
tivity evaluation, applied to different numerical approximation
methods. Particularly interesting and challenging is the im-
plementation of the adjoint network concept. This approach
has the potential of significantly reducing computation time,
which is still a principal obstacle in applying optimization
techniques in 3-D EM design. Areas still to be explored
are the eventual coupling of EM and, for example, thermal
problems and the development of more efficient parallelization
algorithms.

REFERENCES

[1] F. Arndt, S. H. Chen, W. J. R. Hoefer, N. Jain, R. H. Jansen, A.
M. Pavio, R. A. Pucel, R. Sorrentino, and D. G. Swanson, Jr., “Auto-
mated Circuit Design Using Electromagnetic Simulators,” in Workshop
WMFE, IEEE MTT-S Int. Microwave Symp., (J. W. Bandler and R.
Sorrentino, Organizers and Chairmen), Orlando, FL, May 1995.

[2] J. W. Bandler, R. M. Biernacki, and S. H. Chen, “Fully automated space
mapping optimization of 3-D structures,” inIEEE MTT-S Int. Microwave
Symp. Dig.,San Francisco, CA, June 1996, pp. 753–756.

[3] J. W. Bandler, R. M. Biernacki, S. H. Chen, D. G. Swanson, Jr., and
S. Ye, “Microstrip filter design using direct EM field simulation,”IEEE
Trans. Microwave Theory Tech.,vol. 42, pp. 1353–1359, July 1994.

[4] J. W. Bandler, R. M. Biernacki, S. H. Chen, and P. A. Grobelny,
“Optimization technology for nonlinear microwave circuits integrat-
ing electromagnetic simulations,”Int. J. Microwave Millimeter-Wave
Comput.-Aided Eng.,vol. 7, pp. 6–28, Jan. 1997.

[5] J. W. Bandler, R. M. Biernacki, and S. H. Chen, “Parameterization of
arbitrary geometrical structures for automated electromagnetic optimiza-
tion,” in IEEE MTT-S Int. Microwave Symp. Dig.,San Francisco, CA,
June 1996, pp. 1059–1062.

[6] J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H.
Hemmers, “Space mapping technique for electromagnetic optimization,”
IEEE Trans. Microwave Theory Tech.,vol. 42, pp. 2536–2544, Dec.
1994.

[7] J. W. Bandler, R. M. Biernacki, S. H. Chen, R. H. Hemmers,
and K. Madsen, “Electromagnetic optimization exploiting aggressive
space mapping,”IEEE Trans. Microwave Theory Tech.,vol. 43, pp.
2874–2882, Dec. 1995.

[8] J. W. Bandler, R. M. Biernacki, S. H. Chen, and Y. F. Huang, “Design
optimization of interdigital filters using aggressive space mapping and
decomposition,”IEEE Trans. Microwave Theory Tech.,this issue.

[9] M. A. Schamberger and A. K. Sharma, “A generalized electromagnetic
optimization procedure for the design of complex interacting structures
in hybrid and monolithic microwave integrated circuits,” inIEEE MTT-S
Int. Microwave Symp. Dig.,Orlando, FL, May 1995, pp. 1191–1194.

[10] OSA90/hope, Empipe, andEmpipe3D, Optimization Systems Associates
Inc., Dundas, Ont., Canada.

[11] HFSS, HP-EEsof, Santa Rosa, CA.
[12] MaxwellEminence,Ansoft Corporation, Pittsburgh, PA.
[13] MagNet, Infolytica Corporation, Montreal, P.Q., Canada.
[14] MSC/EMASMicroWave Lab,Ansoft Corporation, Pittsburgh, PA.
[15] M. Koshiba and M. Suzuki, “Application of the boundary-element

method to waveguide discontinuities,”IEEE Trans. Microwave Theory
Tech.,vol. MTT–34, pp. 301–307, Feb. 1986.

[16] C. Nallo, F. Frezza, and A. Galli, “Full wave model analysis of
arbitrarily-shaped dielectric waveguides through an efficient boundary-
element-method formulation,” inIEEE MTT-S Int. Microwave Symp.
Dig., Orlando, FL, May 1995, pp. 479–482.

[17] W. J. R. Hoefer, “Time domain electromagnetic simulation for mi-
crowave CAD applications,”IEEE Trans. Microwave Theory Tech.,vol.
40, pp. 1517–1527, July 1992.

[18] K. S. Kunz and R. J. Leubleers,The Finite Difference Time Domain
Method for Electromagnetics.Boca Raton, FL: CRC Press, 1993.

[19] V. J. Brankovic, D. V. Krupezevic, and F. Arndt, “The wave-equation
FD-TD method for the efficient eigenvalue analysis andS-matrix
computation of waveguide structures,”IEEE Trans. Microwave Theory
Tech.,vol. 41, pp. 2109–2115, Dec. 1993.

[20] T. Itoh, Numerical Techniques for Microwave and Millimeter Wave
Passive Structures.New York: Wiley, 1989.

[21] T. Sieverding and F. Arndt, “Field theoretic CAD of open aperture
matched T-junction coupled rectangular waveguide structures,”IEEE
Trans. Microwave Theory Tech.,vol. 40, pp. 353–362, Feb. 1992.

[22] R. F. Harrington,Field Computation by Moment Methods.New York:
Macmillan, 1968.

[23] J. C. Rautio and R. F. Harrington, “An electromagnetic time-harmonic
analysis of arbitrary microstrip circuits,”IEEE Trans. Microwave Theory
Tech.,vol. MTT-35, pp. 726–730, Aug. 1987.

[24] D. G. Swanson, Jr., “Simulating EM fields,”IEEE Spectrum,vol. 28,
pp. 34–37, Nov. 1991.

[25] S. R. H. Hoole, “An integrated system for the synthesis of coated
waveguides from specified attenuation,”IEEE Trans. Microwave Theory
Tech.,vol. 40, pp. 1564–1571, July 1992.

[26] TouchstoneTM, HP-EEsof, Santa Rosa, CA.
[27] ememem, Sonnet Software, Inc., Liverpool, NY.
[28] S. Gitosusastro, J. L. Coulomb, and J. C. Sabonnadiere, “Performance

derivative calculations and optimization process,”IEEE Trans. Magn.,
vol. 25, pp. 2834–2839, July 1989.

[29] P. Garcia and J. P. Webb, “Optimization of planar devices by the finite
element method,”IEEE Trans. Microwave Theory Tech.,vol. 38, pp.
48–53, Jan. 1990.

[30] J. Ureel and D. De Zutter, “Shape sensitivities of capacitances of
planar conducting surfaces using the method of moments,”IEEE Trans.
Microwave Theory Tech.,vol. 44, pp. 198–207, Feb. 1996.

[31] , “A new method for obtaining the shape sensitivities of planar
microstrip structures by a full-wave analysis,”IEEE Trans. Microwave
Theory Tech.,vol. 44, pp. 249–260, Feb. 1996.

[32] F. Alessandri, M. Mongiardo, and R. Sorrentino, “New efficient full
wave optimization of microwave circuits by the adjoint network
method,” IEEE Microwave Guided Wave Lett.,vol. 3, pp. 414–416,
Nov. 1993.

[33] F. Alessandri, M. Dionigi, and R. Sorrentino, “A fullwave CAD tool
for waveguide components using a high speed direct optimizer,”
IEEE Trans. Microwave Theory Tech.,vol. 43, pp. 2046–2052, Dec.
1995.

[34] D. N. Dyck, D. A. Lowther, and E. M. Freeman, “A method of
computing sensitivity of electromagnetic quantities to changes in ma-
terials and sources,”IEEE Trans. Magn.,vol. 30, pp. 341–344, Sept.
1994.

[35] J. Simkin and C. W. Trowbridge, “Optimizing electromagnetic devices
combining direct search methods with simulated annealing,”IEEE
Trans. Magn.,vol. 28, pp. 1545–1548, Mar. 1992.

[36] S. Russenschuck, “Synthesis, inverse problems and optimization in
computational electromagnetics,”Int. J. Numer. Modeling,vol. 9, pp.
45–57, Jan.–Apr. 1996.

[37] C. S. Koh, O. A. Mohammed, and S. Y. Hahn, “Nonlinear shape design
sensitivity analysis of magnetostatic problems using boundary element
method,” IEEE Trans. Magn.,vol. 31, pp. 1944–1947, May 1995.

[38] I. Park, B. Lee, and S. Y. Hahn, “Sensitivity analysis based on analytic
approach for shape optimization of electromagnetic devices: Interface
problem of iron and air,”IEEE Trans. Magn.,vol. 27, pp. 4142–4145,
Sept. 1991.

[39] J. Kim, H. B. Lee, H. K. Jung, S. Y. Hahn, C. Cheon, and H. S. Kim,
“Optimal design technique for waveguide device,”IEEE Trans. Magn.,
vol. 32, pp. 1250–1253, May 1996.



BANDLER et al.: ELECTROMAGNETIC OPTIMIZATION OF 3-D STRUCTURES 779

[40] H. B. Lee, H. K. Jung, S. Y. Hahn, C. Cheon, and H. S. Kim, “An
optimum design method for eigenvalue problems,”IEEE Trans. Magn.,
vol. 32, pp. 1246–1249, May 1996.

[41] D. A. Lowther, “Knowledge-based and numerical optimization tech-
niques for the design of electromagnetic devices,”Int. J. Numer.
Modeling,vol. 9, pp. 35–44, Jan.–Apr. 1996.

[42] J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and S.
Ye, “Yield-driven electromagnetic optimization via multilevel multidi-
mensional models,”IEEE Trans. Microwave Theory Tech.,vol. 41, pp.
2269–2278, Dec. 1993.

[43] R. M. Biernacki and M. A. Styblinski, “Efficient performance function
interpolation scheme and its application to statistical circuit design,”Int.
J. Circuit Theory Appl.,vol. 19, pp. 403–422, July–Aug. 1991.

[44] R. M. Biernacki, J. W. Bandler, J. Song, and Q. J. Zhang, “Efficient
quadratic approximation for statistical design,”IEEE Trans. Circuits
Syst. XX,vol. 36, pp. 1449–1454, Nov. 1989.

[45] J. Uher, J. Bornemann, and U. Rosenberg,Waveguide Components
for Antenna Feed Systems: Theory and CAD.Norwood, MA: Artech
House, 1993, pp. 163–174.

[46] J. W. Bandler, “Computer optimization of inhomogeneous waveguide
transformers,”IEEE Trans. Microwave Theory Tech.,vol. MTT-17, pp.
563–571, Aug. 1969.

John W. Bandler (S’66–M’66–SM’74–F’78), for a photograph and biog-
raphy, see this issue, p. 711.

Radoslaw M. Biernacki (M’86–SM’86–F’96), for a photograph and biogra-
phy, see this issue, p. 766.

Shao Hua Chen(S’84–M’85–SM’95), for a photograph and biography, see
this issue, p. 766.

Louis W. Hendrick received the B.S. and M.S. degrees in electrical engi-
neering from the University of California, Berkeley, and the University of
Southern California, Los Angeles, in 1975 and 1984, respectively.

In 1975, he joined the Space and Communications Group of Hughes
Aircraft Company, Los Angeles, CA, where he has worked as a Production,
Design, and Research Engineer in the passive microwave components area.
His research interests include modeling and design of filters, multiplexers, and
associated passive devices for satellite communication systems.
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