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Abstract—This paper presents a new electromagnetic (EM)
design methodology which combines two powerful techniques in
a coherent strategy: space mapping (SM) and decomposition.
An accurate but computationally intensive fine-resolution EM
model is used sparingly only to calibrate a less accurate, but
computationally much more efficient “coarse model.” Applying
this new approach to interdigital filter design, the authors exploit
structural decomposition to construct a highly efficient coarse
model using a combination of EM models with a coarse grid and
empirical models for the noncritical substructures. The authors
employ the aggressive SM optimization technique to obtain a
rapidly improved design after each fine-model simulation while
the bulk of the computation is carried out using the coarse
model. To avoid possible oscillation in the iterative process, a
penalty function is introduced. Fast and stable convergence to
a desirable interdigital filter design is achieved after only three
EM fine-model simulations.

Index Terms—Design automation, electromagnetic analysis,
microstrip circuits, microwave filters, optimization methods.

I. INTRODUCTION

I NTERDIGITAL filters have the advantage of compact size
and adaptability to narrow- and wide-band applications.

Pioneering work [1]–[3] in this field first focused on synthesis
techniques. Tapped lines were later introduced [4], [5] at the
input and output resonators to offer both space and cost savings
over the earlier designs by eliminating the first and the last end
sections. An additional advantage is that the tapped structure
can realize very weak couplings when the traditional struc-
ture becomes impractical. Unfortunately, exact synthesis of
tapped line filters is not straightforward. Available techniques
are not directly applicable to microstrip configurations. Final
validation using rigorous models is considered necessary.

The method of moments (MoM) [6], [7] and the finite-
element method (FEM) [8] have been used successfully
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for EM field analysis in two-dimensional (2-D) and three-
dimensional (3-D) structures. They offer excellent accuracy
if critical areas are meshed with a sufficiently small grid.
One major disadvantage with these numerical techniques is
their heavy demand on computer resources. It is commonly
perceived that iterative optimization methods would require
too many EM simulations and consequently consume
excessive central processing unit (CPU) time. For this reason,
the practical utilization of EM simulators is often limited to
design validation.

This paper presents a new design methodology which com-
bines two powerful techniques in a coherent strategy: space
mapping (SM) and decomposition. The decomposition tech-
nique partitions a complex structure into a few smaller sub-
structures [9]–[11]. Each of them is analyzed separately and
the results are combined to obtain the response of the overall
structure. More efficiently, 2-D analytical methods or even
empirical formulas can be used for the calculation of some
noncritical regions while full-wave 3-D models are adopted
for the analysis of the key substructures. Couplings between
the decomposed substructures are neglected, therefore, some
loss of accuracy is expected.

The other cornerstone of the authors’ methodology is the
SM concept which has aroused excitement and increasing
attention as a fundamental new theory in engineering-oriented
optimization practice [12]–[14]. An accurate but computation-
ally intensive fine-resolution EM model is used sparingly only
to calibrate a less accurate, but computationally much more
efficient coarse model. A mapping is established between two
spaces, namely, between the coarse model and the fine model.
The aggressive SM algorithm incorporates a quasi-Newton
iteration with first-order derivative updates using the classic
Broyden formula [15]. A rapidly improved design is expected
to be obtained after each fine-model simulation while the bulk
of the computation involved in optimization is carried out
in the coarse model space. This is much more efficient than
a “brute force” optimization directly driving fine-model EM
simulations.

Parameter extraction is a crucial step in the SM algorithm.
If the parameter extraction result is not unique, it can lead to
oscillation in the iterative process. To avoid such a possibility,
a penalty function is introduced in conjunction with the Huber
or objective function [16], [17].

The new approach discussed here is applied to the design
optimization of an interdigital filter, driving a well-recognized
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EM simulator ( [18]). Fast and stable convergence to a
desirable filter design is achieved after only three EM fine-
model simulations.

II. A GGRESSIVESPACE MAPPING

A. Basic Concept

Consider models in two distinct spaces: the EM space,
denoted by , and the optimization space, denoted by .
The model is called a fine model, assuming that it is
rigorous and accurate, but its simulation is CPU intensive. In
contrast, the model is less accurate but faster to compute,
hence it is called a coarse model. For instance, the
model can be a mode-matching model with an adequately large
number of modes or a FEM model with a sufficiently small
mesh size. The models in may include empirical models,
equivalent circuits and EM models with a coarse grid size.

The designable model parameters in and are
denoted by and , respectively. Typically, gradient-
based optimization algorithms assume that the variables are
continuous. To reconcile this assumption with an EM simulator
which discretizes geometrical dimensions, linear and quadratic
interpolation techniques are applied [19].

One wishes to find a mapping between the two spaces

(1)

such that

(2)

or more precisely,

(3)

where denotes the Huber or norm and is a small posi-
tive constant. and represent the responses
of the fine model and the coarse model, respectively.

The aim here is to avoid direct optimization in the CPU-
intensive space. Instead, the bulk of the computation
involved in optimization is carried out in the space. The
optimal solution in can then be mapped to using an
inverse mapping derived from (1).

In the aggressive SM procedure, the mapping function
is updated through a quasi-Newton iteration with first-order
derivative approximations based on the classic Broyden for-
mula [15]. The detailed description of this algorithm can be
found in [13].

B. Parameter Extraction and Penalty Function

Denoting the optimal solution in by , one starts with
. At the th iteration, one simulates the model

at and obtains by parameter extraction

minimize (4)

Then, the mapping is updated by the Broyden formula and
used to produce the following iterate:

(5)

The uniqueness of the parameter extraction is crucial. If the
solution of (4) is not unique, the SM process may be slow to
converge, oscillate, or fail to converge at all.

To address this problem, a penalty function is introduced
and modifies (4) as

minimize

(6)

where is a nonnegative weighting factor.
The convergence of the SM process can be characterized as

(7)

(8)

where represents the desired SM solution in .
In effect, the penalty terms in (6) are used to force its

solution toward satisfying (7). In situations where multiple
solutions for the original parameter extraction problem (4)
exist, the solution which is closest to satisfying (7) is favored.

With the penalty terms, the mapping derived from the
solution of (6) is likely to be different from the mapping
derived from the solution of (4). In this respect, the weighting
factor in (6) merits careful consideration. If is too large,
the result of the parameter extraction may not be very accurate
in the sense that it may produce a poor agreement between

and . If is too small, it may not achieve
the intended purpose of forcing (7).

One can also see that as converges to , the effect of
the penalty terms gradually diminishes. In other words, the role
of the penalty terms is most significant in the initial stage of
the SM process, when nonunique parameter extraction results
are most likely to occur. It is found that a suitable value for

is between 0.05 and 0.2 for the interdigital filter design
considered.

C. Automated SM Optimization

The fully automated aggressive SM strategy is illustrated by
the flowchart in Fig. 1. in (5) can be expressed as

(9)

where is the incremental vector computed by the SM
algorithm in the th iteration.

Since an EM simulator with a fixed discretization grid is
used, the model parameters need to be snapped to the
grid. Assuming that is the incremental vector calculated
by the SM algorithm, one denotes by the vector after
snapping to the grid. It can be expressed as

(10)

where

(11)

is the number of the model parameters, is the grid size
of the th parameter, and is the th component of .
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Fig. 1. Flowchart of the automated aggressive SM strategy.

In the flowchart of Fig. 1, the vector is calculated within
the “SM update” block. The calculation of by (10) and
(11) is implemented in the “ snapping” block, with further
details shown in Fig. 2. With the consideration of snapping
parameters to the grid, in this implementation (9) is replaced
by

(12)

If the model has been simulated previously at ,
then the results are retrieved from the database. Otherwise a
full-wave EM analysis is performed at .

Fig. 3 shows the details of the parameter extraction step.

III. T HE FILTER MODELS AND DECOMPOSITION

A five-pole interdigital filter is shown in Fig. 4. The filter
consists of five quarter-wavelength resonators, as well as
input and output microstrip T-junctions within a shielded
box. Each resonator is formed by one quarter-wavelength
microstrip line section, shorted by a via at one end and
opened at the other end. The arrows in Fig. 4 indicate the
input and output reference planes, and the triangles symbolize
the grounded vias. Some relevant material parameters and
geometrical dimensions are listed in Table I.

Fig. 2. Detail of thexxxem grid snapping step of Fig. 1.

Fig. 3. Detail of the parameter extraction loop of Fig. 1.

A. The Fine Model

For an accurate analysis of the interdigital filter using the
full-wave MoM simulator [18], a fine grid is needed to
model the geometry precisely.

For the fine model in the SM process, the authors chose to
simulate the complete filter structure as a whole with the grid
size of 1 1 mil. With this grid size, the EM simulation



764 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997

TABLE I
MATERIAL AND PHYSICAL PARAMETERS FOR THE FINE AND COARSE MODELS

Fig. 4. A five-pole interdigital filter.

time is about 1.5 CPU h per frequency point on a Sun
SPARCstation 10 (longer if losses are included). This means

Fig. 5. A coarse model of the interdigital filter using decomposition.

that a “brute force” approach of directly driving the fine-model
EM simulation within an iterative optimization process would
require an excessive amount of CPU time.

B. Decomposition and the Coarse Model

Decomposition is used to construct an efficient coarse model
for the SM optimization. As shown in Fig. 5, the filter is
decomposed into a 12-port center piece, the vias, the microstrip
line sections and the open ends. Referring to Fig. 5, the
center shaded 12-port is analyzed by with a very coarse
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Fig. 6. The interdigital filter responses after synthesis and minimax optimization using the coarse model (- � - � - jS21j; - - - - jS11j). The insert
shows the details of the passband.

grid: 5 10 mil. Off-grid responses, when needed during
optimization, are obtained by linear or quadratic interpolation.
The via is analyzed by with a grid of 1 1 mil. All the
other parts including the microstrip line sections and the open
ends are analyzed using the empirical models in OSA90/hope
[19]. The results are then connected through circuit theory
to obtain the responses of the overall filter. Some relevant
parameters of the coarse model are summarized in Table I.

Since the coarse model retains most of the adjacent and
nonadjacent couplings, it provides reasonably accurate results
at dramatically faster speed: the coarse model simulation
takes less than 1 CPU min per frequency point on a Sun
SPARCstation 10. Furthermore, by using a very coarse grid
instead of a fine grid, much fewer full-wave EM simulations
are needed during optimization. The overall CPU time required
for optimizing the coarse model is about 2 h, which is of the
same order of magnitude as the fine-model EM simulation at
a single frequency point.

C. Optimization Variables

Using the geometry capture feature ofEmpipe [19], the
authors define six optimization variables for the interdigital
filter, shown in Fig. 5 as , , , . These include the
gaps between the resonators and lengths of the microstrip lines.
The tapped positions of the input and output resonators are
controlled indirectly by variables and .

For the 12-port in the coarse model, the lengthof each
parallel microstrip section is fixed at 180 mil (about 70%
of a quarter wavelength). The actual overall lengths of the
resonators are determined byand the variables , , ,
and . The gaps between the resonators are optimizable and
the initial values are determined by synthesis. The authors also
impose reasonable bounds on the gaps during optimization: 20
mil 30 mil and 25 mil 35 mil.

The dimensions of the vias are fixed.

IV. SM OPTIMIZATION OF THE INTERDIGITAL FILTER

A. Coarse Model Synthesis and Optimization

The interdigital filter design specifications are as follows:

center frequency 5.1 GHz
bandwidth 0.4 GHz
passband ripple 0.1 dB
isolation 30 dB
isolation bandwidth 0.95 GHz.

Following well-established synthesis techniques [20], the
order of the filter is determined to be five. The authors chose
15-mil-thick alumina substrate with . The width of
each microstrip is chosen to be 10 mil for a good quality
factor. The length of each resonator is initially set to a quarter
wavelength. The gaps and the positions of the tapped lines are
designed using synthesis techniques.

Using the synthesized design as a starting point, minimax
optimization is performed on the coarse model. The optimal
responses shown in Fig. 6 satisfy the specifications very well.
The passband ripples are less than 0.1 dB. In the coarse model
simulation, the 12-port substructure and the vias are analyzed
by at 51 frequency points.

B. Fine-Model SM Optimization for the Lossless Case

Using the optimal coarse model responses as the target, the
aim is to find the SM solution in the fine-model space. Initially,
the fine model without losses is considered.

Denoting the optimal coarse model by variables, the
aggressive SM process is started with . The fine-
model EM simulation results at the starting point are shown
in Fig. 7. Not surprisingly, the fine-model responses deviate
significantly from the optimal coarse-model responses. The
passband return loss is only about 11 dB. Also, notice that in
the lower stopband near 4.7 GHz the insertion loss is about 7.5
dB, which means the bandwidth is widened. This is most likely
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Fig. 7. The solid lines represent the optimaljS11j and jS21j responses of
the coarse model atxxx�os. The circles represent the fine-model responses at
xxx
(1)
em = xxx�os (� � � jS21j; � � � jS11j).

Fig. 8. The parameter extraction results. The solid lines represent the coarse
model responses atxxx(1)os . The circles represent the fine-model responses at
xxx
(1)
em (� � � jS21j; � � � jS11j).

due to the fact that some of the couplings between resonators
are not taken into account by the coarse model.

The next step is to find a point in the space, denoted by
, to match the responses of by parameter extraction

with the penalty terms as defined in (6). The weighting factor
for the penalty terms is chosen to be 0.15. The parameter
extraction results are shown in Fig. 8. This process does not
require any additional EM simulation of the fine model. Only
the coarse model simulations are involved.

Based on the parameter values of and , the mapping
function is updated (the initial mapping is set to the identity
mapping). Details of the updating formulas can be found in
[13]. The inverse mapping of leads to a new point in
the space: . This completes one iteration of the
aggressive SM strategy.

The fine-model EM simulation results of are shown
in Fig. 9. It shows significant improvement over the starting
point. Two major accomplishments are achieved in this one
iteration. The scattered points of the return loss have been

Fig. 9. The fine-model responses (� � � jS21j; � � � jS11j) at xxx(2)em after
the first aggressive SM iteration. The solid lines represent the optimaljS11j
and jS21j responses of the coarse model atxxx�os.

Fig. 10. The fine-model responses (� � � jS21j; � � � jS11j) atxxx(3)em after the
second aggressive SM iteration. The solid lines represent the optimaljS11j
and jS21j responses of the coarse model atxxx�os.

TABLE II
ITERATIONS IN THE XXXos SPACE

improved and the bandwidth has been reduced on the lower
frequency side.

Another SM iteration is performed. The fine-model EM
simulation results are shown in Fig. 10. It shows further
improvement over the results of the first iteration.

Table II tracks the points in the space, showing the
Euclidian distance between the point and the optimal
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TABLE III
ITERATIONS IN THE XXXem SPACE

Fig. 11. Illustration of snapping the fine-model parameters to the grid.

point . Table III shows the progress in the space.
Notice that in the step from to , only one variable,
namely , has changed by just 1 mil. It indicates a rapid con-
vergence, demonstrating the benefits of the penalty function
approach.

As described in (10) and (11), the fine-model parameter
values are snapped to the nearest on-grid point during the SM
process in order to avoid extra EM simulations of the fine
model. This is illustrated in Fig. 11.

C. Selection of Frequency Points

In the coarse model simulation, the 12-port substructure
and the vias are analyzed by at 51 frequency points. For
the fine-model EM simulation, one obviously wishes to use
as few frequency points as possible to save CPU time. The
selected frequency points should provide enough information
for aligning the models and establishing the mapping between

and . Generally, this requires much fewer frequency
points than would be needed for producing a smooth plot of the
responses over the whole frequency band. In Figs. 7–10, for
the fine-model EM simulation, 11 frequency points are chosen
in the passband, one frequency point in the upper stopband
and another one in the lower stopband.

To verify the SM solution obtained using the selected
few frequency points, EM simulation of the fine model is
performed at with 43 frequency points. The results are
shown in Fig. 12. The passband return loss is better than 18.5
dB and the insertion loss ripples are less than 0.1 dB.

Fig. 12. Fine-model EM simulation atxxx(3)em using a fine frequency sweep.

Fig. 13. Filter after cutting off the metal areas with nearly zero current.

D. Consideration of Losses

In order to include dielectric and conductor losses in EM
simulation while keeping the increase in CPU time to a
minimum, an attempt is made to simplify the geometry by
cutting away any redundant metal which does not contribute
to the EM-simulation result. Swanson [11] has shown that
the current density plots produced by and [18]
can provide useful information in this regard. It can be seen
from such plots that the current density on the outside edges
of the vias is nearly zero. The EM simulation can be sped
up by cutting off those areas, as shown in Fig. 13. Fig. 14
compares the filter responses before and after this modification
and shows only minor differences.
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Fig. 14. Comparison of the filter responses before (solid lines) and after
(dotted lines) cutting off the metal areas with nearly zero current.

Fig. 15. The filter responses with dielectric and conductor losses.

Fig. 15 shows the filter responses with the dielectric and
conductor losses included in the EM simulation and with the
redundant metal removed. The substrate loss tangent is set to
0.001 and the copper conductivity is assumed to be 5.810 .
All the specifications are satisfied. The passband return loss is
better than 18.5 dB.

V. CONCLUSION

A new design methodology for EM optimization has been
presented. A coherent framework has been developed to com-
bine the power of the aggressive SM strategy and the decom-
position technique. An intelligent decomposition approach has
enabled the authors to construct highly efficient coarse models
to carry out the bulk of the computational loads speedily. With
a few carefully aligned fine-model simulations, the authors
were able to map the optimal solution from the coarse model
space into the fine-model space.

A penalty function has been introduced in the parameter
extraction process to improve the uniqueness of the solution
and the convergence of the SM process.

This new approach has been demonstrated through the EM
design optimization of an interdigital filter. The results have
shown that rapid and significant improvements have been

achieved after each iteration. A properly aligned design with
desirable responses has been obtained after just three fine-
model EM simulations. Furthermore, only 13 frequency points
were needed for the fine-model simulation—far fewer than
would have been needed for a direct optimization of the fine-
model responses over the same frequency band. In fact, the
total EM simulation effort in the design is equivalent to a
single fine-model EM simulation with 39 frequency points.
It means that with a proper strategy one can execute EM
optimization of practical designs with essentially the same
magnitude of effort as that of a detailed EM simulation.

The SM concept can be extended to include as theultimate
fine model a production prototype, the responses of which are
obtained by measurement. A mapping established iteratively
between a coarse simulation model and the device under
test will not only guide optimization of the design but also
provide invaluable insight into post-production tuning and
further refinement of the simulation model.
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